解方程教案二_1

时间:2019-05-12 21:13:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《解方程教案二_1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《解方程教案二_1》。

第一篇:解方程教案二_1

解方程

教学目标

1.知识目标:(1)熟悉利用灯市的性质解一元一次方程的基本过程。(2)通过具体的离子,归纳移项法则

(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性。

2.能力目标:经历观察、归纳、总结、反思的过程,感受方程与代数式的不同,感受知识间的联系,提高解决问题的能力。

3.情感目标:使学生通过选用合理步骤解一元一次方程,了解“未知”可以转化为“已知”,发展学生在生活中运用方程的意识及,训练学生的方程思维能力。

教材分析

1.地位与作用:解一元一次方程是解其他方程的基础,有重要实际应用的意义。解方程的运算及方程思想的实际应用,关键在于正确地了解方程、方程的解的意义和运用等式的两个性质.

2.重点与难点:重点是移项法则.难点是等式的基本性质.教学准备多媒体、有关方程的资料(方程小史)教学过程

1.情景导入:介绍有关方程的资料:方程小史

古埃及是数学的发源地致意,早在公元前1650年,古埃及人就在纸草书(纸草是生长在尼罗河流域的一种水草,古埃及人将它的茎叶压成薄片用来写字)上写下了含有未知数的问题。12世纪前后,我们数学家用“开元术”来解题,即先要“立天元为某某”,相当于“设x为某某”。14世纪初,我们数学家朱世杰创立了“四元术”(四元指天、地、人、物,相当于四个未知数,如x,y,z,w)。这是中国古代数学的一个飞跃。

2.提出问题:解方程:5x-2=8 3.自主探索、合作交流:

先由学生独立思考求解,再小组合作交流,师生共同评价分析。方法1: 解:方程两边都加上2,得5x-2+2=8+2 也就是

5x=8+2 合并同类项,得5x=10 所以,x=2 4.理性归纳、得出结论

(让学生通过观察、归纳,独立发现移项法则。)

比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于 5x-2=8 →

5x=8+2 即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,对此教师不宜强求,可借助例题、练习题使相互逐步体会到移项的优越性)

方法2;

解:移项,得

5x=8+2 合并同类项,得5x=10 方程两边都除以5,得x=2 5.运用反思、拓展创新

[例1] 解下列方程:(1)2x+6=1

(2)3x+3=2x+7

教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流 [例2] 解方程:x12

4教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励

②在移项时,学生常会犯一些错误,如移项忘记变号等.这时,教士不要急于求成,而要引导学生反思自己的解题过程.必要时,可让学生利用等式的性质和移项法则两种方法解例1例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误

[练一练] 109页 随堂练习6.小结回顾: 学生谈本节课的收获与体会。师强调:移项法则 7.布置作业:

必做题:习题5.3 1 , 2 选做题:习题5.3 3

第二篇:解方程1教案

人教版五年级上册《解方程(1)》

一、导入

谈话:同学们,还记得什么是方程吗?等式的性质呢?

二、互动新授

(一)各小组派代表汇报并展示课前自习的结果。小组之间可互相猜疑,并提问。教师不必急于给出正确答案,只需引导各小组充分进行交流。

(二)教师通过多媒体出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。并用等式表示: x+3=9(教师板书)

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。长方体盒子代表未知的x个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。3.还可以根据什么方法来解这个方程?学生展示汇报

4.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解解方程)

5.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

6.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把 x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x +3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

三、练习巩固拓展

四、课堂小结。师:这节课你学会了什么知识?有哪些收获?

引导总结:

1.解方程时是根据等式的性质来解。

2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。

学生展示检验(自主学习单)

板书设计 解方程(1)

x +3=9

解:x +3-3=9-3

x =6

求方程解的过程叫做解方程

使方程左右两边相等的未知数的值,叫做方程的解。

第三篇:解方程1教案

一、导入

谈话:同学们,还记得什么是方程吗?等式的性质呢?

二、互动新授

(一)各小组派代表汇报并展示课前自习的结果。小组之间可互相猜疑,并提问。教师不必急于给出正确答案,只需引导各小组充分进行交流。

(二)教师通过多媒体出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。并用等式表示: x+3=9(教师板书)

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。长方体盒子代表未知的x个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。3.还可以根据什么方法来解这个方程?学生展示汇报

4.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解解方程)

5.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

6.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把 x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x +3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

三、练习巩固拓展

四、课堂小结。

师:这节课你学会了什么知识?有哪些收获?引导总结:

1.解方程时是根据等式的性质来解。

2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。

学生展示检验(自主学习单)

板书设计 解方程(1)

x +3=9

解:x +3-3=9-3

x =6

求方程解的过程叫做解方程

使方程左右两边相等的未知数的值,叫做方程的解。

教学过程:

一、创设情境,生成问题

同学们,还记得上节课我们一起玩过的天平游戏吗?谁来说说你从中获得了什

么知识?(引导学生回忆等式的性质即天平平衡原理)。同学们在游戏中的收获可真不少,还想不想玩游戏?(想)好,现在我们就一起玩个猜球游戏:

师出示一个不透明的乒乓球盒,让学生猜里面有几个球?(学生可以任意猜)师:盒子里面有几个球,1个?2个?.......你能准确说出盒子里有几个吗?

生:不能!

师引导学生可以用字母X来表示球的个数。

师:要想准确知道有几个球,再给同学们一些信息。

(师课件出示天平左边一个不透明盒子和3个球,右边透明盒子里有9个球,天平平衡)

设问:能用一个方程来表示吗?(板书X+3=9)师:现在你知道X的值是多少吗?

二、探索交流,解决问题。

(一)探究利用等式的性质解方程

1、独立思考:盒子里有几个球?也就是X所表示的数值是多少?(由于数据 较小,学生能够独立思考出结果)

2、小组内交流;你是怎样想的?

(这里给与学生一定的思考和交流的时间,重点让学生说说自己的思考过程)。

3、全班交流:X的值是多少?你是怎样想的?

学生可能有以下几种想法:(1)利用加减法的关系:9-3=6。(2)想6+3=9,所以X=6。

(3)把9分成6+3,想X+3=6+3,所以X=6。(4)在方程两边同时减去一个3,就得到X=6

师:同学们的想法真不少。我们看前三个同学都是利用加减法的关系或数的分成想出了答案。第四个同学的想法有什么不同?他的想法对吗?我们可以来验证一下。

4、操作验证:师拿出课件演示中的天平实物(天平左边一个不透明盒子和3个 球,右边透明盒子里有9个球,天平平衡。注意两个盒子的质量相等)

师问:现在谁来试一试?想想左右两边同时拿去三个乒乓球天平会怎么样?(学生拭目以待,跃跃欲试)

学生操作演示,天平平衡。

(二)指导解方程的书写格式

师:通过操作我们发现他的想法是对的!以后我们就用等式的性质来求方程中未 知数的值。这个演算过程如何书写呢?让学生先同桌交流发表自己的看法,然后师边示范边强调:首先在方程的第二行起写一个“解”字,利用等式的性质两边同时减去一个3,为了美观注意每步等号要对齐。

师板书如下:

X+3=9

解:x+3-3=9-3

x=6

重点问:左右两边同时减去的为什么是3,而不是其它数呢?

学生纷纷说出想法。

师结:方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个 x即可。

师:我们要想知道算的对不对,不能每次都用天平来验证吧,尤其是遇到较大的 数。(学生点头认同)师:那怎麽办呢? 生:可以验算!

师:怎么验算?

学生可以交流,根据学生的回答老师板书验算方法:

验算:方程的左边 =X+3

=6+3

=9

= 方程的右边

所以,X=6是方程的解。

(三)揭示方程的解和解方程两个概念。

师:像上面X=6这样使方程左右两边相等的未知数的值,叫方程的解。而求方

程的解的过程叫做解方程。同时课件出示两个概念,让学生说说两个概念有什么不同?

师明确:方程的解是一个具体的数值,而解方程是一个过程,解方程的目的就是 求方程的解。

(四)独立尝试解方程(例2

师:同学们已掌握了解方程的方法,看这个方程你会解吗?

课件出示信息图,让学生看图列出方程3X=18。师抛出问题:这个方程如何解呢?要根据方程的哪个性质来解?

师:谁愿意来板演?(其他学生练习本上做)

教师针对学生做题情况,重点强调:根据“方程的两边同时除以一个不等于 0的数,左右两边仍然相等”来解方程。

三、巩固应用 内化提高

1、慧眼识珠

从后面括号中找哪个是x的值是方程的解?

(1)x+32=76

(x=44,x=108)

(2)12-x=4

(x=16,x=8)

2、看图列方程并解答(做一做)

3、是解题小冠军(63页第五题)

四、回顾整理,反思提升。

今天你有哪些收获?你学会了什么?

板书设计:

第四篇:《解方程 例1》教案 何

《解方程 例1》教学设计

平凤镇平岗小学 何玉洪

教学内容:义务教育人教版数学五年级上册67页内容。教学目标: 知识目标:

1、理解天平与方程的联系,会用等式的性质解方程。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解。

能力目标: 提高学生的比较、分析的能力,培养学生合作交流的意识。情感目标:感受方程与现实生活的联系。

教学重点:理解方程的解和解方程的含义,会检验方程的解。教学难点:利用天平平衡的原理来检验方程的解。教学过程:

一、复习铺垫,引出课题(出示课件)

1、判断下面哪些是方程?

2、根据等式的基本性质,把下面的等式填写完整。

3、看图列出方程。

二、探究新知

1、师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

再给你点信息,这幅图谁能用一个方程来表示。

生说题意并列方程x+3=9。

2、师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)汇报预设:①因为9-3=6 ②因为6+3=9 所以x的值为6 所以x的值为6 师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值。

3、教师通过天平帮助学生理解。

师:现在我们就将X+3=9这个方程转换到天平上来。

天平左边是x+3个球,右边是9个球,天平平衡,列式是:x+3=9 观察:有什么办法得到x的值?(把左边3个球拿掉。)

把左边拿掉3个球,要是天平仍然保持平衡要怎么办?(右边也要拿掉3个球。)追问:怎样用算是表示?

学生交流汇报:x+3-3=9-3 X=6 质疑:为什么两边都要减3?有什么根据吗?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

4、小结:使方程左右两边相等的未知数的值,叫做方程的解。像上面,x=6就是方程x+3=9的解。求方程的解的过程叫做解方程。(板书)

5、区分:方程的解和解方程有什么区别?

师引导:“方程的解”中的“解”是指能使方程左右两边相等的未知数的值,它是一个数;而“解方程”中的“解”是指球方程的解的过程,是一个计算过程。

6、验算:X=6是不是正确的答案?怎样检验?生自主思考,小组内交流。

师:可以把X=6的值代入方程的左边算一算,看看是不是等于方程的右边。即:方程左边=x+3 =6+3 =9 =方程右边

所以,x=6是方程的解。

7、解复习题中的方程X+73=166,引导学生用等式的性质去解。

8、根据x+3=9 X+73=166解的过程,讨论解方程需要注意什么?

小结:根据等式的性质来解方程,解方程是要先写“解:”,等号要对齐,解出结果后要检验。

三、巩固练习

1、在〇里填上运算符号,在□里填数。(练习册34页第二题)

2、解方程。(课本67页做一做第1题)

3、x=2是方程5x=15的解吗?x=3呢?(课本67页做一做第2题)

4、后面括号中哪个x的值是方程的解?(课本70第1题)(学生独立完成,指名说答案或上台板演,师点评。)

四、课堂小结:今天你有什么收获?

五、作业:课本70页第2题的前4小题,第4题的(1)、(3)

课后练习:练习册34页。

第五篇:解方程教案

课题:解方程

教学内容:P57,及“做一做”,练习十一第4题。

教学目标:

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。知识重点:解方程的规范步骤

教学难点:比较方程的解和解方程这两个概念的含义 教学过程:

一、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

二、认识、区别方程的解和解方程。得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢? 方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

三、方程的检验

P58例1 P59例2。自我创意: 怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3 =6+3 =9 =方程右边

所以,x=6是方程的解。

四、教学例1 出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9 要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢? 抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3 化简,得到 x=6 这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

下载解方程教案二_1word格式文档
下载解方程教案二_1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    解方程教案

    2. 解简易方程 方程的意义 教学内容: 数学书P62-63内容及“做一做”,练习十四1-3题。 教学目标: 1、初步理解方程的意义,会判断一个式子是否是方程。 2、会按要求用方程表示出......

    解方程 教案

    《解方程》教学设计 教学内容:人教版数学五年级上册67页内容。教学目标: 知识目标:1、学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的原理)解比较......

    解方程教案

    五年级数学上《解方程(一)》教案 教学目标: 知识与技能: (1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。 (2)能用等式的性质解......

    解方程_教案

    解方程 【教学目标】 1.通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。 2.通过创设情境,经历从具体抽象为代数......

    解方程(教案)

    解方程(教案) 教学内容: 西师版义务教育课程标准实验教材第101页例1及练习二十一的第1~3题内容。 教学目标: 1、理解解方程的意义。 2、学会利用四则运算基本数量关系和等式的性......

    解方程教案

    学习目标: 1、让学生初步认识“方程的解”、“解方程”的意义。 2、结合课文图例,根据等式的基本性质,解方程。 3、掌握解方程的格式和写法。 4、进一步提高学生分析、迁移的努......

    解方程教案

    《解方程》教学设计 文昌市新桥中心小学 王康锐 (一)教学内容 义务教育课程标准实验教科书数学(人教版)小学《数学(五年级上册)》第57、58页的内容。 (二)教学目标 (1)使学生初步理解......

    解方程教案

    ·研究课教案· 解 方 程教学内容:教材第67、68页例1、例2及相关练习。 教学目标: 1、通过学习理解 “方程的解”和“解方程”的意义。 2、能够利用等式的性质解形如x±a=b、a......