第一篇:不等式的性质教学设计说明
教材分析与目标设计
章节学情
1、知识储备:比较有理数的大小、有理数的加减法、等式的性质、不等式的概念和从实际问题抽象建模提取不等式;
2、学习经验:利用天平比较物体的轻重;
3、知识积淀:转化思想、类比思想和分类讨论思想。知识属性
性质类知识,重在探索,意在应用。课标要求
探索不等式的基本性质 重点难点
重点:不等式基本性质的探索。
重点的解决:交权+器材、题单+积极引导。
难点:不等式基本性质(3)的探索和准确应用。难点的突破:借助题单引导学生进行合情推理。易混淆知识点
不等式基本性质(2)与(3)
易混淆知识点的区分:对比演练2x>4和-2x>4。
教学目标
1、借助对不等式基本性质的探索提高学生合情推理的能力的意识,在类比等式性质进行探索的过程中提高学类比能力;
2、让学生体会建模、分类讨论、转化等数学思想。
3、进一步发展学生的自主探究意识,激发学生探索数学知识的热情。
4、帮助学生经探索得出并掌握不等式的基本性质。
5、使学生能够学以致用。
总体设计
以发展学生的学习能力为目标,以“问题情境-建立模型-解释、应用与拓展”为教学主线,以探索不等式的性质为载体,以“类比、猜想、验证”的学习模式为手段。课前准备
印好题单、制作完课件、调试好多媒体教学设备、准备好天平和弹簧秤、发动学生提前准备重量相同的物体。学生活动的设计
围绕不等式基本性质的探索,以“类比-猜想-验证”为活动主线,意在培养学生的探索精神和创新能力,让学生经历知识的形成的应用过程,发展学生合情推理、类比联想的能力,展现数学与物理、数学与生活的联系,突出“数学化”的过程。
教师扮演学生探究性学习的组织者和指导者的角色。注重启发和点拨,营造民主、和谐、平等的课堂氛围。教学过程设计 一、六大环节
(一)创设情境,提出问题
(二)结合模型,解决问题
(三)解释现象,阐述结论
(四)应用新知,学以致用
(五)拓展反馈,巩固新知
(六)小结作业,温故知新
二、具体教学过程
(一)创设情境,提出问题
1、天平演示
(1)两个重量相等的物体放在天平的左右托盘中,用数学式子可表示为“a=b”
(2)在天平的左右托盘里物体的个数同时加上、减去、乘以或除以,天平左右两边仍平衡,从实际中能得到什么数学规律?
2、转化情境
现在有一种苹果被小虫一一咬了一口,现在在天平的左右托盘里分别放入一个被咬过的苹果和一个没被咬过的,结果会怎样?(被咬过的苹果一边会跷起来,没被咬过的一边会下沉)
3、转化建模
这一生活现象能建立一个怎样的数学模型
板书课题---------不等式的基本性质
(本环节是在前面建立了数学模型的基础上展开的,意图是:(1)通过生生间的多边交流激发学生的学习潜能,促使学生理解和掌握基本的数学知识、技能、思想方法,获得广泛的数学活动经验,提高解决问题的能力,学会学习。(2)在活动中发展学生的意志力,培养自信心,理性精神等情感态度。)
(二)结合模型,解决问题 学生活动的具体内容:(1)找寻探究策略:类比和分类(2)找寻目标载体:实验和举例(3)探究分类细节:(4)猜测与验证:(见附表一)(5)尝试在小组内表达结论。
不等式的基本性质1:不等式两边同时加上(或减去)同一个式子,不等号的方向不变 不等式的基本性质2:不等式两边同时乘以(或除以)同一个正数,不等号的方向不变 不等式的基本性质3:不等式两边同时乘以(或除以)同一个负数,不等号的方向改变
(三)解释现象,阐述结论 总结探索
学习经验-----我的财富
1、用来解决问题的策略:类比和分类
2、研究问题的目标载体:实验和举例
3、分类应注意事项:不重、不漏
4、对预期结果先猜测、再验证
5、对科研成果要用语言叙述
(四)应用新知,学以致用 牛刀小试
已知:x>y,下列不等式一定成立吗?
(1)x-6 (2)3x<3y (3)-2x<-2y (4)2x+1>2y+1 例 把下列各式化成“x>a”或“x (1)x-5>-1 (2)-2x>3(教学观点:素质教育与基础知识、基础技能的教学并不抵触,我们应继续发扬传统教学的优秀成果,不能只注重课堂上学生活动的设计而轻视了知识的传授,尤其是必要的解题格式的说理方法。)实践出真知 把下列各式化成“x>a”或“x (1)x-1>2(2)-x>5/6(3)x/2≤3(4)2x>4(5)-2x>4 (五)拓展反馈,巩固新知 拓展应用1 1.由x 4.设A、B、C表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“B”、“C”这三个物体的质量按从大到小的顺序排列应为()A.ABC B.CBA C.BAC D.BCA 教学反馈(见附表二) (六)小结作业,温故知新 (引导学生回顾本节所学内容及探索新知的过程带来的学习方式、方法、能力上的收获。借此提升学生的学习能力,培养学生及时反思、总结的好习惯。)“菜单式”自选作业: 1、必做题 2、选做题 自评与师评 目的:让学生品尝获得成功的快乐,激起进一步学习数学的热情 具体内容: 针对性评价: 目的:营造合谐、民主、平等的课堂氛围,培养情感 内容:学生的情感态度、学习过程、思维过程,解决问题的能力。综合性评价: 目的:总结提升 内容:总结学习活动中闪光点、情感、态度等。 2010-2011学第二学期关集中心校七年级数学组导学案专用纸 主备人:胡伟 审核人: 使用人: 第11周 讨论时间: 不等式的基本性质(1) 教学设计 学习目标 1、理解、掌握不等式的基本性质; 2、能够运用不等式的基本性质解决有关问题.重点难点 重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决办法:不等式的基本性质3的导出,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的.并在理解的基础上加强练习,以期达到学生巩固所学知识的目的.教学方法 先学后教、讨论、探究、讲练结合 教具准备 多媒体,或小黑板 教学设计流程 问题:等式有哪些性质?(学生交流3-5分钟)学生回答等式的性质: 性质1 等式两边同时加(或减)同一个数(或式子),结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注: (1)学生对已学过的等式性质内容的记忆,及叙述语言的准确性;(2)学生对等式性质得出过程的回顾.探讨不等式的基本性质.(学生读文8-10分钟后,研讨并解决下面问题)如果a>b,那么,在数轴上表示a的点A位于表示b的点B的右侧,画图表示.(一)做做 1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比较出两组数的大小关系.(以小组为单位,充分讨论,通过交流得出结论).不等式的基本性质1:如果a>b,那么 a+c>b+c,a-c>b-c.就是说,不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.(二)探究 1.根据8>3,用“>”或“<”填空: 8×2_______3 × 2; 8×(-2)_______3×(-2).8× _______3× ; 8×(-)_______3×(-).8×0.01______3×0.01; 8×(-0.01)_______3×(-0.01).2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗? 3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗? 4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的基础上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察对比,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的基本性质2:如果a>b,并且c>0,那么ac>bc.不等式的基本性质3:如果a>b,并且c<0,那么ac 例 根据不等式的基本性质,把下列不等式化成x>a或x2;(2)2x (1)学生能否说出填空根据的是不等式的哪一条性质;(2)学生对不等式性质3的掌握情况.解:(1)x-l>2,x-l+l>2+1(不等式的基本性质1),x>3.(2)2x 1.如果a”或“<”填空:(1)a-2_____b-2;(2)3a______3b;(3)a+c_____b+c;(4)- a_____- b.2.把下列不等式化成x>a或x8x+1;(3)x>-4;(4)-10x<-5.(五)当堂训练 1.在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则 a ______12; (2)若-a<10,则a______ -10; 答:(1)a<12,根据不等式基本性质1.(2)a>-10,根据不等式基本性质3. 2.已知a<0,则 (1)a+2 ______2; (2)a-1 ______ -1; (3)3a______ 0;(4)a-1______0; (5)|a|______0. 答:(1)a+2<2,根据不等式基本性质1.(2)a-1<-1,根据不等式基本性质1.(3)3a<0,根据不等式基本性质2. (4)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1. 又已知,-1<0,所以 a-1<0. (5)因为a<0,所以a≠0,所以|a|>0. (本题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.)3.判断下列各题的推导是否正确?为什么?(投影)(请学生口答)(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b; (4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a. 答:(1)正确,根据不等式基本性质3.(2)正确,根据不等式基本性质1.(3)正确,根据不等式基本性质2.(4)正确,根据不等式基本性质1.(5)不对,应分情况逐一讨论. 当a>0时,3a>2a.(不等式基本性质2)当 a=0时,3a=2a. 当a<0时,3a<2a.(不等式基本性质3) (学生在回答本题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助) 4.按照下列条件,写出仍能成立的不等式:(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a. 5.用不等号填空: (1)当a-b<0时,a______ b;(2)当a<0,b<0时,ab ______0;(3)当a<0,b>0时,ab ______0;(4)当a>0,b<0时,ab ______ 0;(5)若a ______ 0,b<0,则ab>0; (六)教后反思 教学设计说明 本节内容是人教版《义务教育课程标准实验教科书·数学》八年级上册“14.2.2一次函数”(第二课时) 一、本课数学内容的本质、地位和作用分析 本课数学内容的本质是通过研究具体一次函数的图象特征和函数性质,抽象得到一般的一次函数的图象特征和函数性质,在这个过程中使学生认识到由具体到一般的研究问题的方法.同时在学生了解了正比例函数ykx的图象和性质的基础上,通过比较一次函数ykxb与正比例函数ykx解析式上的区别,得到一次函数图象与正比例函数图象之间的关系,进而得到一次函数的图象和性质,也使学生体会到当两个函数有密切联系时,可以通过类比以前研究函数的方法来研究新的函数.在“观察图象——分析解析式——归纳结论”的过程中,培养学生的数形结合的能力. 一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质.它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础. 从数学自身发展过程来看,正是由于变量与函数概念的引入,标志着初等数学向高等数学的迈进,是一种数学思想与观念的融入.无论从一次函数到反比例函数,再到以后的二次函数,甚至高中的其他各类函数,都是函数的某种具体形式,都为进一步深刻领会函数提供了一个平台.因此,后续学习中对反比例函数、二次函数的研究方法与一次函数的研究方法类似.也就是说,一次函数的学习为今后其他函数的学习提供了一种研究的模式. 二、教学目标分析 (一)教学目标))1.使学生理解函数ykxb(k0与函数ykx(k0图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响. 2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳k的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力. 3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法. 4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神. 三、教学问题诊断分析 本节课主要是研究一次函数的图象和性质,在此之前学习者已经学习了正比例函数的图象和性质,一次函数的定义.由于授课班级为我校普通班级,学生虽然已经经历了研究正比例函数的图象和性质的过程,但是对于函数的理解还是比较浅显,将函数解析式与函数图象结合起来解决问题的能力较弱,故本节课的教学难点为通过对解析式的比较分析理解一次函数的图象和性质,并能灵活应用. 在本节课的学习中,学生对于通过具体函数图象猜想一次函数图象的形状和k的正负对于函数图象的变化趋势和函数性质的影响并不困难,但是学生容易停留在只从“形”的角度认识一次函数的图象和性质,不会用函数和变量去思考问题,即从“数”——解析式的角度加深理解.所以,我们在进行教学时,有意识地加强对一次函数ykxb与正比例函数ykx解析式的分析与比较,突出数学知识所蕴涵的数学思想和数学方法,以此加深学生对数形结合思想的体会,使学生逐步地增强应用数形结合思想解决问题的意识和能力. 四、本节课的教法特点及预期效果分析 1.由于本课的教学内容是在学生以往学习了正比例函数的图象和性质以及一次函数的定义的基础上进行的,学生在学习一次函数定义时对于课后的一个实际问题的练习掌握情况不好,因此这节课从这个问题复习开始,起到承接以前学习过内容的目的,同时对这个问题稍作改动,吸引学生的注意力,再引出本课的内容,让学生在复习的过程中感受用函数模型描述实际问题的作用. 2.根据本节课的教材内容特点,为了更直观、形象地突出重点、突破难点,提高课堂效率,采用以实践探索为主、多媒体演示为辅的教学组织形式.在教学过程中,通过设置带有探究性的问题,创设问题情境,引导学生动手实践探索,发现归纳结论.利用计算机的《几何画板》软件增强数与形结合的直观性,并通过学生亲自动手绘制函数图象,让学生亲身体验知识的产生、发展和形成的过程. 3.八年级的学生好奇、好学、好动,所以在教学过程中通过让学生自己动手画图,同学之间交流画法,谈谈想法等活动,充分发挥学生的主体性,进一步激发学生的求知欲,课件中的动画过程使数与形的关系可视化,有利于学生对问题的感知。 4.在由具体函数y2x1与函数y2x的图象关系抽象得到一般一次函数ykxb与直线ykx之间的关系的过程中,我们将抽象的过程分成两步完成,第一步先由函数y2x抽象到正比例函数ykx,函数y2x1抽象到一次函数ykx1,第二步由一次函数ykx1抽象到函数ykxb,同时利用《几何画板》直观演示,有利于学生从具体向一般过渡. 5.在小结的设计上给学生一个充分从事数学活动的机会,也体现了学生是数学学习的主人的理念.学生所发表的见解不一定全都是本节课的重点,只要是学生的观点正确又的确是他的知识收获则教师就给与认可和鼓励. 6.在作业的布置上,通过阅读作业培养学生的数学阅读能力,同时养成学生及时复习、梳理知识的良好学习习惯,通过巩固性作业使学生巩固落实课堂所学的知识,通过探究作业为下节课学习利用待定系数法求一次函数解析式作铺垫,起到与下节课衔接的作用. 以上是我对这节课的教学设计的说明,不妥之处恳请各位专家批评指正。 教前设想 这节课是一节概念课,学习不等式的性质。前面学生学习了不等式的解和解级以及等式的性质,为了解一元一次不等式,我们要引入不等式的性质来解。 这节课的内容不是很多,重点是让学生理解并掌握不等式的性质并用不等式的性质解一元一次不等式。对于不等式的性质,不是很难懂,这里完全可以放手给学生自己探索,自己总结,从特殊到一般,所以安排了三个思考题让学生分别总结出不等式的性质。利用不等式的性质解不等式可以参考利用等式的性质解一元一次方程的思想,要将不等式最后化成x>a或x 教中情况 这整节课上下来学生学的比较轻松。一节课中,学生课堂的效率比较高,学生学习的效果比较好。 教后反馈 通过对学生课后作业的情况的批改情况以及听课老师的意见,觉得这节课还有一些不足,表现为: 1、这节利用探索稿教学,学生自我学习,这要求学生的素质比较高。在学生要独立完成思考和总结这个环节可以让学生一活动小组的形式进行,活跃课堂的次序。 2、在学生总结不等式的性质的探索过程中,让学生直接从数字总结出不等式的性质比较困难,可以从数字到字母的过程中加入比较简单的数字和字母之间的加减乘除的题目,这样从特殊到一般的过度就比较顺理成章。 3、探索稿怎么去利用?其实一般探索稿可以在上新课的前一天发给学生,让学生利用课余时间预习,这样可以节约很多课堂的时间,然后在课堂上对答案,教师简单的讲解,处理疑问,但这要求学生的的层次比较高,教师在课前做好大量的准备工作。这节课由于内容比较简单,可以在课堂上处理,但由于内容比较多,整个课程比价经凑。 4、在批改学生的作业时发现,学生在不等式的两边同时乘或除同一个负数时,没有把不等号改变,虽然课堂上教师也做了特别的强调,这里还需要改进。 5、在讲解不等式的性质1和性质2中,借用了天平来讲解,不高效果不是很好,学生理解不是很好,可以考虑去掉这个环节。 6、其实在学生在黑板上板演后可以让学生来讲解。 7、在这节课的后面讲例题的过程中可以多让学生见几种题型,可以多找一点最近几年的与不等式性质相关的题目。 其实,在教学的过程中,我们教师往往重视教的过程,而往往忽视了学生学的过程,如过我们能够多让学生动手,动脑,多总结,掌握一个好的学习方法,这比我们教任何知识点都要重要。 9.1.2 不等式的性质(2) 一、课标分析 数学新课程标准提到:要注重提高学生的数学思维能力,即“在学生学习数学运用数学解决问题时,应经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”。通过认真学习领会新课程标准,在不等式的性质(2)教学设计中注重类比思想的应用,采用传统的讲练结合的方法进行教学。 二、教材分析 (1)本节内容是新人教版七年级下第九章《不等式与不等式组》中的重点部分,是在学习了不等式的三条基本性质定理后,进一步理解不等式的性质,会解简单的一元一次不等式,能在数轴上表示出解集,并了解含有符号“≥”和“≤”的不等式。 (2)不等式的性质是后继深入学习一元一次不等式(组)以及解决与不等式有关问题的基础和依据。教材中列举了不等式的三条基本性质定理,这三条性质是不等式的最基本、也是最重要的性质,不仅要掌握它们的内容、理解掌握它们成立的条件、把握它们之间的联系,还要对这些性质进行拓展探究。 (3)不等式的性质是培养学生数学能力的良好题材,学习不等式,要经常用到观察、分析、归纳、猜想的思想,还要综合运用前面的知识解决不等式中的一些问题,这些都有助于学生数学能力的提高。 (4)在本章内容之前我们已经学习了一元一次方程和二元一次方程组的内容,现在再学习一元一次不等式和一元一次不等式组已是顺理成章的了,但是知识体系的变化会引起对不等式整个内容的理解与把握上的不同,相应问题的难度与方程的综合程度会有所加大,并且突出由一些具体的实际问题抽象为不等关系模型的过程,让学生体会建立不等关系及学习一元一次不等式和一元一次不等式组的意义,并且关注学生学习习惯的养成,渗透方程、不等式思想。 因此,“不等式的性质”在初中数学内容里占有十分重要的地位。它在利用不等式的观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径 / 5 三、学生分析 从学生的知识上看,学生已经掌握了等式的性质和解一元一次方程,并初步掌握了不等式的性质,接下来的任务是进一步理解不等式的性质并了解含有符号“≥”和“≤”的不等式。 从学生现有的学习能力看,通过等式的性质和一元一次方程的学习,学生在一定程度上具备了对式子做合理变形能力。 从学生的心理学习上看,学生头脑中虽然有了不等式性质的内容,但并没有上升为“理解”的水平。不等式的性质是学生从已经学习的等式中比较容易类比的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。 四、教学目标 1.知识与技能:理解不等式的性质,会解简单的一元一次不等式,并能在数轴上表示出解集。 2.过程与方法:通过经历不等式性质的简单应用,积累数学活动。通过独立解题,进一步理解不等式的性质,体会不等式性质的价值。 3.情感态度和价值观:认识到通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性。在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享别人的想法和结果,并重新审视自己的想法,能从交流中获益。 五、重点难点 1.重点:不等式的性质及其解法. 2.难点:不等式性质的探索及运用.六、方法策略 教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法: 启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,培养和发展学生的抽象思维能力。 探究教学法——引导学生去疑;鼓励学生去探; 激励学生去思,培养学生的创造性思维和批判精神。 / 5 七、教具选择 板书与多媒体的结合。 八、教学流程设计 梳理旧知,引出新课 问题1 在前面的学习中,你学到了不等式的哪些性质?(用文字语言叙述)(鼓励学生回答问题,用电子白版显示三条性质的符号语言) 问题2 解一元一次方程最终的目的是把方程转化成哪种形式?其主要的理论依据是什么? (为问题3做铺垫)合作交流,探究新知 问题3 利用不等式的性质解下列不等式: (1)x726(2)3x2x1 2(3)x50(4)4x3 3(类比着解一元一次方程的方法教师先解(1),并用数轴表示其解集,然后让学生试解(2)(3)(4)并和同学交流,最后教师点评。) 思考1:(3)(4)的求解过程,类似于解方程的哪一步变形? 思考2:依据不等式性质3解不等式时应注意什么? 随堂练习:1.完成课本P119练习1 问题4 2011年北京的最低气温是19℃,最高气温是28℃,你能把北京的气温用不等式表示出来吗? (符号“≥”读作“大于或等于”,也可以说是“不小于”;符号“≤”读作“小于或等于”,也可以说是“不大于”.形如a≥b或a≤b的式子也是不等式,它们具有类似前面所说的不等式的性质).随堂练习:完成课本119页练习2.问题5 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3cm,现准备向它继续注水.用V(单位:cm3)表示新注入水的体积,写出V的取值范围.(学生先合作探究,然后让学生交流探究结果,最后老师讲评并强调在解决 / 5 实际问题的时候,要考虑取值的现实意义。)巩固新知,深化理解 归纳完善,丰富新知 1:如何利用不等式的性质解简单不等式? 2:依据不等式性质3解不等式时应注意什么? 3:请说明符号“≥”和“≤”的含义? 布置作业 必做题:P120第5,7,8题.选做题:P120第9题 九、教学反思 通过本节课的研究,旨在经历知识的形成过程,让学生进一步学会类比、学会分析.让学生体会到数学与实际生活的密切联系,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,体验到学习的快乐.同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。 教学引入上,本节课“用啥复习啥”,为后续的问题提供解题的思路和帮助。教学内容上,本节课以实际生活为背景.学生亲身经历现实问题数学化的过程,获得了富有生命力的数学知识,进一步认识数学、体验数学的价值.真正让学生真切地体会到“生活中处处有数学,生活中处处用数学”,培养了学生的应用意识. 教学构思上,注重类比方程的解法探究不等式的解法,再用所学知识去解决问题.放开手脚让每个学生从不同的角度、用不同的方法充分展现“自我”,真正构建起学生课堂主人的地位,使他们的思维能力、情感态度和价值观念等各个方面都迈上了一个新的台阶. 组织形式上,本节课以传统的教学方式“讲练结合”展开,让学生进行合作学习,共同探索、共同研究、解决问题。由于本节教学内容的特点,教师注重引导、组织学生学习。这节课成功与否,不在于教师的讲解本领,而在于调动启发 / 5 学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性.学习方式上,自主探索、合作交流是本节课学习数学的重要方式,本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成了学习的主体。.评价方式上,教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考了没有、参与了没有,关注学生能否从数学的角度考虑问题.也就是说:教师关注的是过程,而不是结果。另外,在课堂教学中,给了学生更多的展示自己的机会,并且教师的鼓励与欣赏有助于学生认识自我,建立自信,发挥评价的教育功能。 当然本节课还有许多不足之处: 1、点拨环节做得不好:担心时间不够,在这个重要环节上用时太少; 2、对学生回答问题紧张的情况没做调节,使课堂气氛沉闷; 3、教师讲解过多,让学生在课堂上变的很被动等等。 / 5第二篇:不等式性质教学设计
第三篇:一次函数图像和性质教学设计说明
第四篇:不等式的性质教学反思
第五篇:《不等式的性质》教学设计