第一篇:电工学下册(电子技术)知识点总结
电子技术知识点总结
模拟电路处理模拟信号,数字电路处理数字信号
第14章 半导体器件 1.本征半导体概念
2.N型和P型半导体的元素、多数载流子和少数载流子、“复合”运动 3.PN结的单向导电性,扩散运动,漂移运动 4.二极管的伏安特性、等效电阻(14.3.8)5.稳压二极管的工作区
6.三极管的放大电流特性(非放大电压)、输出特性曲线(放大区、截止区、饱和区),判断硅管和锗管、PNP型和NPN型(14.5.1,14.5.2,14.5.3)第15章 基本放大电路
1.共发射极放大电路的组成、静态分析、动态分析,计算电压放大倍数(远大于1,输入输出电压反相)、输入电阻(高)、输出电阻(低)2.静态工作点的稳定:分压式偏置放大电路的组成
3.非线性失真:饱和失真(静态工作点高)、截止失真(静态工作点低)
4.射极输出器的组成、静态分析(估算法、图解法)、动态分析(微变等效电路法、图解法),计算电压放大倍数(接近1,但小于1,输入输出电压同相)、输入电阻(高)、输出电阻(低)
5.多级放大电路的放大倍数,耦合方式三种:变压器耦合、阻容耦合(静态工作点相对独立)、直接耦合(静态工作点相互影响,零点漂移)
6.差分(差动)放大电路:针对缓慢变化的信号,采用直接耦合,共模信号,差模信号,抑制零点漂移,电路对称性要好
7.功率放大电路状态:甲类、甲乙类、乙类,为避免交越失真,需工作在甲乙类状态下 第16章 集成运算放大器
1.理想运算放大器的理想化条件:开环电压放大倍数∞,差模输入电阻∞,开环输出电阻0,共模抑制比∞,工作区:线性区和饱和区 2.虚短、虚断
3.运算放大器的比例运算、加法运算和减法运算 4.电压比较器
第17章 电子电路中的反馈
1.负反馈对放大电路工作性能的影响:降低放大倍数、提高放大倍数的稳定性、改善波形失真
2.深度负反馈的条件(AF>>1)第18章 直流稳压电源 1.整流电路的作用 2.滤波器的作用 3.稳压环节的作用
第20章 门电路和组合逻辑电路 1.二进制、十六进制和十进制的转化 2.基本逻辑门电路概念:与、或、非
3.逻辑代数运算:交换律、结合律、分配律、吸收律、反演律 4.常用的组合逻辑电路:加法器、编码器、译码器 5.例:判奇电路
第21章 触发器和时序逻辑电路 1.触发器的触发条件、触发时间、功能 2.可控RS触发器可能会出现空翻现象 3.JK触发器如何转化为T触发器和D触发器
4.常用的时序逻辑电路:寄存器(数码和移位)、计数器
第二篇:电工学 第七版 下册知识点和例题总结
电工学 动态分析 例15.3.1 49页 输入信号图解分析 52页 分压式偏置放大电路 例15.4.1 60页 射极输出器性质 71页 共模抑制比
习题15.2.1---15.2.4 15.2.5 15.2.7 共发射极放大电路 15.3.1----15.7.1 15.3.5 15.4.3 偏置放大电路 射极输出器 差分电路 16章
95.96页 运算放大器 98.99页 理想运放 例16.1.1 100--105页 比例运算 加减法运算 例16.2.3 112页 电压比较器 例16.3.1习题
16.2.1---16.2.5 16.2.6 16.2.7 16.2.13 比例运算 16.3.1,16.3.2电压比较器 17章
132页 正反馈和负反馈的判别 133---136页 负反馈的四种类型 141页 表17.2.1 负反馈对输入电阻和输出电阻的影响 146页 RC振荡电路习题
17.1.1---17.2.4 负反馈及类型判定
17.2.5,17.3.1,17.2.7,17.2.9负反馈的计算 18章
158页 单相半波整流电路 例18.1.1 159页单相桥式整流电路 167页 RC滤波器 例18.2.1习题 18.1.1--18.1.4 整流电路 18.2.1--18.3.3 滤波和稳压电路 18.1.6 18.1.7 18.3.4 直流稳压电源综合 20章
222--224页 数制的转化 227--229页 基本逻辑门电路 图20.2.2 20.2.3 20.2.4 231--232页 基本逻辑门电路组合 图20.2.5 20.2.6 20.2.7 250.251页 逻辑代数运算 254页 逻辑运算实例 259页 由逻辑图得状态表 例 20.6.1 20.6.2 262页 由状态表得逻辑图 例20.6.3 例20.6.4 269页 编码器 273页 译码器习题
20.1.1 20.1.2 进制转换 20.2.1--20.5.3 门电路逻辑式 20.5.4--20.6.6 门电路组合运算 20.5.8--20.5.11 逻辑式和逻辑图的转化 20.5.12---20.5.13 逻辑式化简 21章
298页 RS触发器
第三篇:电工学2电子技术复习纲要
《电工学2(电子技术)》考试复习大纲
第14章半导体二极管和晶体管
1、了解半导体二极管、三极管、稳压管工作原理和主要参数 ;
2、了解晶体管的放大原理、特性曲线、三种工作状态。
第15章基本放大电路
1、熟悉共射极单管放大电路的工作原理和性能特点;
2、熟悉静态工作点稳定工作原理;
3、熟悉射极输出器的电路特点和应用;
4、掌握放大电路静态分析:静态工作点的估算,动态分析:微变等效电路法。
第16章集成运算放大器
1、熟悉理想运放的条件及其分析依据。
2、掌握运算放大器在信号运算方面的应用的应用:比例,加、减;
3、熟悉信号处理方面的应用: 电压比较器。
第17章电子电路中的反馈
1、了解反馈的基本概念;
2、熟悉负反馈对放大电路工作性能的影响;
第18章直流稳压电源
1、掌握整流电路分析方法:二极管的选择;
2、掌握滤波器电路分析方法:电容的选择;
3、了解稳压电路个组件特性。
第20章门电路和组合逻辑电路
1、了解脉冲信号基本概念;
2、熟悉逻辑门电路,逻辑符号,逻辑表达式,逻辑门包括:与门、或门、非门、与非门、或非门、异或门、三态门、集电极开路门;
3、掌握布尔代数及其化简方法;
4、掌握组合逻辑电路的分析与综合。
第21章触发器和时序逻辑电路
1、熟悉触发器:J-K,D,T,T';
2、了解寄存器、计数器基本概念;
3、掌握简单时序电路分析方法;
4、熟悉555定时器构成的单稳态触发器和多谐振荡器。
第四篇:电子技术(电工学)多媒体教学软件使用说明
电子技术(电工学Ⅱ)(第三版)多媒体教学课件使用说明
一、软件特点
1.内容丰富、齐全
(1)电子技术(电工学Ⅱ)(第三版)多媒体教学课件是刘全忠、刘艳莉主编的普通高等教育“十一五”国家级规划教材《电子技术》(电工学Ⅱ)(第三版)的配套多媒体教学课件。内容融会了全部课程基本要求,每章节由基本内容、基本方法、重点、难点、例题分析组成。
(2)针对课程中的重点和难点采用形象化的动画演示和视频图像,这样可以充分发挥多媒体教学的优势,弥补课堂教学的不足。
(3)课件采用以图为主的表现风格,只有标题、关键表达式、重点、结论性叙述等少量文字,并模仿课堂教学模式,逐行出现。教学内容主要由教师去完成,使教师主观能动性和创造性的发挥不受限制。
2.界面直观
本课件的全部页面皆采用全屏显示,文字的大小适度、图形线段清晰,颜 色调配合理。
3.所占硬盘空间少,演示运行速度快。
4.功能菜单的使用
在屏幕的下方有一功能菜单,可随时返回章节目录导航、前后翻页、退出系统。
5.操作简单
本课件运用PowerPoint2003以上系统环境,便于教师修改、加工和编辑。适用于高等工科院校在多媒体教室或网络教室进行教学,也可作为学生自学、复习的参考课件。全部内容为1张CD-ROM光盘。操作时无须安装,可从光盘复制至硬盘中运行或直接在光盘上运行。
二、课件运行环境
硬件环境:256色、1024×768显示模式,声卡、光驱、键盘和(遥控)鼠标 软件环境:PowerPoint2003以上版本
三、制作信息
制做单位:天津大学电气与自动化工程学院电工学教研室
联系人:刘艳莉
联系电话:022-27403831
E-mail : liuyanli @tju.edu.cn
第五篇:模拟电子技术基础知识点总结
模拟电子技术复习资料总结
第一章
半导体二极管
一.半导体的基础知识
1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子
----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。
*P型半导体:
在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:
在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性
*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7.PN结
*
PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*
PN结的单向导电性---正偏导通,反偏截止。
8.PN结的伏安特性
二.半导体二极管
*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:
若
V阳
>V阴(正偏),二极管导通(短路);
若
V阳
1)图解分析法 该式与伏安特性曲线的交点叫静态工作点Q。 2) 等效电路法 Ø 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路); 若 V阳 *三种模型 Ø 微变等效电路法 三.稳压二极管及其稳压电路 *稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。 第二章 三极管及其基本放大电路 一.三极管的结构、类型及特点 1.类型---分为NPN和PNP两种。 2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触 面积较小;集电区掺杂浓度较高,与基区接触面积较大。 二.三极管的工作原理 1.三极管的三种基本组态 2.三极管内各极电流的分配 * 共发射极电流放大系数 (表明三极管是电流控制器件 式子 称为穿透电流。 3.共射电路的特性曲线 *输入特性曲线---同二极管。 * 输出特性曲线 (饱和管压降,用UCES表示 放大区---发射结正偏,集电结反偏。 截止区---发射结反偏,集电结反偏。 4.温度影响 温度升高,输入特性曲线向左移动。 温度升高ICBO、ICEO、IC以及β均增加。 三.低频小信号等效模型(简化) hie---输出端交流短路时的输入电阻,常用rbe表示; hfe---输出端交流短路时的正向电流传输比,常用β表示; 四.基本放大电路组成及其原则 1.VT、VCC、Rb、Rc、C1、C2的作用。 2.组成原则----能放大、不失真、能传输。 五.放大电路的图解分析法 1.直流通路与静态分析 *概念---直流电流通的回路。 *画法---电容视为开路。 *作用---确定静态工作点 *直流负载线---由VCC=ICRC+UCE 确定的直线。 *电路参数对静态工作点的影响 1)改变Rb :Q点将沿直流负载线上下移动。 2)改变Rc :Q点在IBQ所在的那条输出特性曲线上移动。 3)改变VCC:直流负载线平移,Q点发生移动。 2.交流通路与动态分析 *概念---交流电流流通的回路 *画法---电容视为短路,理想直流电压源视为短路。 *作用---分析信号被放大的过程。 *交流负载线--- 连接Q点和V CC’点 V CC’= UCEQ+ICQR L’的直线。 3.静态工作点与非线性失真 (1)截止失真 *产生原因---Q点设置过低 *失真现象---NPN管削顶,PNP管削底。 *消除方法---减小Rb,提高Q。 (2) 饱和失真 *产生原因---Q点设置过高 *失真现象---NPN管削底,PNP管削顶。 *消除方法---增大Rb、减小Rc、增大VCC。 4.放大器的动态范围 (1) Uopp---是指放大器最大不失真输出电压的峰峰值。 (2)范围 *当(UCEQ-UCES)>(VCC’ - UCEQ)时,受截止失真限制,UOPP=2UOMAX=2ICQRL’。 *当(UCEQ-UCES)<(VCC’ - UCEQ)时,受饱和失真限制,UOPP=2UOMAX=2 (UCEQ-UCES)。 *当(UCEQ-UCES)=(VCC’ - UCEQ),放大器将有最大的不失真输出电压。 六.放大电路的等效电路法 1.静态分析 (1)静态工作点的近似估算 (2)Q点在放大区的条件 欲使Q点不进入饱和区,应满足RB>βRc。 2.放大电路的动态分析 * 放大倍数 * 输入电阻 * 输出电阻 七.分压式稳定工作点共射 放大电路的等效电路法 1.静态分析 2.动态分析 *电压放大倍数 在Re两端并一电解电容Ce后 输入电阻 在Re两端并一电解电容Ce后 * 输出电阻 八.共集电极基本放大电路 1.静态分析 2.动态分析 * 电压放大倍数 * 输入电阻 * 输出电阻 3.电路特点 * 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。 * 输入电阻高,输出电阻低。 第三章 场效应管及其基本放大电路 一.结型场效应管(JFET) 1.结构示意图和电路符号 2.输出特性曲线 (可变电阻区、放大区、截止区、击穿区) 转移特性曲线 UP ----- 截止电压 二.绝缘栅型场效应管(MOSFET) 分为增强型(EMOS)和耗尽型(DMOS)两种。 结构示意图和电路符号 2.特性曲线 *N-EMOS的输出特性曲线 * N-EMOS的转移特性曲线 式中,IDO是UGS=2UT时所对应的iD值。 * N-DMOS的输出特性曲线 注意:uGS可正、可零、可负。转移特性曲线上iD=0处的值是夹断电压UP,此曲线表示式与结型场效应管一致。 三.场效应管的主要参数 1.漏极饱和电流IDSS 2.夹断电压Up 3.开启电压UT 4.直流输入电阻RGS 5.低频跨导gm (表明场效应管是电压控制器件) 四.场效应管的小信号等效模型 E-MOS的跨导gm --- 五.共源极基本放大电路 1.自偏压式偏置放大电路 * 静态分析 动态分析 若带有Cs,则 2.分压式偏置放大电路 * 静态分析 * 动态分析 若源极带有Cs,则 六.共漏极基本放大电路 * 静态分析 或 * 动态分析 第五章 功率放大电路 一.功率放大电路的三种工作状态 1.甲类工作状态 导通角为360o,ICQ大,管耗大,效率低。 2.乙类工作状态 ICQ≈0,导通角为180o,效率高,失真大。 3.甲乙类工作状态 导通角为180o~360o,效率较高,失真较大。 二.乙类功放电路的指标估算 1.工作状态 Ø 任意状态:Uom≈Uim Ø 尽限状态:Uom=VCC-UCES Ø 理想状态:Uom≈VCC 2.输出功率 3.直流电源提供的平均功率 4.管耗 Pc1m=0.2Pom 5.效率 理想时为78.5% 三.甲乙类互补对称功率放大电路 1.问题的提出 在两管交替时出现波形失真——交越失真(本质上是截止失真)。 2.解决办法 Ø 甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。 动态指标按乙类状态估算。 Ø 甲乙类单电源互补对称功率放大器OTL----电容 C2 上静态电压为VCC/2,并且取代了OCL功放中的负电源-VCC。 动态指标按乙类状态估算,只是用VCC/2代替。 四.复合管的组成及特点 1.前一个管子c-e极跨接在后一个管子的b-c极间。 2.类型取决于第一只管子的类型。 3.β=β1·β 第六章 集成运算放大电路 一.集成运放电路的基本组成1.输入级----采用差放电路,以减小零漂。 2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。 3.输出级----多采用互补对称电路以提高带负载能力。 4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。 二.长尾差放电路的原理与特点 1.抑制零点漂移的过程---- 当T↑→ iC1、iC2↑→ iE1、iE2 ↑→ uE↑→ uBE1、uBE2↓→ iB1、iB2↓→ iC1、iC2↓。 Re对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。 2静态分析 1) 计算差放电路IC 设UB≈0,则UE=-0.7V,得 2) 计算差放电路UCE 双端输出时 单端输出时(设VT1集电极接RL) 对于VT1: 对于VT2: 3.动态分析 1)差模电压放大倍数 双端输出 单端输出时 从VT1单端输出 : 从VT2单端输出 : 2)差模输入电阻 3)差模输出电阻 双端输出: 单端输出: 三.集成运放的电压传输特性 当uI在+Uim与-Uim之间,运放工作在线性区域 : 四.理想集成运放的参数及分析方法 1.理想集成运放的参数特征 * 开环电压放大倍数 Aod→∞; * 差模输入电阻 Rid→∞; * 输出电阻 Ro→0; * 共模抑制比KCMR→∞; 2.理想集成运放的分析方法 1) 运放工作在线性区: * 电路特征——引入负反馈 * 电路特点——“虚短”和“虚断”: “虚短” --- “虚断” --- 2) 运放工作在非线性区 * 电路特征——开环或引入正反馈 * 电路特点—— 输出电压的两种饱和状态: 当u+>u-时,uo=+Uom 当u+ 两输入端的输入电流为零: i+=i-=0 第七章 放大电路中的反馈 一.反馈概念的建立 *开环放大倍数---A *闭环放大倍数---Af *反馈深度---1+AF *环路增益---AF: 1.当AF>0时,Af下降,这种反馈称为负反馈。 2.当AF=0时,表明反馈效果为零。 3.当AF<0时,Af升高,这种反馈称为正反馈。 4.当AF=-1时,Af→∞ 。放大器处于 “ 自激振荡”状态。 二.反馈的形式和判断 1.反馈的范围----本级或级间。 2.反馈的性质----交流、直流或交直流。 直流通路中存在反馈则为直流反馈,交流通路中存 在反馈则为交流反馈,交、直流通路中都存在反馈 则为交、直流反馈。 3.反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。 (输出短路时反馈消失) 电流反馈:反馈量取样于输出电流。具有稳定输出电流的作用。 (输出短路时反馈不消失) 4.反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电 流形式相叠加。Rs越大反馈效果越好。 反馈信号反馈到输入端) 串联反馈:反馈量与原输入量在输入电路中以电压的形式相叠加。 Rs越小反馈效果越好。 反馈信号反馈到非输入端) 5.反馈极性-----瞬时极性法: (1)假定某输入信号在某瞬时的极性为正(用+表示),并设信号的频率在中频段。 (2)根据该极性,逐级推断出放大电路中各相关点的瞬时极性(升 高用 + 表示,降低用 - 表示)。 (3)确定反馈信号的极性。 (4)根据Xi 与X f的极性,确定净输入信号的大小。Xid 减小为负反 馈;Xid 增大为正反馈。 三.反馈形式的描述方法 某反馈元件引入级间(本级)直流负反馈和交流电压(电流)串 联(并联)负反馈。 四.负反馈对放大电路性能的影响 1.提高放大倍数的稳定性 2.3.扩展频带 4.减小非线性失真及抑制干扰和噪声 5.改变放大电路的输入、输出电阻 *串联负反馈使输入电阻增加1+AF倍 *并联负反馈使输入电阻减小1+AF倍 *电压负反馈使输出电阻减小1+AF倍 *电流负反馈使输出电阻增加1+AF倍 五.自激振荡产生的原因和条件 1.产生自激振荡的原因 附加相移将负反馈转化为正反馈。 2.产生自激振荡的条件 若表示为幅值和相位的条件则为: 第八章 信号的运算与处理 分析依据------ “虚断”和“虚短” 一.基本运算电路 1.反相比例运算电路 R2 =R1//Rf 2.同相比例运算电路 R2=R1//Rf 3.反相求和运算电路 R4=R1//R2//R3//Rf 4.同相求和运算电路 R1//R2//R3//R4=Rf//R5 5.加减运算电路 R1//R2//Rf=R3//R4//R5 二.积分和微分运算电路 1.积分运算 2.微分运算 第九章 信号发生电路 一.正弦波振荡电路的基本概念 1.产生正弦波振荡的条件(人为的直接引入正反馈) 自激振荡的平衡条件 : 即幅值平衡条件: 相位平衡条件: 2.起振条件: 幅值条件 : 相位条件: 3.正弦波振荡器的组成、分类 正弦波振荡器的组成(1) 放大电路-------建立和维持振荡。 (2) 正反馈网络----与放大电路共同满足振荡条件。 (3) 选频网络-------以选择某一频率进行振荡。 (4) 稳幅环节-------使波形幅值稳定,且波形的形状良好。 * 正弦波振荡器的分类 (1) RC振荡器-----振荡频率较低,1M以下; (2) LC振荡器-----振荡频率较高,1M以上; (3) 石英晶体振荡器----振荡频率高且稳定。