中心对称和中心对称图形初中二年级教案重点

时间:2019-05-15 01:31:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中心对称和中心对称图形初中二年级教案重点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中心对称和中心对称图形初中二年级教案重点》。

第一篇:中心对称和中心对称图形初中二年级教案重点

知识归纳 1.中心对称

把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:(1关于中心对称的两个图形全等;(2关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.2.中心对称图形

把一个图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.知识结构 重点、难点分析: 本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.本节课的难点是中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习

轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别.教法建议

本节内容和生活结合较多,新课导入可考虑以下方法:(1从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,(2从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,(5从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

教学设计示例 教学目标

1.知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。

2.会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。

此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。

引导性材料

想一想:怎样的两个图形叫做关于某直线成轴对称?成轴对称的两个图形有什么性质?(帮助学生复习轴对称的有关知识,为中心对称教学作准备

画一画:如图4.7-1(1,已知点p和直线l,画出点p关于直线l的对称点p′;如图4.7-1(2,已知线段mn和直线a,画出线段mn关于直线a的对称线段m′n′。

(通过画图形进一步巩固和加深对轴对称的认识

上述问题由学生回答,教师作必要的提示,并归纳总结成下表: class=normal width=“4%” height=30> class=normal width=“71%” colspan=2 height=30> 轴对称

class=normal width=“25%” height=30> class=normal width=“4%” height=30> 定义三要点

class=normal width=“25%” height=30> 1 2 3 class=normal width=“46%” height=30> 有一条对称轴---直线 图形沿轴对折,即翻转180度 翻转后与另一图形重合

class=normal width=“25%” height=30> class=normal width=“4%” height=30> 性质

class=normal width=“25%” height=30> 1 2 3 class=normal width=“46%” height=30> 两个图形是全等形

对称轴是对应点连线的垂直平分线 对应线段或延长线相交,交点在对称轴上

class=normal width=“25%” height=30> 观察与思考:图4.7-2所示的图形关于某条直线成轴对称吗?如果是,画出对称轴,如果不是,说明理由。

(教师把图4.7-2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形

都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合?怎样才能使这两个图形重合呢?让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转180度后能与另一个图形重合。

教学设计

问题1:你能举出1~2个实例或实物,说明它们也具有上面所说的特性吗? 说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫做中心对称图形,并介绍对称中心,对称点等概念。

问题2:你能给“中心对称”下一个定义吗? 说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:(l有一个对称中心——点;(2图形绕中心旋转180度;(3旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。

练一练:在图4.7-3中,已知△abc和△efg关于点o成中心对称,分别找出图中的对称点和对称线段。

说明与建议:教师可演示△abc绕点o旋转180度后与△efg重合的过程,让学生说出点e和点a,点b和点f,点c和点g是对称点;线段ab和ef、线段ac和eg,线段bc和fg 都是对称线段。教师还可向学生指出,图4.7-3中,点a、o、e在一条直线上,点c、o、g 在一条直线上,点b、o、f在一条直线上,且ao=eo,bo=fo,co=go。

问题3:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质? 说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理l---关于中心对称的两个图形是全等形;定理2——关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

问题4:定理2的题设和结论各是什么?试说出它的逆命题。

说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”、“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提,所以不能使用“对称点”、“对称中心”这样的词语,而要改为“对应如”、“某一点”。最后,教师应完整地叙述这个逆命题---如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于点对称。

问题5:怎样证明这个逆命题是正确的? 说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件——对应点的连

线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180

第二篇:中心对称图形教案重点

,加上麻醉导致血容量减少容量。麻醉因素引起血管扩张血容量减少为 5~7 ml/kg,这部分需要量 70kg ×

全国中小学“教学中的互联网搜索”优秀教学案例评选 教案设计

山东省青州市邵庄初级中学 窦彩霞

。麻醉手术期间失血和血管扩张补充量

。推荐麻醉手术期间失血和血管扩张补充量采用胶体溶液,因为该病例不需要输血和输含丰富凝血因子血制品,因此仅补充人工合成的胶体溶液,如

六、教学反思 本节课利用多媒体课件直观演示几何图形的旋转变化过程,以及学生动手操作,让学生认 识、理解中心对称图形,体会中心对称图形与轴对称图形的联系与区别,增强了本节课的趣味 性,激发了学生的学习兴趣。

七、教师个人介绍 省份: 山东省 学校:青州市邵庄初级中学 职称:中学二级教师 电话: *** 通讯地址:山东省青州邵庄初级中学 262506 姓名:窦彩霞 电子邮件:dcx921@sina.com 本人 39 岁,工作认真,态度端正,工作上尽职尽责,对待学生尽心尽力,还需要更加努力学习,让自己的业务水平更上一层楼。

第三篇:中心对称图形教案1重点

中心对称图形教案

初中数学课的教学应结合具体的数学内容采用“问题情境——合作探究——建立模型——应用与拓展”的模式展开,让学生经历了知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,增强学好数学的愿望和信心。特别对于抽象的概念教学,要关注概念的实际背景与形成过程,帮助学生克服记忆概念的学习方式。现以《中心对称图形》为例,阐述如何“创设问题情境、建立知识模型”的过程。

一、教学目标:

1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。

2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。

二、教学重、难点:

理解中心对称图形的概念及其基本性质。

三、教学过程:

(一)创设问题情境

1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。

【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面 的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。

(课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)

师重复以上活动2次后提问:

(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?

(2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)

(反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)

2.教师揭示谜底。

利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。

3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:

(1)只有一张扑克牌图案颠倒后和原来牌面一样。

(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O 后,就可以马上在一堆扑克牌中找出它。

(反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)

(二)学生分组讨论、思考探究:

1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?

生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。

2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用 “Z+Z”演示其旋转过程。)

3.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?

(对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联

系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)

(三)教师明晰,建立模型

1.给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

2.对比轴对称图形与中心对称图形:(列出表格,加深印象)轴对称图形 中心对称图形

有一条对称轴——直线 有一个对称中心——点

沿对称轴对折 绕对称中心旋转180O

对折后与原图形重合 旋转后与原图形重合

(四)解释、应用与拓广

1.教师用“Z+Z智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。

(利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)

2.探究中心对称图形的性质

板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

3.师问:怎样找出一个中心对称图形的对称中心?

(两组对应点连结所成线段的交点)

4.平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?

学生分组讨论交流并回答。

讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。

讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?

5.逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?

学生讨论回答。

6.你还能找出哪些多边形是中心对称图形?

(反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的

记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)

(五)拓展与延伸

1.中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?

2.正六边形的对称中心怎样确定?

(六)魔术表演:

1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180º后,得到右图,你知道哪一张扑克被旋转过吗?

2.学生小组活动:

以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。

(新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)

四、案例小结

《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。

现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。

第四篇:中心对称图形教案6重点

《中心对称图形》教案(第二课时)

一、教学目标 知识目标:

1.了解中心对称、中心对称图形的概念,了解中心对称的性质.2.能找出线段、平行四边形的对称中心.会画出与已知图形成中心对称的图形.能力目标:

3.通过本节的学习,进一步培养学生的尺规作图能力.情感目标:

4.通过本节的学习,引导学生体验几何美,提高学习兴趣.二、教学设计

观察、感受、讲解、类比

三、重点、难点解决办法

1.教学重点:中心对称的概念和性质及中心对称图形的概念. 2.教学难点:中心对称与中心对称图形的区别与联系.

四、课时安排 1课时

五、教具学具准备

投影仪、胶片、多媒体、常用画图工具

六、师生互动活动设计

教师复习引入,学生类比轴对称看书;教师讲解性质,示范画图,学生练习巩固

七、教学步骤 【复习提问】

l.什么叫中心对称?中心对称有什么性质? 2.如图1,作出四边形

关于点的对称图.

图1 【引入新课】

上节课讲了中心对称的概念,它是把一个图形绕某一点旋转后和另一个图形重合,说的是两个图形的关系,而在日常生活中还经常遇到一个图形绕它的某一点旋转后自身重合.具有这种性质的图形我们把它叫做中心对称图形,本章我们就来学习这种图形(写出课题).

【讲解新课】

1.中心对称图形的概念(板书定义).

定义:把一个图形绕它的某一点旋转,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心. 例1 如图2(制成教具演示),线段绕它的中心旋转后,它的两个端点互换了位置,旋转后的线段和原线段重合,因此,线段是中心对称图形,线段的中点是它的对称中心.

图2

例2 如图3(制成教具演示)中的,点是对角线的交点,因为,所以图表绕点旋转后,点与点,点与点分别互换了位置,旋转后的图形和原来的图形重合,因此平行四边形是中心对称图形,对角线的交点是它的对称中心.

图3 教师问:矩形,菱形,正方形是不是中心对称图?为什么? 2.中心对称图形的对称中心找法,主要是根据定义找. 3.中心对称和中心对称图形的区别与联系.(学生总结教师归纳后,用投影打出):

区别:①中心对称是指两个全等图形之间的相互位置关系,这两个图形关于某一点(对称中心)对称,叫做中心对称;中心对称图形是指一个图形本身成中心对称(对称中心含于图形本身).

②成中心对称的两个图形中,其中一个图形上的所有点关于对称中心的对称点都在另一个图形上,反之亦然.中心对称图形上所有点关于对称中心的对称点都在这个图形的本身上.

联系:①如果针对中心对称的两个图形看成一个整体(一个图形)那么这个图形就是中心对称图形.

②一个中心对称图形,如把对称的部分看成两个图形,那么它们又是中心对称.

4.中心对称图形和轴对称图形的区别与共同处. 教师指出:

区别:轴对称图形是关于一条直线对称,而中心对称图形是关于一个定点对称,重合的方式不同,轴对称图形是沿直线翻转(离开平面)对称图形绕定点旋转

后重合.而中心

后重合,共同处是对称的两图形都是全等形.

5.中心对称图形的特征与实际应用:

(1)具有数学美,因为中心对称图形形状匀称美观,所以常常用于建筑和工艺品的装饰图案.

(2)绕对称中心平稳旋转,因为具有中心对称图形形状的物体能够在它所在的平面内绕对称中心.平稳旋转,所以在生产中有关旋转的零部件常设计成关于某一点为对称的图形.

【总结、扩展】 1.小结:

(1)关于中心对称和中心对称图形的区别和联系.(2)关于中心对称的两个图形的性质.(3)关于中心对称图形的性质. 以上概念和性质一定要分清楚.

2.思考题:“平行四边形一定是中心对称图形”,请写出此命题的逆命题,这个命题是真命题吗?请证明

八、布置作业 教材P166中3

九、板书设计

标题

(1)中心对称图形的概念(2)…… ……(3)……(5)…… 例1……(4)……

例2

第五篇:《中心对称图形》教案

《中心对称图形》教案

教学目标

一、知识与技能

让学生经历观察、探究、发现、讨论、阅读的过程,学习中心对称图形的定义和性质.二、过程与方法

1、通过学生动手、合作和讨论,培养学生的参与意识,加强学生的合作与交流精神.2、同时使学生积累一定的审美体验.三、情感态度与价值观

激发学生学习数学的兴趣,使学生更加喜欢数学.教学重点

中心对称图形的定义、性质.教学难点

探究、发现中心对称图形的定义.教学过程

一、情景导入

师:同学们,你们看过魔术表演吗?喜不喜欢?

师:(魔术表演)前几天我找了一位魔术大师学了个小魔术,现在给大家表演一下,我手中现在有几张扑克牌,下面请一位同学上台来,你任意抽出一张扑克牌,自己看一下,让其它同学看一下,然后把这张牌旋转180º后再插入,再把牌洗几下,展开扑克牌,我马上就能确定这位同学抽出的扑克牌.好,再找一位同学试一下.我又马上就能确定这位同学抽出的扑克牌.师:同学们感觉很神秘吧,你想知道其中的奥秘吗?

师:学习了这节课之后,我相信你一定会知道其中的奥密,带着这个问题,这节课我们就来学习中心对称图形.二、新授过程

师:我们首先来看生活中的几个图片.(课件出示图片)课件出示问题:

(1)这些图形有什么共同的特征?(学生回答)(2)你能将风车或正六边形绕其中的一个点旋转180度,使旋转前后的图形完全重合吗?(同桌合作旋转风车或正六边形.)师:像刚才这类的图形我们给它个名称叫中心对称图形,那通过刚才的探究和演示,你能给中心对称图形下个定义吗?(课件出示中心对称图形的定义在平面内,一个图形绕某个点旋转180º,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形.我们把这个点叫做它的对称中心.三、议一议

1、生活中,有许多图形都是中心对称图形.你举出生活中的一些中心对称图形吗.2、学生讨论后回答.(课件出示生活中的图形)

3、老师也搜集了很多的中心对称图形,我们一起来欣赏一下,看看有没有大家认识的图案.四、探索性质

1、这些中心对称图形,都是生活中我们经常能见过的.如果具体到数学练习中,你还能迅速地判断出来吗?请大家看这些图形,找出哪些是中心对称图形?(学生做练习)

2、掌握了中心对称图形的定义,现在我们要来了解一下中心对称图形有哪些性质呢?同学们看,这就是我们前面观察过的风车,我们己经知道,它就是一幅中心对称图形,(课件上的一段话)现在就请你们拿出直尺测量一下,看看OA与OB的长度,看看他们有怎样的数量关系.(完成课件上习题)

3、现在谁能用文字来描述中心对称图形的性质.(学生说)

4、课件出示中心对称图形的性质,全班同学读一遍.五、对比轴对称图形与中心对称图形

现在我们回忆一下,到目前为止,我们学过了几种对称图形(轴对称和中心对称)?轴对称图形和中心对称图形到底有什么区别呢?小组合作,讨论后作出结论.(学生完成表格,教师指导)

六、做一做

1、同桌合作,验证平行四边形是不是中心对称图形,如果是,请找出它的对称中心.2、通过上面的实验活动,你能验证平行四边形的哪些性质? 3除了平行四边形,你还能找到哪些多边形是中心对称图形?

4、正方形是中心对称图形,那它绕两条对条线的交点旋转多少度能与原来的图形重合,能由此验证正方形的一些特殊性质吗

在26个英文大写正体字母中,哪些字母是中心对称图形?

5、中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?(日、王、一、申、中、)

七、魔术揭密

今天大家表现得非常好,现在就回到我们课前的小魔术,首先我要告诉大家的是,老师选得牌,牌面上的点数是很有特点的.然后我要说的是当你抽出一张牌交给我,我放回去的时候就把那张牌旋转了一百八十度.现在,有谁能揭出魔术的秘密.解密: 老师在魔术表演前,把这些牌按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180º后,就可以马上在四张扑克牌中找出它.这个小魔术的秘密我们已经揭开了,现在你也可以成为魔术师了,同桌合作,试着表演一下.课堂小结

通过本节课的学习请你谈谈有何收获?

下载中心对称和中心对称图形初中二年级教案重点word格式文档
下载中心对称和中心对称图形初中二年级教案重点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中心对称图形教案

    中心对称图形(第1课时) 教学目标: 1、通过观察具体实例认识中心对称图形,探索理解“对称点所连的线段被对称中心平分”这一基本性质.,类比中心对称。 2、会识别哪些图形是中心对......

    中心对称和中心对称图形数学教案

    中心对称和中心对称图形数学教案 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称......

    中心对称教案

    §15.3 中心对称 任课教师:万先馥 课程标准分析 新课程标准要求学生通过具体的实例认识中心对称,探索它的基本性质,理解成中心对称的基本性质,并能做一个简单图形关于一个点成中......

    中心对称图形教学设计

    《中心对称图形》教学设计 太谷三中 王琴平【教学目标】 1.知识与技能:掌握中心对称图形的定义及其基本性质 2.过程与方法:通过观察、发现、交流、探索等一系列活动,培养学生......

    中心对称图形教学反思

    中心对称图形教学反思 芭蕉九年制学校王升波 昨天我和同学们共同学习了《中心对称图形》一课,纵观这一节数学课,课堂教学模式发生了根本性的变化,老师不再是简单的知识传授者,而......

    中心对称图形教学反思

    《中心对称图形》教学反思 《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数......

    中心对称图形教学反思

    中心对称图形教学反思 刘仕菊 昨天我和同学们共同学习了《中心对称图形》一课,纵观这一节数学课,课堂教学模式发生了根本性的变化,老师不再是简单的知识传授者,而是一个组织者......

    23.2.2 中心对称图形(教案)(共5则)

    23.2.2中心对称图形 教学目标 【知识与技能】 了解中心对称图形的定义及其特征,体会中心对称和中心对称图形之间的联系和区别. 【过程与方法】 经历观察、思考、探究、发现的......