第一篇:初中数学教学案例---中心对称图形
《中心对称图形》教案
一、教学目标:
1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:
理解中心对称图形的概念及其基本性质。
三、教学过程:
(一)创设问题情境
1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。师重复以上活动2次后提问:
(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?(2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论)反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。
3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:
(1)只有一张扑克牌图案颠倒后和原来牌面一样。
(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O 后,就可以马上在一堆扑克牌中找出它。
(二)学生分组讨论、思考探究:
1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?
生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。
2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用 “Z+Z”演示其旋转过程。)3.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?
对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。
(三)教师明晰,建立模型
1.给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2.对比轴对称图形与中心对称图形:(列出表格,加深印象)轴对称图形
中心对称图形 有一条对称轴——直线
有一个对称中心——点 沿对称轴对折 绕对称中心旋转180O 对折后与原图形重合 旋转后与原图形重合
3.以下五家银行行标中,既是中心对称图形又是轴对称图形的有()
(四)解释、应用与拓广
1.教师用“Z+Z智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。
2.探究中心对称图形的性质 板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
3.师问:怎样找出一个中心对称图形的对称中心?(两组对应点连结所成线段的交点)
4.平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?
学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质? 5.逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗? 学生讨论回答。
6.你还能找出哪些多边形是中心对称图形?
反思:自主、探究、合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习量化表,见(附录))。
(五)拓展与延伸
1.中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?
2.正六边形的对称中心怎样确定?
(六)魔术表演: 1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180º后,得到右图,你知道哪一张扑克被旋转过吗?
2.学生小组活动:
以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。
四、案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能学得轻松愉快,整个课堂显得生动活泼。
第二篇:中心对称图形教学设计
《中心对称图形》教学设计
太谷三中 王琴平
【教学目标】
1.知识与技能:掌握中心对称图形的定义及其基本性质
2.过程与方法:通过观察、发现、交流、探索等一系列活动,培养学生的创新精神、提升学生的观察智能、语言智能、空间智能及数理逻辑智能。
3.情感态度与价值观:学生在学习活动过程中,学会与他人合作交流,培养学生的团结合作精神和人际交往智能。
教学重点:中心对称图形定义及其基本性质。
难点:运用中心对称图形的有关概念和基本性质解决问题。【教学过程】
一、情景导入
师:同学们,你们看过魔术表演吗?喜不喜欢? 师:(魔术表演)前几天我找了一位魔术大师学了个小魔术,现在给大家表演一下,我手中现在有几张扑克牌,下面请一位同学上台来,你任意抽出一张扑克牌,自己看一下,让其它同学看一下,然后把这张牌旋转180 º后再插入,再把牌洗几下,展开扑克牌,我马上就能确定这位同学抽出的扑克牌。
好,再找一位同学试一下。我又马上就能确定这位同学抽出的扑克牌。
师:同学们感觉很神秘吧,你想知道其中的奥秘吗?
师:学习了这节课之后,我相信你一定会知道其中的奥密,带着这个问题,这节课我们就来学习中心对称图形。
二、新授过程
(一)中心对称图形的定义
1、师:我们首先来看生活中的几个图片。(课件出示图片)课件出示问题:
(1)这些图形旋转多少度能与自身重合?(学生回答)(2)这些图形有什么共同的特征?(学生回答)
(教师课件演示旋转过程.)
2、师:像刚才这类的图形我们给它个名称叫中心对称图形,那通过刚才的探究和演示,你能给中心对称图形下个定义吗?(课件出示中心对称图形的定义在平面内,一个图形绕某个点旋转180º,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。我们把这个点叫做它的对称中心。
3、练一练
1、请判断下面图形哪些是中心对称图形?说明理由。(课件出示,学生回答后,教师演示论证)。
2、(1)、平行四边形是中心对称图形吗?如果是请你找出对称中心并设法来验证它。(学生动手操作,并得出结论)
(2)、通过上面的实验活动,你能验证平行四边形的哪些性质?(教师演示并归纳结论)
(二)、探索性质
1、从上图中请你找出A点的对应点是-----------,B点的对应点是---------,对应点与对称中心有什么关系?对应线段呢?
2、现在谁能用文字来描述中心对称图形的性质。(学生说)
3、课件出示中心对称图形的性质,全班同学读一遍。
三、巩固练习
1、课件出示5组题,让同学们分别从英文字母、数字、一些生活标志中找出中心对称图形。
2、生活中有许多的中心对称图形,你能举出一些例子吗?(学生讨论回答,教师出示图片)
3、对比轴对称图形与中心对称图形。(1)、现实生活中的图形因为具有对称性,它们看上去是那么美丽与和谐,我们学过的对称图形有哪些?
(2)、对比轴对称图形与中心对称图形
轴对称图形和中心对称图形到底有什么区别呢?小组合作,讨论后完成这张表格。
(学生完成表格,教师指导)
4、练一练
找出下列图形中的轴对称图形和中心对称图形。(课件出示)
四、能力拓展
1、把一个平行四边形分成面积相等的两部分,你有几种方法?归纳结论。
2、一块平行四边形的土地,内部修有一个圆形水池,现要把水池和剩余部分平均分配给两家,应怎样分?
五、延伸新知
请以给定的图形○○△△=(两个圆,两个三角形,两条平行线)为构件,尽可能多地构思有意义的一些中心图形,并写上一两句贴切,诙谐的解说词.如下图就是符合要求的图形,你能构思其它图形吗?比一比,看谁想得多,看谁想得妙!
六、魔术揭密
今天大家表现得非常好,现在就回到我们课前的小魔术,首先我要告诉大家的是,老师选得牌,牌面上的点数是很有特点的。然后我要说的是当你抽出一张牌交给我,我放回去的时候就把那张牌旋转了一百八十度。现在,有谁能揭出魔术的秘密。
七、全课小结
1、本节课你有哪些收获?(1)中心对称图形的定义(2)中心对称图形的性质
(3)中心对称图形和轴对称图形的关系(4)中心对称图形的应用
2、回顾本节课的活动过程
观察——分析——探索——概括——应用
第三篇:中心对称图形教学反思
中心对称图形教学反思
芭蕉九年制学校王升波
昨天我和同学们共同学习了《中心对称图形》一课,纵观这一节数学课,课堂教学模式发生了根本性的变化,老师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生切身经历了“做数学”的全过程,感受了学习数学的快乐,体验成功的喜悦。具体感受如下四点:
(一)、目标定位准确,目标意识强。
这节课的目标是掌握中心对称和中心对称图形两个概念,掌握中心对称的性质,以及经历有旋转的过程感受选装运动变化的数学思想,明白数学来源于生活又服务于生活的道理
(二)、创设情境,激发学生的学习兴趣。
新课开始,我用学生都很熟悉的扑克牌做一个小魔术,来导入新课。这一环节的设计既活跃了课堂气氛,又让学生初步领会到中心对称图形的特点,为学生在紧跟其后的学习中探究中心对称图形的特点做好了铺垫。同时,通过这个环节,也为本节课的学习留下了悬念,埋下伏笔,通过本节课的学习,最后可以解密小魔术。
(三)、巧妙引导,自主探究,尽展数学美。
数学课程标准指出:学生有效的学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。正是基于这样的认
识,这种设计充分体现了学生为主体的教学理念,让学生在主动探索和与他人合作探究中发现规律建构新知。
俗话说 “耳中听到终觉浅,觉之此事要躬亲”。我没有直接告诉学生什么是中心对称图形,而是安排学生观察图形的的特点,找一找他们的共同特征,通过观察、猜想、自主探究并组织交流观察到的图形的特点,再配上形象具体的媒体演示,从而自然地引出中心对称图形的概念和中心对称图形的性质。学生经过“观察一思考一探究一概括”的学习过程,自主参与知识的发生、发展、形成的过程,使学生很好的掌握了知识。
(四)、多层练习,内化知识。
在练习中,我组织学生有层次地开展了一系列练习,通过看一看、试一试、画一画,做一做等形式,使学生在小组合作讨论中能正确判断给出的图形是不是中心对称图形,有效的让学生巩固了对中心对称图形的认识,加深了印象。通过逐层的练习,学生不但认识了什么样的图形是中心对称图形,而且还会画不同的中心对称图形。设置一些开放型练习,让学生自己设计中心对称图案,并互相交流,目的在提高学生的学习兴趣,提高学生的学习热情,和加深对所学的知识的理解和掌握。
本节课我也感觉到有明显的不足,那就是对学生积极的调动有时还是感觉力不从心,对于后进生的关注还是感觉不够,对于媒体的使用还是不能得心应手。
课堂教学的效益永远是我们的生命线,成功的课堂更是学生的期盼,我会站稳课堂,站靓课堂,上出课堂教学的风采来!
第四篇:中心对称图形教学反思
《中心对称图形》教学反思
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
本人认为中心对称图形的教学内容采用“问题情境——合作探究——建立模型——应用与拓展”的教学模式展开,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。
在教学设计的实施方面,结合课堂教学情况展开课后分析反思:
1、创设问题情境主要在于(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。
2、对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力
求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。
3、合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况。
4、让学生经历了知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,增强学好数学的愿望和信心。特别对于抽象的概念教学,运用多媒体教学,充分发挥多媒体的动画优势,突出重点,突破难点。调动学生学习气氛,效果活跃,并使学生积极参与双边活动。
在教学中,由于对学生的学情了解不够深入,在培养学生思维活动过程中,花费的时间比较多,时间显得紧凑。导致,课堂学习效果反馈这一环节没能很好的实施。
第五篇:中心对称图形教学反思
中心对称图形教学反思
刘仕菊
昨天我和同学们共同学习了《中心对称图形》一课,纵观这一节数学课,课堂教学模式发生了根本性的变化,老师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生切身经历了“做数学”的全过程,感受了学习数学的快乐,体验成功的喜悦。具体感受如下四点:
(一)、目标定位准确,目标意识强。
这节课有三个目标:
1、了解中心对称图形的概念;
2、理解并掌握中心对称图形的性质。
3、能设计简单的中心对称图形,培养学生的创新能力,体验中心对称图形的美感。在由认定目标,实施目标等环节始终围绕目标组织教学活动,效果较好。
(二)、创设情境,激发学生的学习兴趣。
新课开始,我用学生都很熟悉的扑克牌做一个小魔术,来导入新课。这一环节的设计既活跃了课堂气氛,又让学生初步领会到中心对称图形的特点,为学生在紧跟其后的学习中探究中心对称图形的特点做好了铺垫。同时,通过这个环节,也为本节课的学习留下了悬念,埋下伏笔,通过本节课的学习,最后可以解密小魔术。
(三)、巧妙引导,自主探究,尽展数学美。
数学课程标准指出:学生有效的学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。正是基于这样的认识,这种设计充分体现了学生为主体的教学理念,让学生在主动探索和与他人合作探究中发现规律建构新知。
俗话说 “耳中听到终觉浅,觉之此事要躬亲”。我没有直接告诉学生什么是中心对称图形,而是安排学生观察图形的的特点,找一找他们的共同特征,通过观察、猜想、自主探究并组织交流观察到的图形的特点,再配上形象具体的媒体演示,从而自然地引出中心对称图形的概念和中心对称图形的性质。学生经过“观察一思考一探究一概括”的学习过程,自主参与知识的发生、发展、形成的过程,使学生很好的掌握了知识。
(四)、多层练习,内化知识。
在练习中,我组织学生有层次地开展了一系列练习,通过看一看、试一试、画一画,做一做等形式,使学生在小组合作讨论中能正确判断给出的图形是不是中心对称图形,有效的让学生巩固了对中心对称图形的认识,加深了印象。通过逐层的练习,学生不但认识了什么样的图形是中心对称图形,而且还会画不同的中心对称图形。设置一些开放型练习,让学生自己设计中心对称图案,并互相交流,目的在提高学生的学习兴趣,提高学生的学习热情,和加深对所学的知识的理解和掌握。
本节课我也感觉到有明显的不足,那就是对学生积极的调动有时还是感觉力不从心,对于后进生的关注还是感觉不够,对于媒体的使用还是不能得心应手。
课堂教学的效益永远是我们的生命线,成功的课堂更是学生的期盼,我会站稳课堂,站靓课堂,上出课堂教学的风采来!