第一篇:工程热力学学习感想
前言:工程热力学是以研究热能与其他形式的能量相互转换规律、工质的热力性质及各种热力装置工作情况的分析的一门学科。目前,热力学的研究范围已涉及到化工、空调以及近代的低温、超导、电磁及生物等各个领域。工程热力学属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科。
工程热力学是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科,属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是农业工程类、能源工程类、、电气信息类等专业的主要专业基础课之一。工程热力学是关于热现象的宏观理论,它主要以热力学第一定律、热力学第二定律作为推理的基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。
自然能源的开发和利用更是人类走向繁荣的起点能源开发和利用的程度是生产发展的一个重要标志。能源的开发和利用,不但推动着社会生产力的发展与进步,而且与国民经济发展有着密切的联系。能源是指为人类生产和日常生活提供各种能量和动力的物质资源。迄今为止,自然界中已为人们发现的可被利用的能源主要有风能、水能、太阳能、地热能、海洋潮汐能、核能及燃料的化学能等。在众多能源中,人们从自然能源中获得能量的主要形式是热能。但是长期以来,我们总是以为我国地大物博,资源丰富。然而,我国是世界上人口最多的国家,人均资源水平极低,几乎所有人均资源都低于世界的平均水平,能源的使用已经达到瓶颈的状态,能源利用率低下,污染较严重,因此,运用工程热力学的理论知识,对实际工作中的热力过程和热力循环进行分析,才能提出提高能源利用经济性的具体途径与措施。
大唐吉林发电有限公司坐落在吉林省省会长春市,是中央直接管理的国有独资公司、特大型发电企业中国大唐集团公司投资设立的国有独资公司。2004年9月30日正式登记成立,拥有在役及在建火力、风力发电、热力及煤化工综合利用等企业。其中,火力发电厂两台30万机组,年用煤量300万吨左右。如果发电厂的效率提高1%,那一年即可少用大约3万吨。由于市场供求关系的影响,标煤的价格涨幅不定,以一般标煤价格550元每吨左右,一年大概可节省1650万元。再假想全国所有的电厂都如此,那么节省的数目就应该以亿来计算了。
所以作为一名热能与动力工程专业的学生,扎实地学好工程热力学,才能熟练运用工程热力学的理论知识,对实际工作中的热力过程和热力循环进行分析,提出提高能源利用经济性的具体途径与措施,做到真正的节约能源。
第二篇:热力学总结及学习感想
热
力 学 总 结 及 学习感 想
姓名:刘超
学号:11081020107
专业班级:自动化113班
学习感想
“自1887年,奥斯特瓦尔德(Ostwald)和范特霍夫(van’t Hoff)创办了世界上第一份《物理化学杂志》便标志着物理化学学科的诞生,而经过一个多世纪的发展它亦形成了一门内容十分丰富的学科。(刘国杰 《物理化学导读》 科学出版社)”。虽然这学期对物理化学的学习仅限于第一章的气体、第二章的热力学第一定律、第三章的热力学第二定律,但对于我来说已经足够了,已经有了充足的时间能让我对这门学科进行系统性的认识,掌握对其的学习方法。刚接触物理化学这个名词时对于这门即将学习的学科产生了些许疑问。高中的课程也有过物理、化学,但他们两者之间能有什么联系吗?当时我还真的没有找出答案,感觉这完全是两个不着边的学科。随着学习的深入才发现原来他们两个是紧密相连的,“物理化学是利用物理学的原理和实验方法研究化学理论问题的学科。(刘国杰 《物理化学导读》 科学出版社)”。而数学作为物理学的基础也穿插其中并扮演了十分重要的角色,特别是那一大堆的偏微分公式。这真是一件让人见着就头痛的事,因为前期没有好好学习高数所以要理解这些公式对我来说便显得特别的吃力。为了能跟上老师的节奏只有自己利用课后时间复习高数,但光复习高数是远远不够的。比如对于高中学习过的气体状态方程:pV=nRT,热力学温度与摄氏温度的转换关系:T=(t/℃+273.15)K,两分子间总的作用势能:EE吸引E排斥=-AB +早已忘记其中各个字母所代表的的物理量和含义了。由于其616rr是一个交叉的,覆盖面广的学科,在复习以前知识的同时也要自己去了解课外的知识,并将它们融会贯通。这些也让我逐渐接受了一个观念,夸大了教师在学习上的作用。“关于教与学,向来就有猎枪与干粮,鱼与渔之争,干粮与鱼总有吃尽的时候,而唯有成为渔翁和猎人才有取之不尽的食物,那种把一切都在课堂上讲懂的是不负责任的大学教师,一个孩子总要断奶,教师的作用是释疑,使学生在学习上少走弯路、事半功倍。丢掉幻想,一切靠自己专研、思考和领悟。这犹如没有包治百病的灵丹妙药,根本不可能存在适合任何人的学习方法。(百度文库《物理化学的学习方法》)”。而我们缺乏的正是那种自学、自我思考、领悟的精神,不懂得将所学的知识彼此串联起来。
如今通过对物理化学这门课程的学习,我知道了自学与思考的重要性并开始有意识的培养自己这方面的能力。明白了以前那套死记公式的方法是行不通的,公式并不重要重要的是公式的推导和使用条件及意义。以下就是我对第二章热力学第一定律与第三章热力学第二定律的一些总结。
总结
一、热力学第一定律
定义:“能量有各种各样形式,并能从一种形式转变为另一种形式,但在转变过程中能量的总数量不变,将能量守恒原理应用在以热与功进行能量交换的热力学过程,就称为热力学第一定律。(肖衍繁 《物理化学(环境类)》 天津大学出版社)”。
UQW
若系统变化为无限小量时,上式写成
dUδQδW
规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。
关于系统状态函数的一个重要结论:“系统的状态函数只取决于系统状态,当系统的状态确定后,系统的状态函数就有确定的值;当系统由某一状态变化到另一状态时,系统的状态函数的变化值只取决于始、终两状态,而与系统变化的具体路径无关。(肖衍繁 《物理化学(环境类)》 天津大学出版社)”。
1.焓的定义式
HUpV
焓是状态函数,具有广度性质,并具有能量的量纲,但没有确切的物理意义。
def焓变
(1)HU(pV)
式中(pV)为pV乘积的增量,只有在恒压下(pV)p(V2V1)在数值上等于体积功。
1(2)
UnCv,mdT2
此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
2.热容
定义:在不发生相变化和化学变化的前提下,系统与环境所交换的热与由此引起的温度变化之比称为系统的热容。
Clim(T0defQQ)TdT
由某一温度变化范围内测得的热交换值计算出的热容值,只能是一个平均值,称为平均热容。即(1)定压热容和定容热容
CPCv(2)摩尔定压热容和摩尔定容热容
C—QT
QPdTdT(H(UTT)P)V
QPCp,mCp,mCPCvnn((HmTT)p)v
Um上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
3标准摩尔燃烧焓
定义:在温度为T,参与反应各物质均处在标准下,1mol相的化合物B在纯氧气中氧化反应至指定的稳定产物时,将该反应的标准摩尔反应焓称为化合物B()在温度T时的标准摩尔燃烧焓,用符号cHm表示。
4.标准摩尔反应焓
rHmVBfHm(B,)VBCHm(B,)
式中fHm(B,)及cHm(B,)分别为相态为的物质B的标准摩尔生成焓和标准摩尔燃烧焓。上式适用于=1 mol,在标准状态下的反应。
二、热力学第二定律
关于定义的两种代表性的说法:
克劳修斯说法:“不可能把热从低温物体传到高温物体而不引起其他变化。” 开尔文说法:“不可能从单一热源取出热并使之全部变为功而不引起其他变化。”
1.卡洛循环
定义:热机热机的效率定义为
(恒温膨胀),向低温热源T2放热Q2,同时对外做功(-W)。T1吸收Q1defW Q1即对外做功(-W)占从高温热源吸热Q1的比例。
2熵函数
定义:表示体系中微观粒子混乱度的一个热力学函数。
dSQrT
3.热力学第二定律的数学表达式
SBAABQT
4.亥姆霍兹函数
AUTS
A称为亥姆赫兹函数,它和H一样由状态函数组合得来,显然也是系统的状态函数,也和U、H一样是广度性质。
def5.吉布斯函数
GHTS
在等温等压条件下,一个封闭系统所能做的最大非体积功等于其吉布斯函数的减少。若过程不可逆,则所能做的最大非体积功小于其吉布斯函数的减少;反过来则是环境对系统所做的非体积大于其吉布斯函数的增加。
def6.四个基本公式
dHTdSVdp dASdTpdV
dUTdSpdV dGSdTVdp
其中
UHUA)V()p p()S()T SSVVHGAG v()S()T S()V()P
PPTT T(主要参考文献: 《物理化学导读》 刘国杰 黑恩成编著 科学出版社
《多媒体CAI物理化学》(第四版)傅玉普编著 大连理工大学出版社 《物理化学(环境类)》 肖衍繁编著 天津大学出版社 《物理化学》 刘彬 卢荣主编 华中科技大学出版社
第三篇:工程热力学讲稿
工程热力学讲稿
一、基本知识点
基本要求
理解和掌握工程热力学的研究对象、主要研究内容和研究方法 〃理解热能利用的两种主要方式及其特点 〃了解常用的热能动力转换装置的工作过程
1.什么是工程热力学
从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。电能一一机械能
锅炉一一 烟气 一一 水 一一水蒸气一一(直接利用)供热 锅炉一一 烟气 一一 水 一一水蒸气一一汽轮机一一(间接利用)发电
冰箱一一-(耗能)制冷
2.能源的地位与作用及我国能源面临的主要问题
3.热能及其利用
(1).热能:能量的一种形式
(2).来源:一次能源:以自然形式存在,可利用的能源。如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械
能等。
(3).利用形式:
直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大)
间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程
5.热能利用的方向性及能量的两种属性
过程的方向性:如:由高温传向低温
能量属性:数量属性、,质量属性(即做功能力)
注意:
数量守衡、质量不守衡
提高热能利用率:能源消耗量与国民生产总值成正比。
6.本课程的研究对象及主要内容
研究对象:与热现象有关的能量利用与转换规律的科学。研究内容:
(1).研究能量转换的客观规律,即热力学第一与第二定律。
(2).研究工质的基本热力性质。
(3).研究各种热工设备中的工作过程。
(4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。
7..热力学的研究方法与主要特点
(1)宏观方法:唯现象、总结规律,称经典热力学。
优点:简单、明确、可靠、普遍。
缺点:不能解决热现象的本质。
(2)微观方法:从物质的微观结构与微观运动出发,统计的方法总结规律,称统计热力学。
优点:可解决热现象的本质。缺点:复杂,不直观。
主要特点:三多一广,内容多、概念多、公式多。
联系工程实际面广。条理清楚,推理严格。
二、重点、难点
重点:热能利用的方向性及能量的两种属性
难点:使学生认识到学习本课程的重要性,激发学生的学习兴趣和学习积极性,教会学生掌握专业基础课的学习方法。
四、德育点
〃通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的爱国热情
〃通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性,向学生渗透爱课程、爱专业教育
五、练习与讨论
讨论题:能源与环境、节能的重要性、建筑节能、辩证思维
学习方法:物理概念必须清楚,记住一般公式,注意问题结果的应用。
第四篇:中科大工程热力学
工程热力学 1 绝热热力系:若热力系与外界之间无热量交换,则该热力系称为绝热热力系.平衡状态:若热力系在不受外界的作用下,宏观性质不随时间变化而变化。准静态过程:在热力过程中,热力系的宏观状态始终维持或接近平衡状态。
可逆过程:一个热力过程进行完了以后,如能使热力系沿相同的路径逆行而回复至原态,且相互作用中所涉及到的外界也回复到原态,而不留下任何痕迹。
稳定流动过程:在流动过程中,热力系内部及热力系界面上每一点的所有特性参数都不随时间而变化。
状态参数:用以描述热利系状态的某些宏观物理量称为热力系状态参数。强度参数:与热利系的质量无关,且不可相加的状态参数。热量:通过热力系以外的一切物质,统称外界。压力:单位面积上所受到的指向受力面的垂直作用力。
内能:内能是热力系处于宏观静止状态时系统内所有微观粒子所具有的能量总和。单位质量工质所具有的内能称为比内能。
熵:是表征系统微观粒子无序程度的一个宏观状态参数。
热力学第一定律:热可以转变为功,功也可以变为热。一定量的热消失时,必产生与之数量相当的功;消耗一定量的功时,也必出现相当数量的热。
容积功:在热力过程,由于系统容积改变,使系统与外界交换的功。
推动功:为使某部分工质进出热利系,外界或系统对这部分工质做功,这部分功称为推动功或流动功。即推动功是维持工质流动所必需的最小的功。
技术功:工程上将技术上可以利用的功称为技术功,对开口系统来讲其包括轴功、进出口的宏观动能差和宏观位能差。
热力学第二定律:开尔文说法,只冷却一个热源而连续不断做工的循环发动机是造不成的。克劳修斯说法,热不可能自发的、不负代价的从低温物体传到高温物体。
孤立系统熵增原理:若孤立系所有部分的内部以及彼此间的作用都经历可逆变化,则孤立西的总熵保持不变;若在任一部分内发生不可逆过程或各部分间的相互作用中伴有不可逆性,则其熵必增加。
理想热机:热机内发生的一切热力过程都是可逆过程。卡诺循环:在两个恒温热源间,有两个可逆过程组成的循环。卡诺定理:在两个不同温度的恒温热源间的所有热机,以可逆机的效率最高。
第二类永动机:从单一热源取得热量并使之完全变为机械能而又不引起其他变化的循环发动机。
理想气体:其分子式一些弹性的、不占有体积的质点,且分子间没有相互作用力。比热:单位质量的物体,当其温度变化一度时,物体和外界交换的热量。
定压质量比热:在定压过程中,单位质量的物体,当温度变化一度时,物体和外界交换的热量。
同定容质量比热 定压容积比热 定容质量比热 定压摩尔比热 定容摩尔比热 饱和温度:在一定压力下,当气体两相达到平衡时,液体所具有的温度。饱和压力:当气液两相达到平衡时,蒸汽所具有的压力.饱和液体:两相平衡时的液体.干饱和蒸汽:在一定的压力下,饱和液体完全汽化为蒸汽,蒸汽温度仍为该压力下的饱和温度.湿饱和蒸汽:两相平衡时饱和液体和饱和蒸汽的混合物.过热蒸汽:在一定压力下,蒸汽所具有的温度高于该压力对应的饱和温度.汽化潜热:一定温度下,1千克饱和液体汽化为同温度下的干饱和蒸汽所吸收的热量.临界点:在状态参数坐标图上,饱和液体线与干饱和蒸汽线相交的点.过热蒸汽的过热度:在某一压力下,过热蒸汽的温度与该压力下饱和温度的差值.三相点:物质气,液,固三相共存的状态点.混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值.混合气体的容积成分 混合气体的摩尔成分
混合气体的分压力:混合气体中各组元气体在混合气体温度下单独占有整个容积时,作用于容器壁上的压力.混合气体的分容积:混合气体各组元气体处于混合气体的压力和温度时所单独占的容 工程热力学 2 积.道尔顿分压定律:混合气体的总压力等于各组元气体分压力之和.分容积定律:混合气体的总容积等于各组元气体分容积之和.湿空气;含有水蒸气的空气.未饱和湿空气:由空气和过热水蒸汽组成的湿空气.饱和湿空气:由空气和饱和水蒸气组成的湿空气.绝对湿度(湿空气):单位容积的湿空气中所含水蒸汽的质量.相对湿度(湿空气):湿空气的绝对湿度与同温度下饱和湿空气的绝对湿度之比(湿空气中实际所含的水蒸气量和同温度下饱和湿空气中所能包含的最大水蒸气量之比).湿空气含湿量(比湿度):一定容积的湿空气中水蒸气的质量与干空气质量之比.过热蒸汽:在一定压力下,温度高于该压力对应的饱和温度之蒸汽.过冷蒸汽:在一定压力下,温度低于该压力对应的饱和温度之蒸汽.对比参数:工质的状态与其相应的临界参数之比,如工质压力与其临界压力之比,工质温度与其临界温度之比为对比温度.液体热:将一公斤未饱和水定压加热为饱和水,所需的热量.湿蒸汽干度:一定质量的湿蒸汽中所含干饱和蒸汽的质量与湿蒸汽总质量之比.定温过程:在状态变化时,定量工质温度保持不变的过程.绝热过程:工质和外界没有热交换的过程.定熵过程:在状态变化时,工质熵保持不变的过程(可逆绝热过程).定熵流动:若工质在流动时既与外界无热量交换又无摩擦和扰动,则流动为可逆绝热流动.音速:微弱扰动在连续介质中所产生的纵波的传播速度.当地音速:指当地流动所处状态下的音速.马赫数:工质在流动过程中,某一点的流动与当地音速之比.喷管:使气流压力降低,流速增大的管道.扩压管:使气流流速降低,压力增大的管道.绝热节流:工质在管内绝热流动时,由于通道截面突然缩小,使工质压力降低.绝热滞止:工质在绝热流动中,因遇到障碍物或某种原因而受阻,使速度降低直至为零.活塞式缩机的余隙:为了安置进,排气阀以及避免活塞与汽缸端盖的碰撞,在汽缸端顶与活塞行程终点间留有一定的空隙,称为余隙容积.活塞式压缩机的容积效率:活塞式压气机的有效容积和活塞排量之比。最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比。
压气机的效率:在相同的初态及增压比条件下,可逆压缩机过程中压气机所消耗功与实际不可逆压缩过程中压气机所耗功的功之比。亚音速流动:工质的流动速度小于当地音速。
超音速流动:工质再喷管中流动时,在喷管的最小截面处,若工质的流动速度等于当地音速,则此时工质所处的状态。临界压力比:临界状态时工质压力与滞止压力之比。压气机的增压比:压气机的出口压力与进口压力之比。
平均加热温度:用加热工程中系统与外界交换的热量除以交换该热量时系统熵的改变量所得到的温度。
平均放热温度:用放热过程中系统与外界交换的热量除以交换该热量时系统熵的改变量所得到的温度。
循环热效率:工质完成一个循环时,对外所作的净功与吸热量之比。汽耗率:蒸汽动力循环装置每输出1千瓦小时功量时所消耗的蒸汽量。
相对热效率:某循环的热效率与相同温度范围内卡诺循环热效率之比,称为该循环的相对热效率或充满系数。
制冷系数:制冷循环中,制冷量与循环净功之比。供热系数:供热循环中,供热量与循环净功之比。
制冷量:在每一次制冷循环中,一公斤工质从冷藏室吸收的热量。供热量:在每一次供热循环中,一公斤工质放给暖室的热量。循环净热量:一次循环中系统和外界交换的总热量。循环净功:一次循环中系统和外界交换的总 工程热力学 3 功量。
循环加热量:一次循环中系统从外界吸收的总热量。循环放热量:一次循环中系统放给外界的总热量。
热力循环:工质从某一状态经过一连串的状态变化过程,又回复到原来的状态,这些热力过程的组合就称为热力循环。
热机循环:若循环的结果是工质将外界的热能在一定的条件下连续不断的转变为机械能。制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温。制冷机:从低温冷藏室吸取热量排向大气所用的机械。热泵:将热量由大气传送至高温暖室所用的机械装置。
1、通用气体常数是一个与气体性质和状态均无关的常数,而气体常数是一个和气体性质有关,但与气体所处的状态无关常数,且某种气体的气体常数就等于通用气体常数除以该气体的分子量.2、第一类永动机是指从单一热源取热量并使之完全转变为机械功的循环发动机;而第二类永动机是指不消耗任何能量而连续不断做工的循环发动机.3、冬季供暖时,随着室内空气温度的不断提高,室内空气的相对湿度逐渐降低,空气变得干燥,使人感到不舒服.4、当热力系与外界无能量交换时,热力系内状态是否发生变化将取决于热力系本身的状态.若热力系是平衡热力系,则热力系的状态不发生变化;若热力系是非平衡热力系,则热力系的状态将随时间发生变化.5、焓是状态参数,其大小取决于系统的状态,与系统是否封闭无关.无论何种系统,只要起状态一定,则用来描述状态的宏观物理量就一定存在.6、Q=W+△U不仅适用于封闭热力系,也适用于其他热力系.因为该式揭示了在能量转换过程中内能,容积工和加热量之间的普遍关系.7、容积变化工表达式只适用于可逆过程.技术工使用于任何工质的可逆过程.8、理想气体绝热自由膨胀过程是典型的不可逆过程,过程中比内能会发生变化,但膨胀前后总内能相等.9、熵是状态参数,某一过程中的变化量仅取决于过程的处态和终态,与过程本身无关.10、仅仅已知温度和压力只可确定非饱和区域内水蒸汽的状态,而不确定饱和区域内水蒸汽的状态,因为在饱和区域内温度和压力是互为函数.11、饱和湿空气是干空气于饱和水蒸气的混合物,故干球温度与湿球温度相等,露点是湿空气中水蒸气分压力所对应的饱和温度,由于饱和湿空气中水蒸气是饱和的故水蒸气的分压力为饱和压力.12、比湿度相同的两种湿空气,温度高者,其相对湿度小,吸湿能力强.沸腾状态的水即饱和水,饱和水的温度取决于水的压力,较低的压力对应于较低的饱和温度.13、干饱和蒸汽的比容随饱和温度的升高而降低.湿空气在不增加和减少水蒸气含量的情况下定压冷却,其水蒸气的分压力也不变。湿空气中水蒸气分压力的大小取决于湿空气中水蒸气含量的多少。若水蒸气含量不变,则水蒸气分压力也将不变。
14、对密闭容器内的汽、水混合物不断的加热时,所有的水必将全部转化为水蒸气。该加热过程为湿蒸汽的定容加热过程。随着加热过程的进行,蒸汽的温度和压力将同时增加。若蒸汽温度超过水的临界温度,则所有的水讲全部转化为蒸汽。
15、理想气体进行N=1.3的可逆膨胀过程时,一定会从外界吸收热量。若理想气体是三原子气体,则绝热指数为1.3这是N=1.3的逆膨胀过程的可逆绝热过程,此时气体与外界无热量交换。空气的绝热指数K=1.4,所以当空气进行N=1.3的可逆膨胀时,一定会从外界吸收热量。
16、水从饱和液体定压汽化为干饱和蒸汽,因为汽化过程中温度未变,则该过程中内能的改变量△U=CV△T=0 温度不变只说明水蒸气的内动能不变,而水蒸气的内能包括内动能和内位能。内位能是压力和比容的函数。汽化过程中比容将发生变化,内位能也发生变化,所以内能也发生变化。
17、对湿空气进行冷却一定可以去湿。对湿空气进行冷却,会提高湿空气的相对湿
18、度。能否去湿,关键在于冷却后的空气温度是否低于湿空气中水蒸气的露点温度。若低于露点温度,则可以去湿。19、18、理想气体可逆定温膨胀过程中气体对外所作的膨胀功等于技术功。
20、由于溅缩喷管中气流出口截面上压力最低,此处压力不会低于临界压力,故出口气流速度不能超过当地音速,而缩放喷管中气流出口速度能否大于当地音速,将取决于喷管出口的压力。若出口压力大于临界压力,则出口速度小于当地音速。21、19、流经缩放喷管的气体流量随着背压的降低而不断增加。
22、当背压大于临界压力时,随着背压的降低,气体流量将增加;当背压等于或小于临界压力时,气体流量将达到并保持最大流量。20、溅缩喷管的出口气流速度随着背压的降低而不断增大。
23、对于溅缩喷管,其出口截面处气流压力将大于或等于临界压力,所以出口气流速度将小于或等于当地音速。因此,当背压大于临界压力时,随着背压的降低,气流速度将不断增加,而当背压等于或小于临界压力时,背压降低,出口气流速度降保持当地音速不变。24、21、蒸汽再热循环的首要目的是为了提高气轮机的排气干度。
25、提高蒸汽动力循环热效率的有效发法之一就是提高新蒸汽的初压力。但初压力提高后,会降低气轮机排气干度,导致气轮机相对效率的降低并可能危机气轮机的工作安全。采用再热后,可降低气轮机的排气干度。26、1.有没有4000C的水?
27、答: 00C或-100
28、C的水蒸气?没有因为水的临界温度为374.120C。当物质所具有的温度高于其临界温度是汽化有00C或-100C的水蒸气,当压力低于00C时水的饱和压力或-100C时水的饱和压力,就会出现。2.冬季,室内玻璃窗内侧为何会结霜? 答:冬季,室内外空气温差较大,靠近玻璃窗内侧的室内空气被定压冷却,当空气温度降到大气压力对应的水的饱和温度时,此时空气中的水蒸气达到饱和状态,并开始有水滴从空气中析出,若温度再降低,达到并低于零度,这时从空气中析出的水滴便开始结霜。3.某一理想气体的CP-CV及CP/CV是否在任何温度下均为常数,为什么?
29、答:不是.根据理想气体的迈耶公式CP-CV=R,这里R是气体常数,其值的大小只和气体性质有关,而与气体所处的状态无关,所以CP-CV对某一理想气体而言,在任何温度下均为常数.而由于CP-CV=R,在该式的两边均除以CV,等式为CP/CV=1+R/CV,对于理想气体由于CV是温度的单值函数,所以R/CV也是温度的单值函数,故CP/CV亦是温度的函数.4.在绝热不作外功的稳定流动过程中,流体个截面处的制止参数是否相同? 30、答:对于绝热不作外功的稳定流动过程,其能量方程式为h+1/2C2=常数.所谓制止参数是速度为零时的参数,由能量方程式可见,速度为零时,h=常数,既流体个截面上的制止温度和制止压力也相同;若流体是实际气体,根据流体的性质而定.31、5.多级压缩为什么要用中间冷却器?不用可以吗?为什么?
32、答:多级压缩用中间冷却器目的是,对从低压汽缸出来的压缩气体及时进行冷却,让温度降低到被压缩前的温度,然后再进入高压缸,以减少消耗压缩功.如果不用中间冷却器,让从低压汽缸出来的压缩气体直接进入高压汽缸,就达不到少消耗压缩功的目的.6.什么是回热循环?为什么回热循环能提高蒸汽动力循环的热效率?
33、答:回热是指在热力循环中不同温度水平的工致之间产生的内部传热过程.蒸汽动力的回热循环是指分次从气轮机中抽出一些做过功的蒸汽,用其逐级对锅炉给水加热的热力循环.这样的回热循环也称为分级抽气回热循环.蒸汽动力循环采用回热后,由于锅炉击水可从回热器中吸收一部分热量,使给水温度提高,这样可提高循环平均加热温度,从而提高循环的热效率.34、7、空气压缩制冷为何不像蒸汽压缩制冷那样采用节流阀降压降温,而要采用膨胀机降压膨胀降温?
35、答:蒸汽压缩制冷采用节流阀降压降温,是因为被截流的工质处在饱和区域内,由于饱和温度饱和压力互为函数,因此在节流降压的同时可以降温;而空气压缩制冷的制冷工质空气,在一般使用温度范围内可视为理想气体,而理想气体进节流后,尽管其压力降低,但温度保持不变,所以不能通过节流达
36、到降压降温的目的,因而,对空气压缩制冷必须用膨胀机而不能用节流阀。37、8、热泵供热循环与制冷循环有何异同? 答:热泵循环是通过消耗机械功,从大气中吸收热量,然后将其送入温度高于大气温度的暖室;而制冷循环是通过消耗机械功,从冷藏室吸收热量,然后将其送入大气环境。两者的相同之处在于都是消耗机械功的循环,不同之处在于热泵循环是从大环境吸收热量,而制冷循环是把热量排入大气环境。
9、工质经过一个不可逆循环,能否恢复到原状体?
38、答:能。循环是指工质从某一状态点出发,经过一连串的热力过程又恢复到原状态点的所有热力过程的组合。既然是一个循环就一定能恢复到原状态,与组成循环的过程是否可你没有关系。39、10、容积功、推动功、轴功和技术工的差异何在?相互有无联系?
40、答:在热力过程中,由于系统容积改变,系统与外界交换的工,成为容积功W,如膨胀功和压缩功。为使某部分工质你出热力系,外界或系统必对这部分工质作功,这部分功称为推动功Wf=△Pv。从旋转机械的轴上得到的功,叫做轴功Ws。工程上将技术上可以利用的工称为技术工。对开口系统来讲其包括轴功、进出口的宏观动能差和位能差。
41、Wt=W-△Wf Ws=W-△Wf-1/2mc2-gm△z=Wt-1/2mc2
42、-gm△z
11、渐缩喷管中气流速度能否超过音速?缩放喷管气流出口速度能够低于音速? 答:渐缩喷管中不能。因为对于渐缩喷管无论其出口界面外压力如何低,气流在喷管出口截面出的压力最多只能降低到临界压力,绝不可能降到比临界压力更低的压力。出口外压力进一步降低时,出口截面上压力不可能再继续降低而维持为临界压力,出口截面速度维持在音速而不可能达到超过音速。缩放喷管中气流速度可以低于音速。要使气流出口速度达到或超过音速,气流在喷管中必须要有足够的压力降。若外界提供的压力降减小,无论用何种形式的喷管,出口气流速度也不能达到音速。43、12、为何蒸汽循环不用卡诺循环而用朗肯循环?
44、答:以蒸汽为工质在饱和区域内热机可按卡诺循环工作,但由于下述原因热机不采用:
1、蒸汽临界温度较低,这样就限制了循环加热温度不能很高,使循环热效率较低;
2、汽轮机排气干度较低,使汽轮机相对效率较低,且汽轮机不能安全工作;
3、压缩机耗功大,且压缩两相工质,技术上有很大难度。
13、霉季时,一些冷水官的表面常有水底出现,为什么?
45、答:霉季时,空气中相对湿度较大,即空气中水蒸气含量较多,水蒸汽分压力较高。冷水官表面温度较低,当其温度低于水蒸汽分压力所对应的饱和温度时(露点温度),空气中的水蒸气就变为饱和水蒸气,并有蒸汽凝结为水从空气中析出。46、14、比湿度(含湿量)相同的两种湿空气,温度高者其吸湿能力也强。比湿度相同的两种湿空气,温度高者,其相对湿度小,故吸湿能力强。可从湿空气的函湿土上判断。
15、随着压力的升高,饱和温度也升高了,所以饱和蒸汽的比容将增大。
47、答:错误,干饱和蒸汽的比容岁饱和温度的升高而降低。48、16、对密封容器内的汽、水混合物不断的加热时,所有的水必将全部转化为水蒸气。答:正确 该加热过程为湿蒸汽的定容加热过程。随着加热过程的进行,蒸汽的温度和压力将同时增加。若蒸汽温度超过水的临界温度,则所有的水必将全部转化为蒸汽。
17、空气压缩制冷为何不像蒸汽压缩制冷那样采用节流阀降压降温,而要采用膨胀机降压膨胀降温?
49、答:蒸汽压缩制冷采用节流阀降压降温,是因为被截流的工质处在饱和区域内,由于饱和温度饱和压力互为函数,因此在节流降压的同时可以降温;而空气压缩制冷的制冷工质空气,在一般使用温度范围内可视为理想气体,而理想气体进节流后,尽管其压力降低,但温度保持不变,所以不能通过节流达到降压降温的目的,因而,对空气压缩制冷必须用膨胀机而不能用节流阀。50、18、热泵供热循环与制冷循环有何异同? 答:热泵循环是通过消耗机械功,从大气中吸收热量,然后将其送入温度高于大气温度的暖室;而制冷循环是通过消耗机械功,从冷藏室吸收热量,然后将其送入大气环境。两者的相同之处在于都是消耗机械功的循环,不同之处在于热泵循环是从大环境吸收热量,而制冷循环是把热量排入大气环境。
第五篇:工程热力学报告
工程热力学(2015 秋)课程论文
姓名: 班级: 学号: 日期:
纳米晶材料的热力学函数研究
一、摘要.........................................................................................1
二、纳米晶材料的几何假设...........................................................1
三、界面热力学函数分析...............................................................2
四、内部热力学函数分析...............................................................6
五、整体热力学函数分析...............................................................6
六、总结.........................................................................................6
七、纳米晶材料热力学应用展望....................................................6
一、摘要
纳米晶材料(nanophase material)是具有纳米级超细晶组织的材料。由于超细晶粒(小于100nm)、高的界面体积分数(高达50%)和界面区的原子间距分布较宽,其性能特别是和近邻原子相关联的性能,如力学性能、热学性能、磁学性能,与一般多晶材料或同成分的非晶态材料有很大的差别[1]。本文应用界面膨胀模型[2]并以普适状态[3]为基础对纳米材料的整体的热力学函数计算模型进行了阐述分析,进而对其应用进行了展望。
二、纳米晶材料的几何假设
纳米晶材料中的原子可分为两部分,一部分是位于晶粒内部点阵位置上有序排列的原子,另一部分是位于晶界面上无序或部分有序的原子。假设纳米晶粒子为球形,直径为d,界面厚度为,如图1所示。原子在晶界面区域和晶粒内部的排布密度(原子的空间占据百分数)分别为和。位于晶界面上和晶粒内部的原子个数和可由下式计算:
(1)
(2)
其中:Vb为纳米晶体界面上一个原子所占的体积,V0为平衡状态的原子体积。
所以,晶体面处的原子分数xb为
(3)
其中,rb和r0分别为纳米晶界面处原子的半径和平衡状态时原子的半径。
图1 球形纳米晶粒及表征几何尺寸示意图[4]
为方便表达,设定纯物质纳米晶体的热力学函数为以纳米晶界面处和晶粒内部两部分热力学函数的求和。
三、界面热力学函数分析
Fecht和Wagner提出,纳米晶界面的性质可以通过膨胀晶体的性质来近似考虑,建立了“界面膨胀模型”[2]。由理论分析和计算模拟表明[5],晶界的过剩体积(相对完整晶格)是描述晶体能态最合理的一个参量,它也是晶界的一个主要的结构参量,反映了界面原子体积相对于晶内原子体积的增加量,的定义为:。(其中和分别为完整单晶体和晶界的体积)。在晶界处原子配位结构与完整的晶格不同,通常表现为原子配位距离增大,最近邻原子配位数减少,造成晶界上存在一定的过剩体积,为了便于计算,将晶界上原子配位数的减少视为晶界密度降低,将晶界近似为减少了最近邻原子配位数(即减少了密度)的完整晶体,换言之,将晶界的热力学性能近似为具有相同过剩体积的膨胀晶体的性能,这种膨胀晶体的性能可以根据现有理论进行计算,从而得到晶界的热力学性能近似。[6]由Simth及其合作者发展的普适状态方程[3]定量描述了结合能与晶格常数之间的关系,并以证实,该理论对由纳米晶界面过剩体积所产生的晶内负压给予了很好的解释。
结合“界面膨胀模型”和普适状态方程,以界面上原子的体积V和绝对温度T为变量,纳米晶界面处单位原子的基本热力学函数焓、熵和吉布斯自由能的表达式分别为[1]:
(4)
(5)
(6)式中下标b表示晶界。其中,参量E由下式确定[7]:
(7)为平衡态结合能,可根据线膨胀系数和体弹性模量的关系式[8]计算:
(8)此外,(9)
(10)
其中(9)式中的长度尺度[9]用以表征束缚能曲度的宽度,可由下式得到:
(11)
其中(5)式中的Grflneisen参数是反映晶格振动频率和原子体积之间关系的一个函数,由下式计算[10]:
(12)
根据普式状态方程,晶体中的压力P是原子体积V和温度T的函数[9]:
(13)
(14)
(15)
(16)
以上式子中,CV是恒定体积下的比热,对于单位原子其值约为3kB,kB是Boltzmann常数,TR为参照温度,r0为p=0时平衡态的原子半径,rb是纳米晶界面处原子的半径,B0(TR)和a0(TR)分别为参照温度下,P=0时的体弹性模量和体膨胀系数。
至此,由以上公式可以计算出纳米晶界面的焓、熵和吉布斯自由能,详细的表达式如下:
(17)
(18)
(19)
上式中:
(20)
(21)
(22)
(23)
(24)
(25)
(26)
四、内部热力学函数分析
将纳米晶粒内部晶体的性质等同于粗晶,可以根据块体材料的热力学函数表达式进行计算。由经典热力学理论,完整晶体中原子的自由焓、熵和吉布斯自由能表达式分别为:
(27)(28)(29)
式中下标i表示晶体内部,计算中完整晶体的等压热容(Cp)的数据取决于SGTE热力学数据库。
五、整体热力学函数分析
引入纳米晶界面上的原子分数xb作为权重,整体纳米材料的热力学函数可以表达为:(30)
(31)
(32)
这样就得到了整体纳米材料的热力学函数的表达式。焓、熵和吉布斯自由能是材料热力学研究中重要的参数,材料的制备,反应方向和材料相变的预测以及对复杂化合物及新材料的热力学性质的测定等都可以通过这3个参量的计算而得出,因此上述的计算结果对于纳米材料的研究具有十分重要的指导意义。
六、总结
本文在应用“界面膨胀模型”和普适状态方程研究纳米晶界面热力学特性的基础上,发展了纳米晶整体材料热力学函数的计算模型[4],给出了纳米晶体单相材料的焓、熵、自由能随界面过剩体积、温度以及晶粒尺寸发生变化的明确表达式,由此可以定量预测纳米晶材料发生相变的特征温度和临界尺寸。
七、纳米晶材料热力学应用展望
纳米晶材料的特殊性能是由其化学组成、界面结构以及产生微细组织的制备过程等共同决定的,是与纳米结构和组织形成及转变的热力学和动力学紧密联系的。然而,相对于粗晶的大块多晶体材料,纳米材料的比热值升高、热膨胀系数成倍增大、以及与同成分块体材料具有明显差异的相变特征和相稳定性等特性,因此,应用于块体材料的传统热力学理论不能很好的合理解释纳米晶材料的相变行为[11]。因此发展纳米晶材料的热力学研究具有很重要的意义。
[1] 柯成 主编.金属功能材料词典.北京:冶金工业出版社.1999.第172-173页.[2] Fecht J H.Intrinsic instability and entropy stabilization of Grain boundaries.[J].Phys Rev Lett,1990,65:610-613.[3] Wagner M.Structure and thermodynamic properties of nanocrysralline metals.[J] Phys Rev B,1992,45:635-639.[4] 高金萍,张久兴,宋晓艳,刘雪梅.纳米晶材料热力学函数及其在相变热力学中的应用[A].第五届中国功能材料及其应用学术会议论文集Ⅱ[C].2004 [5]D.Wolf.Phit.Mog.B59(1989),667.[6] 卢柯.金属纳米晶的界面热力学特性.[J].物理学报1995,44;1454.[7] Rose J H,Smith J R,Guinea F, et al.Universal features ofthe equation of state of metals..Phys Rev B.1984
[8] Dugdale J S,Macdonald D K C.The thermal expansion ofsolids..Phys Rev.1959
[9] Vinet P,Smith J R,Ferrante J, et al.Temperature effects onthe universal equation of state of solids..Phys Rev B.1987
[10] Dugdale J S,Macdonald D K C.The thermal expansion ofsolids..Phys Rev.1959
[11] 宋晓艳,张久兴,李乃苗,高金萍,杨克勇,刘雪梅.金属纳米晶和纳米粒子材料热力学特性的模拟计算与实验研究[A].2005年全国计算材料、模拟与图像分析学术会议论文集[C].2005