1.2.2数轴 教学设计(5篇材料)

时间:2019-05-13 01:26:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.2.2数轴 教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.2.2数轴 教学设计》。

第一篇:1.2.2数轴 教学设计

数轴 教学设计

教学目标: 知识与技能:

知道数轴的三要素,会画数轴;

知道有理数与数轴上点的对应关系,能将有理数用数轴上的点表示; 会利用数轴比较有理数的大小。情感、态度与价值观:

初步认识数学与人类生活的密切联系,体验数学活动充满着探索和创造,感受数学的严谨性。

教学重点 数轴的画法;

会用数轴上的点表示有理数,能说出数轴上已知点所表示的数。教学难点

会用数轴上的点表示有理数,能说出数轴上已知点所表示的数。教学用具 投影仪。

课堂教学过程设计

(二)一起探究

看书中的问题,投影显示如下图:

西 东

1、画一条直线表示马路,从左到右表示从西到东的方向,在直线上任取一个点O表示汽车站的位置,规定1个单位长度(线段OA的长)代表1m长。让学生找出柳树、杨树、槐树、电线杆的位置。

学生思考,踊跃发言,说出自己的观点。

现在我们将实际的地点抛开不考虑,只保留这条水平的直线,并且在这条直线上任取一点为原点,用这个点表示0,规定这条直线上从原点向右的方向为正方向,用箭头表示,那么相反的方向为负方向,选取某一长度作为单位长度,就得到了数轴(number axis)。

(三)数轴 1.数轴的画法 第一步:画直线定原点

原点表示0。

第二步:规定从原点向右的为正方向负方向。

第三步:选择适当的长度为单位长度

那么相反的方向(从原点向左)则为。

【教法说明】教师边讲解边示范,学生跟着一起画图。提高学生动手、动脑和实际操作能力。

让学生观察画好的数轴,思考以下问题:(出示投影1)(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左1示什么数?

1个单位长度的B点表2

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。

教师根据学生回答给予肯定或否定,纠正后板书。2.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答。

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解。【教法说明】此组练习的目的是巩固数轴的概念。

答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习习近平面直角坐标系打基础。

3.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示。例1 画一条数轴,并画出表示下列各数的点: 1,5,0,-2.5,41. 2学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演。教师巡回指导,发现问题及时纠正。

【教法说明】让学生动手自己画数轴,有助于培养学生实际操作能力。例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解。

(出示投影4)

例2 指出数轴上 A、B、C、D、E各点分别表示什么数?

先让学生思考一会,然后学生举手回答 解:A表示-3;B表示5111; C表示3;D表示;E表1。222【教法说明】例2是让学生说出数轴上的点表示的有理数,完成了由“形”到“数”的思维过程。例

1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想。

4.尝试反馈,巩固练习1.判断题

(1)直线就是数轴()(2)数轴是直线()

(3)任何一个有理数都可以用数轴上的点来表示()(4)数轴上到原点距离等于3的点所表示的数是+3()

(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0。()

答案

1.× √ √ × √(出示投影5)

①说出下面数轴上A、B、C、D、O、M各点表示什么数?

②将-3,115,1.5,-6,2,2.25,,-5,1 223各数用数轴上的点表示出来。

【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容。

(四)归纳小结

师:①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法。本章有理数的有关性质和运算都是结合数轴进行的。

②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数,以后再研究。

第二篇:2.2 数轴教案

课题:2.2数轴

教学目标:

1、正确理解数轴的意义,理解数轴的三要素。

2、掌握有理数在数轴上的表示

法,以及利用数轴比较有理数的大小。

3、理解相反数的意义及求法。

4、对学生渗透数形结合的思

想方法,培养学生的观

察、归纳与概括的能力。

1、学习目标:掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

2、理解相反数的意义及求法。

3、了解数轴的意义及画法

重点 难点:

1.正确掌握数轴的画法;用数轴上的点表示有理

数;求已知数的相反数。

2.有理数和数轴上的的点的对应关系。

教学方法:合作探究交流

学法指导:观察归纳概括

教学过程:

一、情景引入:(大屏幕展示)

(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

(2)我们能否用类似温度计的图形表示有理

数呢?

二、讲授新课:认真阅读课本第43页至45页,完成下列问题

(1)画一条水平直线,在直线上取一点O(叫做

▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。

于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1.5的点表示1.5,任何有理数都可以用数轴上的一个点来表示。

141

4三、例题讲解、巩固提高(大屏幕展示)

例1.如图,指出数轴上A、B、C、D各点表示什么数?

ADCB–2–解:点A表示-2;点B表示2;点C表示0;

点D表示-1

练习:画出数轴并用数轴上的点表示下列个数: 33,-5,0,5,-4,-.22

四、继续探究(大屏幕展示)与-2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与-5,与-呢?

如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习:

1、5的相反数是▁▁;▁▁的相反

数是-3.5。

议一议(大屏幕展示)

32数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?

数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。

练习:比较大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。

3、合作交流

(1)什

(2)有理数与数轴上的点之间存在怎样的关

系?

(3)什数?

(4)如何利用数轴比较有理数的大小?

5、随堂练习:

(1)下列说法正确的是()

A、数轴上的点只能表示有理数

B、一个数只能用数轴上的一个点表示

C、在1和3之间只有2

D、在数轴上离原点2个单位长度的点表

示的数是2

(2)语句:①-5是相反数、②-5与+3互为相反数

③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。上述说法中正确的是()

A、①②⑥B、②③⑤C、①④D、③④⑤⑥

(3)大于-4而小于4的整数有▁▁▁▁▁▁。

(4)用“﹤”或“﹥”号填空

①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1

(5)写出下列各数的相反数

3.4,-3,0,a,2a-3。

课堂小结:我的收获:

作业设计:教材习题及数学导航

教后反思

第三篇:《数轴》教学设计

《数轴》 教学设计

大荔县赵渡中学 郭娟

设计依据

本节课主要设计思想都依据义务教育《数学课程标准》(2011年版),基本理念强调数学课程的基础性、普及性,数学的发展性,学生的学习内容应当是现实的,有意义的和富有挑战性的,教学内容有利于学生主动的进行探究与交流,自主探索,合作交流是学生学习数学的重要方式。教师是学生学习的组织者,引导者和合作者。在师生共同交流的过程中理解和掌握基本的数学知识与技能,常用的数学思想和方法。

教学内容分析

人教版义务教育教科书七年级上册《数学》1.2.2数轴,属于义务教育《数学课程标准》(2011年版)第三学段的“数与代数”内容,《数轴》这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础

学情分析:

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数 的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学 生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一 方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

教学目标: 知识与能力

1、使学生理解数轴的三要素,会画数轴。

2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;

3、向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。过程与方法

学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到"细观察、多动手、勤思考".通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习.

情感态度与价值观

1.渗透数形结合的数学思想; 2.知道数学来源于实践; 3.培养对数学的学习兴趣.教学重点

由于学生学习了用数轴上的点表示有理数后,就能较好地理解相反数的概念及应用数同比较有理数的大小,因此,本节课的重点应为会用数轴上的点表示有理数。

教学难点

由于从问题情境抽象到数轴这一建模过程,对于抽象思维处于初级阶段的七年级学生来说,认知上存在一定的困难,因此,本节课的难点是:数轴的引入;突破难点的关键是:运用类比数学思想。教学过程:

一、出示目标

1、使学生理解数轴的三要素,会画数轴。

2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;

3、体会数行结合的数学思想。

二、突破目标

1、复习导入

(1).“正、负”的规定具有相对性,正数和负数表示相反意义的量

如果向东走30米记作+30米,那么向南走30米,能否记作-30米?为什么?(2).引进负数的意义:

Ⅰ 表示相反意义的量; Ⅱ 计算的需要.2、自学提纲(自学教材7—8页回答)

①在上图中是怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系? ②观察温度计,体会数与形有怎样的对应关系? ③什么是数轴?

④“单位长度”能不能说成“长度单位”?为什么? ⑤画数轴的一般步骤是什么?

⑥根据教材中的实例,说一说原点起什么作用?

3、通过10分钟的自学后,分小组对照答案,针对问题小组讨论,教师巡视并对小组活动给予及时的评价和帮助。

4、小组展示,教师利用幻灯片进行知识小结。

三、课堂检测 课堂检测1.3.5.7.2.4.6.8.原点、正方向、单位长度一个也不能少.练一练1.在数轴上表示下列各数.1+2,-2,-3.5 4-3.5●-2●14●2●-4-3-2-101234任何一个有理数都可以用数轴上的一个点来表示.四、课堂小结

通过这节课的学习你有那些收获?你还有什么疑惑吗?

你对自己的表现满意吗?为什么?

教学反思: 这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法。在教学与学习中注重数形结合是数学教学与学习的重要指导思想,以后学习有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性。

学生在自学的过程中非常认真,问题一一得到了解决,整个概念的教学流畅自然,而且让学生充分地进行了思考和积极地探索,令学生对于数轴的三要素理解深刻,突破了难点。学生在画数轴时容易出现一些画法上的小错误,所以我在屏幕示范画数轴的过程中边画边附上几点说明:原点、单位长度和正方向三要素缺一不可;直线一般画水平并非只能画水平;原点可取直线上任一点但一取定就不再改变;正方向用箭头表示,一般取从左到右为正;单位长度取适当应结合实际需要但一旦取定就不再改变,要做到刻度均匀。这一示范和说明使他们对自学的内容进行了纠正和有效的强化,但简单的说教所达到的效果并不显著,所以,我设置了一组典型的错误画法让学生辨别及时纠错、深化理解,帮助他们真正领会了数轴的含义。我想,作为教师,我们在备课时不但要备教材,更要备学生,学会换位思考,学生可能会出现怎样的问题和疏忽,我们要有所准备,及时预防和纠正。我又想,如果先放手让学生自己画,然后把学生自己画的数轴(特别是有错误的)展示,相互指正,以示警戒,也不失为一种很好的教学资源。

本节课,当学习用数轴上的点表示正负数时,学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上。

第四篇:数轴教学设计

第二章 有理数及其运算

2.数轴

山西省太原市万柏林区一中

赵洁

一 学生起点分析: 学生的知识技能基础:学生小学里已经学习过在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的认识和理解,上一节又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法.学生活动经验基础:数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.二 学习任务分析:

这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法.从现在开始,在教学与学习中注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性.数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.本节是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小,借助数轴理解互为相反数两数的几何意义.正确理解有理数与数轴上点的对应关系.另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.为此,本节课的教学目标是:

1、知识与技能:①通过与温度计的类比认识数轴,会用数轴上的点表示有理数;②借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;③利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,渗透数形结合的数学思想和方法.3、情感与态度:通过数轴与温度变化这种自然现象的和谐结合,激发学生探索的好奇心,提高学生的学习兴趣,以培养学生勇于创新的精神和良好的学习习惯.三 教学过程设计:

本节课设计了七个教学环节:第一环节:创设情境,引入课题;第二环节:合作交流,探索新知;第三环节:动手练习,归纳总结;第四环节:仔细观察,发现规律; 第五环节:加强练习,巩固提高;第六环节:归纳小结,强化思想;第七环节:布置作业.第一环节 创设情境,引入课题 活动内容:

教师通过课件演示温度计读数,并且让学生回答以下问题:

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(四人小组为单位讨论并回答教师的问题)

活动目的:

创设问题情境,激发学生学习热情,发现生活中的数学.通过问题1和问题2的解决, 学生感受到点与数之间的关系,从而由点表示数的感性认识上升到理性认识.活动的实际效果:

激发了学生学习兴趣,学生对此内容很感兴趣

第二环节 合作交流,探索新知

活动内容:

学生回答由上述两问题得到什么启发?你能用一条直线上的点表示有理数吗? 活动目的:

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度.活动的实际效果:

学生在开放的环境下,大胆的发表自己的见解.有的学生提出用射线上的点表示有理数,但有人反驳,射线是向一方延伸,而有理数是无限的,应该采用直线.同时学生还探索出,为了区分正有理数和负有理数,必须在直线上先确定零点,即原点.同时还需要正方向以及像温度计刻度一样的单位长度.在学生的探索下,一个数轴展现在师生面前.即先画一条水平直线,在水平直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定向右的方向为正方向这就是数轴.第三环节 动手练习,归纳总结 活动内容:

学生回答问题,动手训练 问题1: +3,-4,1,-1.5,0分别在数轴的什么位置? 4问题2:指出数轴上 A, B, C, D各点分别表示什么数? 2

问题3: 画出数轴,并用数轴上的点表示下列各数: 33,-5,0,5,-4, 22问题4:2与-2有什么相同点与不相同点?它们在数轴上的位置有什么关系?

33与,225与-5呢?

活动目的:

通过练习,得出结论.正有理数是用原点右边的点表示,负有理数是用原点左边的点表示,0用原点表示.所以任何一个有理数都可以用数轴上的一个点来表示.问题2是数轴上已知点所表示的有理数,是由“形”到“数”的思维过程.问题3是给定的数用数轴上的点来表示,是由“数”到“形”的思维过程.它们从两个侧面体现出数形结合思想.问题4是使学生通过观察特例,总结出相反数的概念,以及互为相反数的两数在数轴上的位置关系,从数和形两个侧面理解相反数.活动的实际效果:

通过几个问题的训练学生基本掌握了数轴的画法,掌握了有理数可用数轴上的点来表示.他们还观察出像2和-2,-5和5等这样的一组数它们只有符号不同这样的特点,总结出相反数的概念.同时,还提出像0这样的特殊数字,它的相反数还是0.学生们还从数轴上观察出2与-2等这样的一组数,位于原点的两侧,并且距原点的距离相等.因此得到结论:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数.也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.第四环节 仔细观察,发现规律 活动内容:

学生观察数轴并回答问题:

问题1:数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系? 问题2:正数、负数在数轴的什么位置?判断它们的大小?

利用结论练习:比较下列每组数的大小,并说明理由.⑴-2 和 +6;⑵0和-1.8;⑶3和-4.2 活动目的:

思考数轴的应用价值,观察数轴上两个点所表示的数的大小情况.得出结论:数轴上两个点所表示数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.通过练习,借助数轴比较数的大小.活动实际效果:

学生通过练习掌握了利用数轴比较数的大小,在训练中灵活运用今天所学知识.第五环节 加强练习,巩固提高 活动内容:

1、写出三对非零的相反数,在数轴上将它们表示出来,并比较其中三个负数的大小.3

2、在数轴上距原点2个单位长度的点表示什么数? 活动目的:

一方面巩固新学内容,另一方面为讨论相反数的性质和绝对值的概念作准备.活动实际效果:

学生基本能准确的把有理数用数轴上的点表示出来.在比较数的大小时,出现错误,例如:把-5﹤-3﹤-2写成-3﹥-5﹤-2,教学中应及时纠正.第六环节 归纳小结,强化思想 活动内容:

师生共同总结这节课的知识内容,让学生畅所欲言谈这节课收获.活动目的:

把所学知识条理化,学生把自己在本节课的收获说出来和大家共享,在知识、能力和情感上都有所发展.活动实际效果:

通过师生共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也有利于培养学生归纳、概括的能力.学生不仅有知识上的收获,而且体会到数学源于生活.第七环节 布置作业

1、在数轴上把下列各数的相反数表示出来,并比较它们的大小.7,45,-3.5,0,342、比较下列每组数的大小

(1)-10,-7(2)-3.5,1(3)11,(4)3.8,-4.1,-3.9 243、(1)点A在数轴上距原点3个单位长度,且位于原点左侧,若将A向右移动4个单位

长度,在向左移动1个单位长度,此时A点所表示的是什么数?(2)B点所表示的数是A点开始时所表示数的相反数做同样的移动以后, B点表示 什么数?

四 教学反思:

1、在问题的探索上

采用小组探究老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能.但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我在处理时由于怕时间不够充裕所以学生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助.2、习题的配备

整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对数轴任意两点之间的大小关系理解进一步的加强以及对相反数概念的理解.在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围.在最后的习题配备上,让学生对两个数大小关系作出判断,并且对各种情况做出讨论,达到本节课的一个高潮.促使学生的思路得到进一步的加强.3、课时安排

课堂教学容量过大,分两个课时要好一些.5

第五篇:数轴教学设计专题

第二章 有理数及其运算

2.数 轴

刘晨

一、学生起点分析

日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了生活经验基础,是学生便于理解数轴概念.二、学习任务分析

1、知识与技能:①掌握数轴的三要素,会画数轴; ②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来; ③数轴上点的大小关系,能利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,初步培养学生数形结合的数学思想方法和意识.3、情感与态度:通过数轴与生活实物对应对比,激发学生兴趣,通过规范画图,培养学生细致准确习惯,扶植勇于探究的精神.三、教学过程设计

本节课设计了六个教学环节:①情境导入、适时点题;

②问题探究、形成策略 ; ③动手操作、探索新知;

④小试牛刀、自我检测 ; ⑤快乐课堂、思维晋级;⑥师生归纳,布置作业。

第一环节 情景导入,适时点题 活动内容:

1.你能说说什么叫正数,什么叫负数吗? 2.问题1:(1)温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(教师通过课件演示温度计读数,并且让学生回答以下问题:)

(2)温度计上的刻度数有什么特点?你为什么能准确的说出每一个度数?

(3)你能借鉴温度计,用一条直线上的点表示有理数吗?(学生自由发言)第二环节 问题探究,形成策略 活动内容一:

1.师生动手画数轴.(边画边强调数轴画法和要点)数轴三要素: 原点 正方向 单位长度 师: 好像一个平放着的温度计

第三环节 动手操作,探索新知

活动内容:

1.问题1:请你思考: +3,-4,0分别在数轴的什么位置?

1,-1.5呢? 42.问题2:指出数轴上 A, B, C, D各点分别表示什么数?

3.问题3:画出数轴,并用数轴上的点表示下列各数: 33,-3.5,0,5,-4, 22 思考:怎样在数轴上表示一个有理数-4 ? 数轴的作用有哪些?

第四环节 小试牛刀,自我检测

活动内容:一组检测题

1.下列各图表示数轴是否正确?为什么? ⑴ ⑵ ⑶ ⑷

2.指出数轴上点A、B、C、D分别表示什么数,并说出他们的相反数.3.画出数轴,并在数轴上画出表示下列各数的点:

2-4,3.5,-1.5,1,0 ,2.5.3再按数轴上从左到右的顺序,将这些数重新排成一行.活动方式: 学生练习,学生互评,订正强调要点;归纳出:数轴上两个点表示的数,右边的总比左边的大;正数大于0,负数小于0,正数大于负数.活动目的:

检测学生知识的运用与掌握情况 活动的实际效果:

刚学数轴,强调运用中的规范性准确性;强调错误的认识与体验。第五环节 快乐课堂,思维晋级

活动内容:

1.问题1: 比较下列每组数的大小,并说明理由.⑴-2 和 +6;⑵0和-1.8;⑶3和-4;(4)3.8,-4.1,-3.2 3 2.问题2:写出5个有理数,在数轴上将它们表示出来,并比较它们的大小.3.问题三: 在数轴上距原点3个单位长度的点表示什么数?与表示数2的点距离3个单位的数是多少?

下载1.2.2数轴 教学设计(5篇材料)word格式文档
下载1.2.2数轴 教学设计(5篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《数轴》教学设计

    北师大版七年级数学上册第二章第二节《数轴》教学设计 太平中学 张效文 ◆教材分析: 1、本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事......

    数轴教学设计

    数轴教学设计(一) 一、教学目标(一)知识与技能 通过与温度计的类比认识数轴,会用数轴上的点表示有理数,会用数简明地表示同一条直线上不同物体间的相对位置关系.(二)过程与方法 经......

    数轴教学设计

    数轴教学设计 一、 教学内容分析 这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等......

    《数轴》教学设计

    《数轴》教学设计 教学目标: 1、知识与技能:①掌握数轴的三要素,会画数轴; ②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来; ③数轴上点的大小关系,能利......

    数轴教学设计

    数轴教学设计 湖南怀化芷江上坪学校李健 一、教材分析 《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的......

    鲁教版六上2.2《数轴》教学设计

    《数轴》教学设计 刘淑香 【教学目标】 1、 理解数轴的概念,会画数轴; 2、 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都......

    1.2.1《数轴》教学设计

    《数轴》教学设计 一、 教学内容分析 人教版七年级(上册)第一章有理数1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主......

    1.2.2数轴教学设计

    1.2.2 数轴 教学目标 1.知识与技能 ①掌握数轴三要素,能正确画出数轴. ②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数. 2.过程与方法 ①使学生受到把实际问题抽......