第一篇:热力学发展史阅读感想
热力学发展史阅读感想
廖瑞杰
(北京航空航天大学 能源与动力工程学院,北京 100191)“热”这一个字伴随着人类的发展,人们对热的本质及热现象的认识经历了一个漫长的、曲折的探索过程。在古代,人们就知道冷与热的差别,能够利用摩擦生热、燃烧、传热、爆炸等热现象,来达到一定的目的。温度对于热力学研究起着至关重要的作用。温度的定义以及测量是热力学的开端,三个热力学基本定律的发现是贯穿热力学发展史的线索。
在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以
水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。
18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。一:热力学第一定律
1.热力学第一定律的文字表述
自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递中能量的数量保持不变。该定律就称为热力学第一定律,也称为能量转换与守恒定律,这一定律也被表示为:第一类永动机(不消耗任何形式的能量而能对外做功的机械)是不能制作出来的。
2.热力学第一定律建立的成因 1)理论——迈尔
迈尔是明确提出“无不能生有”,“有不能变无”的能量守恒与转化思想的第一人。而这理论正是建立热力学第一定律的基础。2)实验——焦耳
由于焦耳精心严谨地进行了热功当量测定等一系列实验,奠定了热力学第一定律的实验基础,得到了人们的认同。
3)一批科学家的不懈努力
亥姆霍兹将能量守恒定律第一次以数学形式提出来,而卡诺、赛贝等人也都有过这方面的见解。正是因为众多科学家的不断努力,才使得热力学第一定律的建立的更加迅速。
二、热力学第二定律的建立
在实际情况中,并不是所有满足热力学第一定律的过程都能实现,比如热不会自动地由低温传向高温,过程具有方向性。这就导致了热力学第二定律的出台。卡洛、克劳修斯、开尔文、玻尔兹曼等科学家为此做了重要贡献。
卡诺定理是尼古拉·卡诺于1824年在《谈谈火的动力和能发动这种动力的机器》中发表的有关热机效率的定理。值得注意的是定理是在热力学第二定律提出20余年前已然提出,从历史角度来说其为热力学第二定律的理论来源。但是卡诺本人给出的证明是在热质说的错误前提下进行的证明,而对于其相对严密的证明需要热力学第二定律。这也就使得克劳修斯和开尔闻等科学家有了“用武之地”,为热力学做出了突出的贡献。
热力学第二定律有几种表述方式:
克劳修斯表述:热量可以自发地从温度高的物体传递到较冷的物体,但不可能自发地从温度低的物体传递到温度高的物体;
开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。或者是第二类永动机无法被制造。
熵表述:随时间进行,一个孤立体系中的熵总是不会减少。
热力学第一、二定律的提出,基本确立了热力学的框架。但是有关物质在低温下的热力学性质和预测化学反应常数方面,还需要差不多半个世纪后斯特提出的热力学第三定律。这也就使得热力学第三定律在热力学中也占据重要的位置。
三、热力学第三定律的建立
1906年,德国物理学家能斯特在研究低温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量除以温度的商)在等温过程中的改变趋于零。”德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。
1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。
四、热力学第零定律
继热力学第一、二、三三大定律后,英国物理学家福勒又提出了第零定律。第零定律和文章开头提到的温度有着密切的关系。他的重要性在于它给出了温度的定义和温度的测量方法。定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。虽然他是最后提出来的,足足比第一、二定律迟了80年,但是他是三大定律的基础,这也就顺理成章的成为了“第零”这个伟大的定律。
与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。
现如今,随着热力学的快速发展,人们对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。单一学科已不能满足热力学发展的需求,这就需要多学科相互渗透,综合研究,理论与实验同时开展,基础研究与技术开发相结合,以促进这一领域更好的发展。
第二篇:工程热力学学习感想
前言:工程热力学是以研究热能与其他形式的能量相互转换规律、工质的热力性质及各种热力装置工作情况的分析的一门学科。目前,热力学的研究范围已涉及到化工、空调以及近代的低温、超导、电磁及生物等各个领域。工程热力学属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科。
工程热力学是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科,属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是农业工程类、能源工程类、、电气信息类等专业的主要专业基础课之一。工程热力学是关于热现象的宏观理论,它主要以热力学第一定律、热力学第二定律作为推理的基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。
自然能源的开发和利用更是人类走向繁荣的起点能源开发和利用的程度是生产发展的一个重要标志。能源的开发和利用,不但推动着社会生产力的发展与进步,而且与国民经济发展有着密切的联系。能源是指为人类生产和日常生活提供各种能量和动力的物质资源。迄今为止,自然界中已为人们发现的可被利用的能源主要有风能、水能、太阳能、地热能、海洋潮汐能、核能及燃料的化学能等。在众多能源中,人们从自然能源中获得能量的主要形式是热能。但是长期以来,我们总是以为我国地大物博,资源丰富。然而,我国是世界上人口最多的国家,人均资源水平极低,几乎所有人均资源都低于世界的平均水平,能源的使用已经达到瓶颈的状态,能源利用率低下,污染较严重,因此,运用工程热力学的理论知识,对实际工作中的热力过程和热力循环进行分析,才能提出提高能源利用经济性的具体途径与措施。
大唐吉林发电有限公司坐落在吉林省省会长春市,是中央直接管理的国有独资公司、特大型发电企业中国大唐集团公司投资设立的国有独资公司。2004年9月30日正式登记成立,拥有在役及在建火力、风力发电、热力及煤化工综合利用等企业。其中,火力发电厂两台30万机组,年用煤量300万吨左右。如果发电厂的效率提高1%,那一年即可少用大约3万吨。由于市场供求关系的影响,标煤的价格涨幅不定,以一般标煤价格550元每吨左右,一年大概可节省1650万元。再假想全国所有的电厂都如此,那么节省的数目就应该以亿来计算了。
所以作为一名热能与动力工程专业的学生,扎实地学好工程热力学,才能熟练运用工程热力学的理论知识,对实际工作中的热力过程和热力循环进行分析,提出提高能源利用经济性的具体途径与措施,做到真正的节约能源。
第三篇:热力学的建立及感想
热力学的建立及感想
热力学第二定律是在能量守恒定律建立后不久建立起来的,它的建立与19世纪20年代卡诺对于热机的研究有着密切的关系。卡诺在探索提高热机效率的研究工作中,抓住了热机的本质,撇开了各种次要因素,抽象出一个仅仅工作于一个高温热源和一个低温热源(冷源)间的理想热机(卡诺热机),他把这样一个热机比拟为水轮机:“我们可以足够确切地把热的动力比之于瀑布……瀑布的动力取决于液体的高度和液体的量;而热的动力同样取决于所用热质的量以及热质的‘下落高度’,即交换热质的两物体之间的温度差。”卡诺所处的时代正是热质说占统治地位的时代,卡诺的这段话也是热质说的反映。现在看起来当然是不对的,但是他得到的结论却是正确的:“单独提供热不足以给出推动力,还必须要冷。没有冷,热将是无用的。”他已经接触到了热力学第二定律的边缘。
英国物理学家开尔文(原名汤姆逊)在研究卡诺和焦耳的工作时,发现了某种不和谐:按照能量守恒定律,热和功应该是等价的,可是按照卡诺的理论,热和功并不是完全相同的,因为功可以完全变成热而不需要任何条件,而热产生功却必须伴随有热向冷的耗散。他在1849年的一篇论文中说:“热的理论需要进行认真改革,必须寻找新的实验事实。”同时代的克劳修斯也认真研究了这些问题,他敏锐地看到不和谐存在于卡诺理论的内部。他指出卡诺理论中关于热产生功必须伴随着热向冷的传递的结论是正确的,而热的量(即热质)不发生变化则是不对的。克劳修斯在1850年发表的论文中提出,在热的理论中,除了能量守恒定律以外,还必须补充另外一条基本定律:“没有某种动力的消耗或其他变化,不可能使热从低温转移到高温。”这条定律后来被称作热力学第二定律。克劳修斯的表述在现代教科书中一般表述为:
不可能把热量从低温物体传到高温物体而不引起其他变化。
第二年(1851年)开尔文提出了热力学第二定律的另一种表述方式,开尔文的表述在现代教科书中一般表述为:
不可能从单一热源吸取热量,使之完全变成有用功而不产生其他影响。
开尔文的表述更直接指出了第二类永动机的不可能性。所谓第二类永动机,是指某些人提出的例如制造一种从海水吸取热量,利用这些热量做功的机器。这种想法,并不违背能量守恒定律,因为它消耗海水的内能。大海是如此广阔,整个海水的温度只要降低一点点,释放出的热量就是天文数字,对于人类来说,海水是取之不尽、用之不竭的能量源泉,因此这类设想中的机器被称为第二类永动机。而从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响,开尔文的说法指出了这是不可能实现的,也就是第二类永动机是不可能实现的。因此热力学第二定律的开尔文表述也可简述为:
第二类永动机是不可能造成的。
克劳修斯和开尔文关于热力学第二定律的表述是完全等价的,他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。这里“不引起其他变化”是很重要的。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。所谓“单一热源”,是指温度均匀并且保持恒定的热源,如果热源的温度不是均匀的,则可以从温度较高处吸收热量,又向温度较低处放出一部分,这就等于工作在两个热源之间了。所谓“不产生其他影响”,是指除了从单一热源吸热,这些热量全部用来做功以外,其他都没有变化。如果没有“不产生其他影响”这个限制,从单一热源吸热而全部转化为功是可以做到的,例如理想气体在等温膨胀过程中,气体从热源吸热而膨胀做功,由于这过程中理想气体保持温度不变,而理想气体又不考虑分子势能,因此气体的内能保持不变,从热源吸收的热量就全部转化成了功,但是这过程中气体的体积膨胀了,因此不符合“不产生其他影响”的条件。下面我们从反面来说明这两种说法的确是等价的:
①如果我们否定克劳修斯的说法,认为热量可以自发地从低温物体B传向高温物体A,见图4-1(a)的示意图,设这个热量为Q,我们再设想有一个卡诺热机,从高温热源A吸取热量Q,一部分转化为有用功W,另一部分Q′传给了低温热源B,这样的整个过程中,高温热源A没有发生变化,相当于只从低温热源B吸收了(Q-Q′)的热量而全部转化为有用功,而不产生其他影响,从而开尔文的说法也就被否定了。
②反过来,如果我们否定了开尔文的说法,认为可以从单一热源A吸取热量,全部转化为有用功而不产生其他影响,见图4-1(b)的示意图,设这部分热量为Q1,做的有用功为W1(Q1-W1),我们再设想这部分有用功是带动一个理想的致冷机工作,它从另一个低温热源B处吸收热量Q2,向热源A放出热量Q1′,则满足Q1′=Q2+W1,而Q1=W1,所以Q1′=Q2+Q1。这样,总的效果相当于从低温热源B处吸收了热量Q。,向高温热源A放出的热量Q1′,在补偿了Q1以后,正好也是Q2,这就等于热量Q。自发地从低温热源B传向了高温热源地并没有发生其他变化,这就否定了克劳修斯的说法。
以上我们从正反两个方面说明了关于热力学第二定律的两种说法是等价的,它们都是关于自然界涉及热现象的宏观过程的进行方向的规律。其实,热力学第二定律还可以有其他很多种不同的表述方式。例如我国有一句成语“覆水难收”,其实是“覆水不收”。脸盆里的水泼到地上,是不可能再收回来的,这也可以看作是热力学第二定律的一种表述形式。广义地讲,只要指明某个方面不可逆过程进行的方向性就可以认为是热力学第二定律的一种表述,因为所有不可逆。
第四篇:热力学总结及学习感想
热
力 学 总 结 及 学习感 想
姓名:刘超
学号:11081020107
专业班级:自动化113班
学习感想
“自1887年,奥斯特瓦尔德(Ostwald)和范特霍夫(van’t Hoff)创办了世界上第一份《物理化学杂志》便标志着物理化学学科的诞生,而经过一个多世纪的发展它亦形成了一门内容十分丰富的学科。(刘国杰 《物理化学导读》 科学出版社)”。虽然这学期对物理化学的学习仅限于第一章的气体、第二章的热力学第一定律、第三章的热力学第二定律,但对于我来说已经足够了,已经有了充足的时间能让我对这门学科进行系统性的认识,掌握对其的学习方法。刚接触物理化学这个名词时对于这门即将学习的学科产生了些许疑问。高中的课程也有过物理、化学,但他们两者之间能有什么联系吗?当时我还真的没有找出答案,感觉这完全是两个不着边的学科。随着学习的深入才发现原来他们两个是紧密相连的,“物理化学是利用物理学的原理和实验方法研究化学理论问题的学科。(刘国杰 《物理化学导读》 科学出版社)”。而数学作为物理学的基础也穿插其中并扮演了十分重要的角色,特别是那一大堆的偏微分公式。这真是一件让人见着就头痛的事,因为前期没有好好学习高数所以要理解这些公式对我来说便显得特别的吃力。为了能跟上老师的节奏只有自己利用课后时间复习高数,但光复习高数是远远不够的。比如对于高中学习过的气体状态方程:pV=nRT,热力学温度与摄氏温度的转换关系:T=(t/℃+273.15)K,两分子间总的作用势能:EE吸引E排斥=-AB +早已忘记其中各个字母所代表的的物理量和含义了。由于其616rr是一个交叉的,覆盖面广的学科,在复习以前知识的同时也要自己去了解课外的知识,并将它们融会贯通。这些也让我逐渐接受了一个观念,夸大了教师在学习上的作用。“关于教与学,向来就有猎枪与干粮,鱼与渔之争,干粮与鱼总有吃尽的时候,而唯有成为渔翁和猎人才有取之不尽的食物,那种把一切都在课堂上讲懂的是不负责任的大学教师,一个孩子总要断奶,教师的作用是释疑,使学生在学习上少走弯路、事半功倍。丢掉幻想,一切靠自己专研、思考和领悟。这犹如没有包治百病的灵丹妙药,根本不可能存在适合任何人的学习方法。(百度文库《物理化学的学习方法》)”。而我们缺乏的正是那种自学、自我思考、领悟的精神,不懂得将所学的知识彼此串联起来。
如今通过对物理化学这门课程的学习,我知道了自学与思考的重要性并开始有意识的培养自己这方面的能力。明白了以前那套死记公式的方法是行不通的,公式并不重要重要的是公式的推导和使用条件及意义。以下就是我对第二章热力学第一定律与第三章热力学第二定律的一些总结。
总结
一、热力学第一定律
定义:“能量有各种各样形式,并能从一种形式转变为另一种形式,但在转变过程中能量的总数量不变,将能量守恒原理应用在以热与功进行能量交换的热力学过程,就称为热力学第一定律。(肖衍繁 《物理化学(环境类)》 天津大学出版社)”。
UQW
若系统变化为无限小量时,上式写成
dUδQδW
规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。
关于系统状态函数的一个重要结论:“系统的状态函数只取决于系统状态,当系统的状态确定后,系统的状态函数就有确定的值;当系统由某一状态变化到另一状态时,系统的状态函数的变化值只取决于始、终两状态,而与系统变化的具体路径无关。(肖衍繁 《物理化学(环境类)》 天津大学出版社)”。
1.焓的定义式
HUpV
焓是状态函数,具有广度性质,并具有能量的量纲,但没有确切的物理意义。
def焓变
(1)HU(pV)
式中(pV)为pV乘积的增量,只有在恒压下(pV)p(V2V1)在数值上等于体积功。
1(2)
UnCv,mdT2
此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
2.热容
定义:在不发生相变化和化学变化的前提下,系统与环境所交换的热与由此引起的温度变化之比称为系统的热容。
Clim(T0defQQ)TdT
由某一温度变化范围内测得的热交换值计算出的热容值,只能是一个平均值,称为平均热容。即(1)定压热容和定容热容
CPCv(2)摩尔定压热容和摩尔定容热容
C—QT
QPdTdT(H(UTT)P)V
QPCp,mCp,mCPCvnn((HmTT)p)v
Um上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
3标准摩尔燃烧焓
定义:在温度为T,参与反应各物质均处在标准下,1mol相的化合物B在纯氧气中氧化反应至指定的稳定产物时,将该反应的标准摩尔反应焓称为化合物B()在温度T时的标准摩尔燃烧焓,用符号cHm表示。
4.标准摩尔反应焓
rHmVBfHm(B,)VBCHm(B,)
式中fHm(B,)及cHm(B,)分别为相态为的物质B的标准摩尔生成焓和标准摩尔燃烧焓。上式适用于=1 mol,在标准状态下的反应。
二、热力学第二定律
关于定义的两种代表性的说法:
克劳修斯说法:“不可能把热从低温物体传到高温物体而不引起其他变化。” 开尔文说法:“不可能从单一热源取出热并使之全部变为功而不引起其他变化。”
1.卡洛循环
定义:热机热机的效率定义为
(恒温膨胀),向低温热源T2放热Q2,同时对外做功(-W)。T1吸收Q1defW Q1即对外做功(-W)占从高温热源吸热Q1的比例。
2熵函数
定义:表示体系中微观粒子混乱度的一个热力学函数。
dSQrT
3.热力学第二定律的数学表达式
SBAABQT
4.亥姆霍兹函数
AUTS
A称为亥姆赫兹函数,它和H一样由状态函数组合得来,显然也是系统的状态函数,也和U、H一样是广度性质。
def5.吉布斯函数
GHTS
在等温等压条件下,一个封闭系统所能做的最大非体积功等于其吉布斯函数的减少。若过程不可逆,则所能做的最大非体积功小于其吉布斯函数的减少;反过来则是环境对系统所做的非体积大于其吉布斯函数的增加。
def6.四个基本公式
dHTdSVdp dASdTpdV
dUTdSpdV dGSdTVdp
其中
UHUA)V()p p()S()T SSVVHGAG v()S()T S()V()P
PPTT T(主要参考文献: 《物理化学导读》 刘国杰 黑恩成编著 科学出版社
《多媒体CAI物理化学》(第四版)傅玉普编著 大连理工大学出版社 《物理化学(环境类)》 肖衍繁编著 天津大学出版社 《物理化学》 刘彬 卢荣主编 华中科技大学出版社
第五篇:航空航天发展史听课感想
航空航天发展史听课感想
这学期,我选修了李成智老师的航空航天发展史,比较详细的了解并学习了国际和国内航空航天事业的发展历程和概况,对航空航天事业的发展有了更深层次的理解,增长了见识,拓宽了视野。
世界航空航天事业的发展有着悠久的历史,早在古代社会,人们就对飞行无限憧憬,模仿鸟类的飞行,制作发明了风筝,制作发明较为简陋的火箭,无一不体现了人类对于飞行梦想和蓝天的追求。在东方,我国的充满智慧的劳动人民发明了风筝,之后风筝随着人类的脚步又传到了欧洲各国,同时我们也发明了火箭,用于的大规模杀伤敌人的利器,还有民间的孔明灯,可以视作热气球发展的鼻祖,甚至还有为飞行献身的,比方说万户,为了实现自己飞行的梦想,将自己置身于绑满火箭的椅子上一飞冲天,以上这些都说明了我国在航空航天的发展上都领先于那个时代。同时西方虽然在早期落后于我们,但是在飞机的产生以及热气球的发展方面作为航空航天做出了巨大的贡献:莱特兄弟的飞机拉开了航空快速发展的巨幕,作为人类历史上第一架动力飞机的设计师,他们为开创现代航空事业做出了不巧的贡献。他们的故事在全世界广为传颂。其次是热气球和空中飞艇的发展,首先是热气球的发展,十八世纪,法国造纸商蒙戈菲尔兄弟因受碎纸屑在火炉中不断升起的启发,用纸袋聚热气作实验,使纸袋能够随着气流不断上升。1783年6月4日,蒙戈菲尔兄弟在里昂安诺内 广场做公开表演,一个圆周为110英尺的模拟气球 升起,飘然飞行了1.5英里。同年9月19日,在巴黎凡尔赛宫前,蒙戈菲尔 兄弟为国王、王后、宫庭大臣及13万巴黎市民进行 了热气球的升空表演。同年11月21日下午,蒙戈菲尔兄弟又在巴黎穆埃特堡进行了世界上第一次载人空中航行,热气球飞行了二十五分钟,在飞越半个巴黎之后降落在意大利广场附近。这次飞行比莱特兄弟的飞机飞行整整早了120年。之后是飞艇的发展,自1900年齐柏林飞艇诞生,尺寸远超空客A380的巨型飞艇曾经牢牢把持着蓝天。飞艇家族经受了战火洗礼,开创了民用航空,同时也暴露出庞大躯壳之下的脆弱。30多年之后,伴随着一场震惊世界的空难,一群巨大的身影向世界缓缓谢幕。可见飞艇本身可以算上一个传奇,同时也可以算的上是一个悲剧,所以对于一个项目我们一定要三思而后行,充分的考虑它的发展的条件,发展前景,以及发展中可能遇到的问题。只有充分的考虑以上问题,才能真正的是一个项目在其发展的过程中保持蓬勃的生命力,使其成为一个成功的足以对后世产生足够积极影响的事物。
对于当代的航空航天发展,可以说是遍地开花,成果颇丰,比如说:火箭的蓬勃发展极大地促进了人类对于太空的探索,人造卫星的发展,使得我们能够更好地认识太空中的事物以及我们的地球,飞机的发展使得人们之间的距离变短,人们飞行的梦想得以实现,同时,飞机在人类社会各个方面的发展也极大地促进了人类文明的进步,比方说在运输方面,在农业方面,在军事方面,都不同程度的提高了人类社会的效率和前进的步伐。同时飞行已经逐渐的贴近百姓,而不是以前富豪贵族独享的奢饰品,首先是私人飞机的普及,滑行伞运动的大力发展,越来越多的人体验到了飞行的快乐。
以下我就集中说一说,我国航空航天的发展,首先是我国的航天事业已经位居世界前列,神舟系列飞船,载人航天计划,嫦娥计划无不体现了在实现古老祖先飞天梦想的道路上,我们迈着坚定有力的步伐向前进。我们的嫦娥计划已经计划向月球发射可返回式的携带样本的无人飞行器,最终也一定会在月球松散的土壤上留下我们中国人的脚印。同时在航空方面的发展,我国也取得了丰硕的成果,首先说 军用机方面,我国的空军力量在近20年内得到了快速发展,从原来的仿制逐渐过渡到自主创新,研发出由自主知识产权的战斗机,而在科技发展的前沿,五代机的研制方面,我国也是走在了世界的前列,歼20歼31都充分的证明了我国航空实力的强大,同时,我们的四代机歼10歼15歼16等较为成熟的机型已经成为我国国土防空的中坚力量,有能力保护我国的天空不受侵犯。
虽然我国在航空航天方面取得了巨大的的成就,但是与世界上的发达国家相比,我们仍然有着很大的差距,尤其是在航空发动机,航空材料等方面尤为需要投入大量的资金和人力去发展完善,而这些重任就落到我们年青一代航空人的身上,我们要继承和发扬老一辈航空人不怕苦不怕累,顽强攻关,努力进取的精神,知识的掌握学科知识和专业知识,积极地培养自己的沟通能力,提高自己的创新意识和能力,为将来为祖国发挥更大的作用,打好坚实的基础。
最后,为老师提一点建议,课堂上可以加入更多的视频资料,这样课堂能够更加生动,还可以增加一些互动的环节,比方说讨论问题自由发言之类的,提高课堂的积极性。