第一篇:抽屉原理教学设计(共)
《抽屉原理》
教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。教学目标:
1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书。教学过程:
一、创设情景
导入新课
师:同学们玩过扑克牌吗?扑克牌有几种花色?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示)
师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。(板书课题)这节课我们就一起来研究这个数学原理。师:通过今天的学习,你想知道些什么?
二、自主操作
探究新知(一)活动1 课件出示:把4个苹果放到3个抽屉里,可以怎么放?
小巧在动手放铅笔之前有一个大胆的猜想:不管怎么放,一定有一个抽屉有2个或2个以上的苹果。
1.说明小巧的猜想
师:你明白小巧这句话的意思吗? 说说你的理解 生:不管怎么放,一定有一个抽屉有2个苹果。生:还可能有一个抽屉有2个以上的苹果。
师:这个问题,同学们不难想出其中的道理,但要完全说明白,就需要给出证明。
2、学生分小组活动进行证明 活动要求:
(!)先独立思考
(2)把自己的想法和组内同学交流。
(3)如果需要动手操作,要分好工并全面考虑问题。(4)全班交流汇报。
学生活动,师巡视,了解情况。
3、汇报交流 说理活动
师:那个小组愿意说说你们是怎样证明的。(1)列举法证明:
我们小组是用摆一摆、放一放的方法发现把4个苹果放在3个苹果,共有4种不同方法。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:根据以上4种不同放法你能得出什么结论?
生:总有一个笔筒至少放2个苹果。(2)数的分解法证明 把4分解成三个数(4,0,0)(3,1,0)(2,2,0)(2,1,1)
每一种结果的三个数中,至少有一个数不小于2,这也能证明总有一个抽屉至少放进2个苹果。
(3)假设法证明
我们假设每个抽屉里最多放1个苹果,那么3个抽屉就放3个苹果,还剩下1个苹果,放在任何一个抽屉里,那么这个抽屉就有2个了。
看来同学们不仅善于动手,还善于动脑,用了不同的方法证明小巧的猜测是对的。最后一组同学的想法,我们能不能用算式表示出来呢? 板书:4÷3=1(枝)„„1(枝)① 师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)② 把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)„„1(枝)③ 把6枝铅笔放进5个笔筒呢? 把7枝铅笔放进6个笔筒呢? 把10枝铅笔放进9个笔筒呢? 把100枝铅笔放进99个笔筒呢? 板书:7÷6=1(枝)„„1(枝)10÷9=1(枝)„„1(枝)100÷99=1(枝)„„1(枝)
那苹果数与抽屉数之间有什么关系?
苹果数大于抽屉数。教师板书:苹果数>抽屉数 生:苹果数比抽屉数多1。
师:如果把抽屉数用字母n表示,那么苹果数可以怎么表示? 生:n+1 ④ 观察这些算式你发现了什么规律? 预设学生说出:至少数=商+余数
师:是不是这个规律呢?我们来试一试吧!
1、深化探究 得出结论
课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么? ① 交流说理活动
生
1、我认为这种说法不对,因为至少数=商+余数,应该至少有3只鸽子飞进同一个鸽笼,不应该是至少2只。
生
2、我认为这个结论是对的,我用假设法证明,我假设每个笼子飞进一只鸽子,那么还剩下2只鸽子,这两只鸽子不一定飞进同一只笼子里,还可一各飞进一只笼子里。所以,我认为至少数不应该是商+余数。至少数=商+1 ② 师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。③ 师:谁能说清楚?板书:5÷3=1(只)„„2(只)至少数=商+1
师:同学们你们同意吗?
师:其实这个原理早在200多年前就被德国数学家发现了。
(多媒体出示)把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有2个或2
个以上的苹果。
德国数学家“狄里克雷”,从这么平凡的事情中发现了规律。人们为了纪念他,就把这个规律用他的名字命名,叫“狄里克雷原理”,又叫“抽屉原理”,还称为 “鸽巢原理”。
师:为什么“抽屉原理”,还可以称为 “鸽巢原理”?
生:可以把鸽巢看作抽屉,把鸽子看作苹果,所以“抽屉原理”,也可以称为 “鸽巢原理”
师:说得很好,抽屉原理可以广泛地运用于生活中,一般可以把某一样东西看作苹果或抽屉。
灵活应用
解决问题
(一)说一说 1.(多媒体出示)101只兔子放入100个笼子,那么_______________。生:至少有一个笼子有2个或2个以上的兔子。
师:能告诉大家你把什么看作抽屉,把什么看作苹果? 生:我把笼子看作抽屉,把兔子看作苹果。
师:运用学到的抽屉原理解决了兔子与笼子的问题。
2.出示:爸爸买来5条金鱼,小凤数了数,共有4个品种,姐姐听了后说:“至少有2条金鱼是同一个品种的。”姐姐说得对不对?为什么?
生:姐姐说得对。
师:你能说说理由吗?
生:可以把金鱼看作“苹果”,把品种看作“抽屉”。根据抽屉原理,可以得出:至少有一个品种有2条或2条以上的金鱼。
(二)填一填 1.(多媒体出示)扑克牌去掉大、小怪,剩下的都是4种花色。任意取 张,至少有2张是同一种花色的。
生:任意取5张扑克牌,至少有2张是同一种花色的。因为有4种花色。
师:再说清楚些,把什么看作抽屉,什么看作苹果?
生:共有4种花色,把它看作抽屉,牌看作苹果。牌比4种花色多1时,至少有2张是同一种花色的。
2.(多媒体出示)小胖掷数点块,至少掷 次,其中至少有两次的点数相同。
生:把1到6的点数它看作6个抽屉,至少掷7次,其中至少有两次的点数相同。3.操场上有同学在比赛掷沙包,小亚数了一下人数说:“这里至少有两人的生日在同一个月”,至少有____人在比赛掷沙包。
猜一猜、1、课件出示:任意13人中,至少有几人的出生月份相同。为什么?
2、课件出示:任意367名学生中,一定存在至少几名学生,他们在同一天过生日。为什么?
三、畅谈感受
教学结束
同学们,今天这节课有什么感受?(抽生谈谈,师总结。)
抽屉原理习题讲解
1.一个篮球运动员在15分钟内将球投进篮圈20次,证明总有某一分钟他至少投进两次.2.有黑、白、黄筷子各8只,不用眼睛看,任意地取出筷子来,使得至少有两双筷子不同色,那么至少要取出多少只筷子才能做到?
3.证明:在1,2,3,„,10这十个数中任取六个数,那么这六个数中总可以找到两个数,其中一个是另一个的倍数.4.证明:任意502个整数中,必有两个整数的和或差是998的倍数.5.任意写一个由数字1,2,3组成的30位数,从这30位数任意截取相邻三位,可得一个三位数,证明:在从各个不同位置上截得的三位数中至少有两个相等.6.证明:把任意10个自然数用适当的运算符号连接起来,运算的结果总能被1890整除.7.七条直线两两相交,所得的角中至少有一个角小于26°.8.用2种颜色涂3行9列共27个小方格,证明:不论如何涂色,其中必至少有两列,它们的涂色方式相同.9.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现.10.求证存在形如11„11的一个数,此数是1987的倍数.抽屉原理习题答案
(苹果数总是比抽屉数少)
1、平均分假设,每分钟投进一个,那么还有5个球没时间投,无论在哪个一分钟内投都能够使得这一分钟投进至少两球。2、11只,最倒霉原则,先取出8只黄筷子,然后一黑一白,在任意取一只必能满足结果!
3、首先找到5个数,任意数都不是其他数的倍数!可能是4、5、6、7、9或者5、6、7、8、9,这能是这两种组合,然后任意再挑一个,都会出现倍数关系。
3、另解:把1到10分成5个组{5,10}、{3,9}、{1,2,4,8}、{6}、{7} 咱要从5个组里取6个数出来,必须从1个组里取2个数出来,而任意组拿出来的2个数都是倍数关系。4、998=499*2=500+498,0-499这500个数,不能满足条件,任意拿到一个数加上或者减这500个数中的一个数,必然是998的倍数
4、另解:每个整数被998除,余数必是0,1,2,„,997中的一个.把这998个余数制造为(0),(1,997),(2,996),„,(497,501),(498),(499),(500)共501个抽屉,把502个整数按被998除的余数大小分别放入上述抽屉,必有两数进入同一抽屉.若余数相同,那么它们的差是998的倍数,否则和为998的倍数.
5、从30位数中截出个3位数来,这个三位数共有多少中情况呢?111,112,113。。。用乘法原理可知共3*3*3=27种情况,而如果从一个30位数上往下截,应该有28中截法,可见截法比种类还多,这说明,至少有两种截法截出来数要相同。
6、由于1890=9*7*5*3*2,也就是说1890同时是9,7,5,3,2的倍数,由于除以9的余数只有0到8共9中情况,所以任意取10个自然数,则至少有2个数被9除同余,同理,除去这两个被9除同余的数外,剩下的8个数中至少有两个数被7除同余 再除去这两个数,剩下6个数中至少有两个数被5除同余 再除去这两个数,剩下4个数中至少有两个数被3除同余 最后剩下2个数,要么有一个2的倍数,要么差是2的倍数。
把刚才所有同余的一对数求差,生成的5个数或者6个数中,一定会同时拥有9,7,5,3,2的倍数,因此,全部乘起来后一定能被1890整除
7.平面中的任意七条线,我们都可以把他们平移到一个交点上这样并不会改变原先角的度数。这样就能得到14个较小的角,如图所示,且对顶角相等。而又知,这14个角围成了一圈,也就是360度,那么14个角的平均度数就是360/14=25.7度<26度,所以必然有角度数小于26度。
8.总共有9列,每列有3个格子,而用两种颜色对3个格子进行涂色只有如下集中情况
000,001,010,011,100,101,110,111共8种情况,其实用乘法原理2*2*2=8也
可得。但现在有9列需要涂色,可见列数大于涂色种类,因此必然存在至少2列的涂色方法一致。
9.先看第一行,有5个方格,用两种颜色去染色,根据抽屉原理必有3个方格同色。不妨设有3个方格为白色(设黑色也一样)(见图一),设在第1,3,5列。我们把第2,4列抛弃不看。如果不是1,3,5列是白色,我们不管是哪三个是白色的,只要留下第一行为白色的三列就OK!剩下的就5*3的阵列了(见图二)。有两种情况:(1)在5*3的方格中,2-5行的某一行的3个方格中出现两个白格,则它们与第一行相应的两个白格可组成四个同为白色的长方形。
(2)在5*3的方格中,2-5行如果没有两个白格。那么只有白黑黒(记为1),黒白黑(记为2),黑黑白(记为3),黑黑黑(记为4)四种可能。(图三)如果4出现在后四行中,不管其他三行为1,2,3,4的哪种,必有一个四角为黑色小方格的长方形。如果4没有出现,则在这四行中只能出现1,2,3这三种情况。由抽屉原理,必有两行染色方式相同,显然这两行中的4个黑色的小方格可以构成四角同黑的长方形。
10、用1987去除任意自然数,其余数只有0-1986共1987个数,这就意味着:任意取1988个不相同的数,必存在2个数除1987同余。
如果可以用f(1)代表1个1的话,那么f(2)就代表11,f(3)就代表111,f(100)就代表100个1。那么我们取f(1)到f(1988)这1988个数,这其中必有两个数对1987同余。假设这两个数位f(m)和f(n),其中m大于n,则f(m)-f(n)一定能被1987整除。而f(m)-f(n)肯定是由m-n个1和n个0组成。容易的证f(m-n)能被1987整除。
第二篇:抽屉原理教学设计
抽屉原理
【教学内容】
义务教育课程标准实验教科书数学六年级下册第70、71页,例
1、例2。
【教学目标】
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过动手操作、画图、推理等活动,使学生会运用多种方法去解决问题。
3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】
每组都有相应数量的笔筒、铅笔。【课前游戏】
师:同学们喜欢做游戏吗?学习新课之前我们先来做个游戏.从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有两张是同花色的。
你们相信吗?
一、导入:
老师为什么能做出准确的判断呢?因为啊,在这个游戏中蕴含着一个有趣的数学原理。
二、动手操作,获取新知:
(一)初步感知
1、教师引导:你们想不想自己通过动手实践来发现它?
每个小组拿出4枝铅笔,把它们放进3个笔筒中,怎么放?有几种方法?你有什么发现吗?(提出要求:在动手操作之前分好工,有操作的,有负责记录的)
2、全班交流:
哪个小组愿意到前边给大家展示一下?
学生展示
观察这四种方法,你有什么发现?
(明确:无论怎么放,总有一个笔筒至少有2枝铅笔)
问:总有是什么意思?至少有两支呢?
全班明确:把4枝铅笔放进3个笔筒中,不管怎么放,总有一个笔筒中至少有2枝铅笔,3、这是列举出所有方法之后得出的结论。我们把这种方法称为“枚举法”(板书)这是数学中常见的一种方法。
4、还有其他方法吗?(假设法)
5、说说你的想法?生说想法
6、师:能用算式表示吗?生说,师板书。质疑:这两个1表示的一样吗?
7、师:如果把5枝铅笔放入4个笔筒里,会出现什么情况? 学生汇报交流
(也存在着总有一个笔筒里至少有2枝铅笔的情况)
师;你们是怎样得出这个结论的?
类推:6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把8枝铅笔放进7个笔筒呢?把9枝铅笔放进8个笔筒呢?
把100枝铅笔放进99个笔筒呢?
把1000枝铅笔放进999个笔筒呢?„„
观察这些算式,你有什么发现?
(铅笔的枝数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2枝铅笔。)
师:还有想说的吗?加深记忆。
8、师:如果铅笔的数量不是比笔筒的数量多1呢?
把5枝铅笔放进3个笔筒,学生可以动手操作,也可以动脑想
汇报交流。学生可能有两种意见:总有一个盒子里至少有2枝;总有一个盒子里至少有3枝。让学生分别说想法。
只有把剩余的2枝分别放进不同的笔筒里,才能保证至少有几枝。
9、师:观察这些算式,你发现了什么?(明确:这些算式中,都是铅笔的数量比笔筒的数量多,商都是1,并且都有余数,说明不论余几,总有一个笔筒中至少有商+1枝铅笔)
(二)深入研究,学习例2
1、师:如果商不是1,还会有这种结论吗?
出示题目:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
学生汇报,展示学生的结论。
2、思考:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把15本书放进4个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、师:同学们发现的这一规律,其实就是一个非常著名的数学原理,也是我们今天研究的“抽屉原理”(板书课题)一起看大屏幕(介绍抽屉原理的相关知识)
4、师:抽屉原理虽然简单,却能解决许多有趣的问题。现在,你能利用这一原理解释课一开始时的扑克牌问题了吗?学生回答
三、应用原理
抽屉原理不仅在数学中应用,在现实生活中也随处可见。你能举出生活中的例子吗?
1、学生举例说明。
2、其实,早在2000多年以前,我国先人就应用过这一原理解决问题,听说过“二桃杀三士”的故事吗?课件播放“二桃杀三士”的故事。
只要你善于观察思考、善于总结概括,相信不久的的将来你也能成为伟大的科学家。
四、畅谈感受,教学结束
通过这节课的活动,你有什么收获和感受?
板书设计:
抽屉原理
4÷3=1……1
5÷2=2……1
7÷2=3……1
15÷4=3……3 物体数÷抽屉数=商……余数
至少数=商+1
教学反思:(略)
第三篇:抽屉原理教学设计
《抽屉原理》教学设计
【教学内容】《义务教育课程标准实验教科书〃数学》六年级下册第70--71页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。3. 通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教具、学具准备】每组都有相应数量的纸杯、小棒;教师准备一副扑克牌 【教学过程】
一、创设情景、揭示课题
1、拿出一副扑克牌取出两张王牌,让学生从剩下的52张中随意抽出5张牌。
2、教师判断:我敢肯定地说,不论怎么抽,抽出的5张牌中至少有2张牌是同一花色。(让学生验证)
3、揭示目标:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,大家想不想研究?(那今天这节课老师就和大家一起用小棒和杯子来研究这个有趣的数学原理)
板书:小棒 杯子
【设计意图】教师从学生感兴趣的“玩牌”游戏开始,让学生初步体验不管怎么抽取,总有两张牌是同一花色,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、自学提示
自学课本70—71页内容,通过操作活动解决以下问题
1、把3支小棒放入2个杯子里,不管怎么放总有一个杯子至少放进几支小棒?
2、把4支小棒放进3个杯子里,不管怎么放总有一个杯子至少放进几支小棒?
3、把6根小棒放入5个杯子,你感觉会有什么结果?100根小棒放入99个杯子会有什么结果呢?
4、把5支小棒放进3个杯子里,会有什么结果?7支小棒放进4个杯子呢?你发现了什么规律?能否用算式表示。
三、自主探究、理解原理
(一)1.课件出示:把3支小棒放入2个杯子里,不管怎么放总有一个杯子至少放进 ____支小棒。
猜一猜:不管怎么放,总有一个杯子至少放进 ____支小棒。① 学生自主思考、分组操作。
请同学们实际放放看。学生动手操作,将不同的放法记录下来。(师巡视,了解情况,个别指导)
②分组操作、展示交流:根据学生摆的情况,师板书各种情况(3,0)(2,1)
③教师引导学生正确表述:3支小棒放入2个杯子里,不管怎么放,总有一个杯子里至少有2支小棒 师:是这样吗?谁还有这样的发现,再说一说。强调:A“总有”是什么意思(一定有)?
B“至少”有2根什么意思(不少于两只,可能是2根,也可能是多于2根)?
2、课件出示:把4支小棒放进3个杯子里,不管怎么放总有一个杯子至少放进 ____支小棒。请同学们实际放放看。
①学生操作活动,教师巡视,了解情况,个别指导
②学生展示:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。问:你发现了什么?
(不管怎么放,总有一个杯子里至少有2支小棒)
小结:把3根小棒放进2个杯子里,和把4根小棒放进3个杯子里,不管怎么放,总有一个杯子里至少有2根小棒。这是我们通过实际操作发现的这个结论。
③同学们自己说说看,同组之间边演示边说一说好吗? 问:这种分法,实际就是先怎么分的(平均分)?
④同学们用平均分的方法解决了这个问题,能用算式表示吗? 学生汇报,教师板书:3÷2=1……1 4÷3=1……1
3、课件出示:把6(10、100)根小棒放入5(9、99)个杯子,你感觉会有什么结果? 学生思考——组内交流——汇报
生1:小棒的根数数比杯子数多1,不管怎么放,总有一个杯子里至少有2根小棒。你发现什么?和算式之间有什么关系没有(商+余数)?
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【设计意图】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与到认知活动中来。
(二)认知冲突、优化思考
我们刚才通过研究发现:“小棒的根数比杯子数多1,不管怎么放,总有一个杯子里至少有2根小棒。”这是不是一般规律呢?我们做进一步研究:
(1)课件出示:把5(7、)支小棒放进3(4)个杯子里,会有什么结果?(学生活动----独立思考---自主探究)(2)交流、说理活动。
(3)师板书:5÷3=1……2(总有一个杯子至少有2 根小棒)
7÷4=1……3(总有一个杯子至少有2 根小棒)(4)引导观察:杯子数量、小棒数量有什么关系?
分析归纳:当小棒数量多于杯子数量时候,不管怎么放,总有一个杯子至少有“商+1”支小棒 【设计意图】教师故意设置认知冲突,让学生在操作讨论的基础上用“有余数除法” 形式表示出来,使学生学生借助直观,很好的理解了如果把小棒尽量多地“平均分”给各个杯子里,看每个杯子里能分到多少小棒,余下的小棒不管放到哪个杯子里,总有一个杯子里比平均分得的小棒数多1。特别是对“某个杯子至少有的小棒数”是除法算式中的商加“1”,而不是商加“余数”,教师适时提出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
同学们非常了不起,善于运用观察、实验的方法研究问题,通过分析得出结论。大家的这一发现,称为“抽屉原理”。
(4)介绍抽屉原理:“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。(前面我们研究活动中的小棒可以看做物体、纸杯可以看做抽屉)
(5)自己看课本例
1、例2,同桌之间说说自己的想法和发现。下面我们应用这一原理解决问题。
四、解释运用、内化提升
1、教材70页做一做、71页例
2、做一做(让学生运用原理用规范的语言解释说明)
2、用“抽屉原理”解释课前游戏:扑克牌游戏(练习十二第1题)
3、我们班任意13个同学中至少有几名同学属相相同,为什么?
五、全课小结
今天同学们在课堂上的表现很“给力”,大家用自己睿智的双眼、灵巧的双手和聪慧的大脑体验了一把研究数学问题的乐趣。老师相信,中国的“狄利克雷”在不久的将来一定会在我们六年级诞生。
想一想:通过这节课的学习你知道了什么?
作者姓名:郭彩霞 性 别:女 年 龄:43 职 称:小学一级 工作单位:竹溪县实验小学 邮 编:442300 电 话:*** 邮 箱:453481389@qq.com
第四篇:《抽屉原理》教学设计
《抽屉原理》教学教案
刘家场小学:郑华
背景导读
“抽屉原理”是六年级数学第二册的一个新增的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。本节课的教学目的:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
过程描述
一、问题引入。
师:今天,我们教室里来了很多的客人,希望每位同学能够超常发挥,在客人的面前能够充分展示自我,大家有信心吗? 生:齐答,好!
【反思】一开课老师就为学生树立上好这节课的信心,调动学生上好这节课的积极性,使学生能以一种雄赳赳、气昂昂精神面貌面对这节课。
师:好!,我们一起来玩一个游戏游戏吧!这个游戏的名字叫做“抢椅子”
现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 生:生争先恐后的要上来,师顺势一大组选一代表
师:请听清楚游戏要求,下面的同学为他们进行倒计时,时间一到,请你们5个都坐在椅子上,每个人必须都坐下。听清楚要求了吗? 游戏完后师述:
“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
【反思】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、探究新知
(一)教学例1 课件出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们分小组实际放放看,或者动手画一画。生:分小组活动
各小组汇报放或者画的情况.(1)、枚举法(师用课件演示各种摆放的过程)(2)、数的分解法:(课件出示)(4,0,0)(3,1,0)(2,2,0)(2,1,1),课件出示问题:
4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?
总结:不管怎么放,总有一个盒子里至少有2枝笔。课件出示问题,生回答后师课件出示(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢(3)、假设法(反证法)
学生思考并进行组内交流,教师选代表进行总结,并用课件演示平均放的过程.如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下
1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。课件出示问题:
把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?把99枝笔放进100个盒子里呢?……你发现什么? 生回答后总结板书: 只要放的铅笔数比盒子数多1,总有一个盒子里至少放进2支。【反思】教师关注了“抽屉原理”的最基本原理一的形成过程,先让学生分小组探索,然后教师用课件展示,从动手操作摆放、画图等形式到不用摆放、画图直接推理多个物体的情况,使学生经历了从简单到复杂,从感性到理性的过程,在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数比盒子数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。2.完成课下“做一做”,学习解决问题。
课件出示问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子
要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2 1.出示题目例2:
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。课件出示: 5÷2=2本„„1本(商+1)
课件出示问题:把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。课件出示:
7÷2=3本„„1本(商+1)9÷2=4本„„1本(商+1)
课件出示问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)
引导学生思考:
到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)
小组汇报后,师用课件演示这一过程.剩下的2本书既可以放进同一个抽屉里,也可以分别放进2个抽屉里。要保证“至少”就继续从“最不利的情况”考虑,让2本书放进2个抽屉。达到“至少”有2本书在1个抽屉里.板书:5÷3=1本„„2本,用“商+ 1 总结:课件出示用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
课件出示:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
【反思】在这一环节的教学中教师抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题
进行交流、讨论,并恰当运用课件演示,使学生从本质上理解了“抽屉原理”。另外,介绍鸽巢原理、抽屉原理的由来,以增加数学文化的气息。同时教育学生学习数学家的观察生活的态度,研究问题的方法。
三、解决问题 1课本上的做一做
2、小游戏
师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么? 生:2张/因为5÷4=1„1 师:先验证一下你们的猜测:举牌验证。师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2„1
3、小丽从书架上随意拿下了13份报纸,你知道至少有几份报纸是同一个月的吗?
4、你能证明在一个11位数中,至少有2个数位上的数字是相同的吗? 【反思】研究的问题来源于生活,还要还原到生活中去。在教完抽屉原理后,请学生用这节课所学的新知识解释日常生活中的一些有趣的现象,以达到巩固应用的目的。
四、全课小结
总结:通过今天的学习你有什么收获?——知识上、学习方法上、数学小知识上
【反思】本课着眼于学生数学思维的发展,通过猜测、验证、操作、观察、分析、比较等活动,经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,渗透数学思想方法。数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者,本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。在用“抽屉原理”解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考问题的意识。
第五篇:《抽屉原理》教学设计
《数学广角——抽屉原理》
【教学内容】:
我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。
【教学目标】:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重点】:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。
【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教法和学法】:
以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。
【教学准备】:一定数量的笔、铅笔盒、课件。【教学过程】:
一、游戏激趣,初步体验
师:同学们还记得我们上节课玩的取和拿物品的游戏吗?这节课我们继续做游戏,好不好?第一个游戏,这个游戏的名字叫“抢椅子”,玩过没有?老师这里准备了2把椅子,请3个同学上来,(找生)听清要求,老师说“坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一把椅子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一把椅子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的原理,想不想在游戏中研究研究?
接下来我们就开始玩游戏,你们准备好了吗?
【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】
二、操作探究,发现规律
三、游戏一:放苹果。
(一)师:(出示游戏1:把4个苹果放入3个盘子中),有几种不同的放法?你能明白什么?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? 合作要求:组长合理分工,组员听从指挥,做好记录。(1)、学生动手操作,讨论交流,老师巡视,指导;
(2)全班交流。
(3)师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。其他小组是这样分的放的吗? 师:老师也是这样放的,我们一起看一下(课件演示)观察这几种放法,你能明白什么?(课件出示:不管怎么放,总有一个盘子里至少有2个苹果)。
(4)师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答 “平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1„„1)
师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。
【设计意图:通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。】
(二)加大难度(1)
①如果把5个苹果放入4个盘子里出示),会是什么结果呢?(生答),你怎么想的? ②增加难度:把100个放进99个盘子里呢?
③师:你有什么发现?(苹果数比盘子数多1时,无论怎么放,总有一个盘子至少放2个苹果)。你的发现和他一样吗?你们太了不起了,说给你的同桌互听。
【设计意图:此环节让学生充分体会用平均分的好处,用除法算式表示出来,形象直观,便于学生理解,帮助学生初步建立模型。】
四、游戏二:抽屉放书
①师:接下来我们继续挑战,第二个游戏。
(出示游戏2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?为什么?)可以和小组的同学交流一下(小组交流)。
②汇报:
生:把5本书放2个抽屉,先平均分,每个抽屉放2本,剩1本,无论怎么放,总有1个抽屉至少放3本书。(课件演示)
③师:用同样的方法推想:如果把7本书放2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?
生:把7本书平均分,每个抽屉放3本,剩1本,无论怎么放,总有1个抽屉至少放4本(课件演示)。
④如果把9本书放进2个抽屉呢?
生:先把9本书平均分,每个放4本,余1本,不管怎么放,总有1个抽屉至少放5本(课件演示)。
【设计意图:让学生在这个过程中发展了学生的类推能力,形成比较抽象的数学思维,逐步建立模型】
五、游戏三:
(出示:5只鸽子飞进3个鸽巢里,至少有几只鸽子要飞进同一个鸽巢里?)
师:这里的笼子就是刚才的抽屉
① 小组讨论。② 汇报交流。
先把5只鸽子平均分,每个鸽巢飞1只,还剩2只,把这2只再平均分,飞入不同的鸽巢里,所以无论怎么飞,总有1个鸽巢至少2只鸽子。
③师总结:看来,余数不是1时,要把余数再平均分,才能保证至少。
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】
5、修改结论,得出规律:大家现在认为至少数应该与什么有关?(板书:至少数=商+1)
6、引出课题: 同学们,把4个苹果放进三个盘子里,总有一个盘子至少放2个苹果。不管是往抽屉里放书,往盘子里放苹果,还是鸽子飞进鸽巢,其实都是一样的原理,不知不觉中我们已经发现了一个很伟大的原理,这个原理叫抽屉原理又称鸽巢原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。(板书课题)一起来看大屏幕,(出示抽屉原理资料介绍)找生读。用抽屉原理解决问题,同学们一定要注意哪些是“抽屉”,哪些是“苹果”,并且要学会制造“抽屉”,巧妙地以应用,这样看上去十分复杂,甚至无从下手的游戏,也能顺利的找到致胜关键。
六、游戏四
1、师:接下来我们继续玩游戏(出示课件)
本学期,我们五年级的选读书目有很多本,我们班选定三本《窗边的小豆豆》《安徒生童话》《西顿动物故事》,买来各若干本,每名学生可以任意借2本书,同学们,你值得那么至少在多少名同学中,才一定能找到两人所借的图书完全相同吗?
2、全班交流。让学生说说自己的想法。这个游戏中,谁是抽屉?谁是苹果?
3、总结
在三本图书中任意借2本,借出图书的情况有6种可能,这6种可能看作6个抽屉,则至少需要7名同学,才一定能出现两人所借图书完全相同。
七、游戏五
1、同学们,你知道咱们班至少在多少个人中,一定能找到两个同一月份出生的人?
2、全班交流。谁是抽屉?谁是苹果?
八、拓展延伸
铅笔盒里有红、黄、蓝三种颜色的铅笔各4支,问一次至少取出几支铅笔才能保证每种颜色的铅笔至少一支?这个问题回家跟爸爸妈妈一起讨论解决。