第一篇:冲压模具间隙值的确定
冲压模具等高套筒高度该如何计算
等高套筒安装示意图
冲压模具等高套如何计算,我想看了上面的图以后大家应该都会明白了吧? 什么是等高套?等高套的目的是什么?
先回答是什么是等高套,等高套是等高套筒的简称,按照正规的叫法应该是叫等高套筒的,不过工厂里的师傅们一般习惯称它为等高套。等高套筒,顾名思义,就是指空心的套筒,一套小模具至少也会有十几个等高套,模具太小的话,五六个就够了,同一块模板上所配套的等高套高度必须全部相同,公差最好在正负0.01以内,误差太大的话会很容易造成脱料板卡死脱不开、冲头折断等意外情况发生。
等高套的目的一是把脱料板拉住,免得脱料板掉下来;二是保证脱料的行程,能够使产品顺利从模具上脱下来,以免产生带料、卡料等模具不脱料的悲剧出现。
等高套如果太短的话,可能会导致冲头露出脱料板来,这样的话,料还没压住就开始冲,很容易产生卡料、带料、冲头磨损、产品切边皱等状况出现。等高套如果太长的话,就会导致冲头导正长度不够,很容易造成冲头折断等。所以,一套模具如果需要保证生产顺利的话,准确计算等高套筒的长度也是非常重要的。那么,冲压模具等高套筒的高度该如何计算呢? 计算冲压模具等高套筒的高度,首先要确认脱料板的行程,脱料板行程的计算公式:脱料板的行程=冲头长度-固定板(上夹板)-脱垫板(止挡板)-脱料板+1(mm)到2mm(只要能够保证冲头完全进入脱料板,不露出脱料板就OK啦)。等高套高度= 固定板(上夹板)+脱垫板(止挡板)+行程。
第二篇:冲压模具论文
引言
在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下缩短模具开发周期是值得认真考虑的问题。
模具开发周期包括模具设计、制造、装配与试模等阶段。所阶段出现的问题都会对整个开发周期都有直接的影响,但有些因素的作用是根本的、全局性的。笔者认为,人的因素及设计质量就是这样的因素。因此科龙模具厂采取了项目管理、并行工程及模块化设计等管理上及技术上的措施,以提高员工积极性并改善设计质量,最终目的是在保证质量、成本目标的前提下缩短模具开发周期。
1模具开发的项目管理实施方法
项目管理是一种为了在确定的时间范围内,完成一个既定的项目,通过一定的方式合理地组织有关人员,并有效地管理项目中的所有资源(人员、设备等)与数据,控制项目进度的系统管理方法。
模具之间存在着复杂的约束关系,并且每套模具的开发涉及到较多种岗位、多种设备。因此需要有负责人保证所需生产资源在模具开发过程中能及时到位,因此需要实施项目负责制。另外,项目负责制的实施还便于个人工作考核,有利于调动员工积极性。
模具厂有冲模工程部与塑模工程部。冲模工程部管辖四个项目组,塑模工程部为三个。模具任务分配方式以竞标为主,必要时协商分配。每个项目组设有一个项目经理、约两个设计员、四个工艺师和四个左右的钳工,工艺师包括模具制造工艺与数据编程人员。而其它的各种生产设备及操作员的调度由生产部的调度员统筹安排。如果项目组之间有资源需求的冲突而调度员不能解决时由厂领导仲裁。
厂内员工可通过竞职方式担任项目经理,选拔项目经理有三项标准:(1)了解模具开发的所有工序内容;(2)熟悉模具开发过程中的常见问题及解决方法;(3)有较强的判断和决策能力,善于管理和用人。
项目管理的内容之一就是要确定项目经理应担负的职责。本厂项目经理的职责有:(1)负责组织项目组在厂内竞标、承接新项目;(2)负责与客户交涉,包括确定产品细节、接受客户修改产品设计的要求、反映需要与客户协商才能解决的问题;(3)检查产品的工艺性,如果产品工艺性存在问题,则向客户反馈;(4)制定具体的项目进度计划;(5)负责对承接项目的全过程、全方位的质量控制、进度跟踪及内外协调工作;(6)负责完成组内评审及对重大方案、特殊结构、特殊用途的模具的会审;(7)负责组内成员的工作分配、培训及考核;(8)对组内成员的过失行为负责;(9)负责在组内开展 “四新”技术的应用与技术攻关项目的立项、组织、实施等各项工作;(10)及时解决新模具在维修期内的各项整改及维修。
厂领导根据项目完成的时间、质量与成本考核项目经理。然后由项目经理考核项目组内员工,使责、权、利落实到每一位员工,有效调动了员工积极性并显著减少以前反复出现的问题。模具开发的并行工程实施方案
并行工程是缩短产品开发周期、提高质量与降低成本的有效方法。实施并行工程有助于提高产品设计、制造、装配等多个环节的质量。并行工程的核心是面向制造与装配的设计(DFMA)[1]。在模具开发中实施并行工程就是要进行产品及模具的可制造性与可装配性检查。
笔者为模具厂提出并实施了如图1所示并行工程实施方案。IMAN是基于统一数据库的PDM系统,基于IMAN集成各种CAX及DFX工具,并利用IMAN的工作流模型实现了设计过程的集成。基于统一的产品三维特征模型,设计员利用CAD工具进行模具设计;工艺师利用CAM功能进行数控编程及CAPP进行工艺设计;审核者利用CAE功能进行冲压或注射成型过程模拟,利用DFX工具进行可制造性与可装配性分析。以上工作可以几乎同时进行,而且保证了产品及模具的相关尺寸的统一与安全。这就使审查时重点检查模具的方案和结构。基于统一数据库,各种职能的人可以看到感兴趣的某侧面的信息。
DFMA工具的开发是并行工程的工作重点之一。在以往的DFMA方法研究与系统实现中[2],DFMA工具被动地对CAD输出的产品特征进行评价,而不能在CAD系统产生具体产品特征前即在概念设计阶段加以指导,使CAD系统要经过多次设计―检查―再设计循环才能求得满意解。为此科龙模具厂开发了集成CAD系统的DFMA工具。DFMA的工作过程可分两个阶段。第一阶段是,DFMA输出概念设计方案到CAD,这个方案具有最少的零件数量;第二阶段是,而CAD系统输出设计特征模型,经过特征映射后将制造特征模型输入到DFMA工具进行可制造性与可装配性分析。通过这种途径使DFMA知识库得到尽早利用,为缺乏知识的CAD系统把握方向。
通过对产品与模具的可制造性与可装配性的检查,就从源头消除了后续工序可能遇到的困难,大大减少出现缺陷和返工的可能性。模具的模块化设计方法与系统研究
缩短设计周期并提高设计质量是缩短整个模具开发周期的关键之一。模块化设计就是利用产品零部件在结构及功能上的相似性,而实现产品的标准化与组合化。大量实践表明,模块化设计能有效减少产品设计时间并提高设计质量。因此本文探索在模具设计中运用模块化设计方法。
3.1模具模块化设计的特点
模具的零部件在结构或功能上具有一定的相似性,因而有采用模块化设计方法的条件,但目前模具设计中应用模块化设计方法的研究报道还很少见。与其它种类的机械产品相比,模具的模块化有几项明显特点。
3.1.1模具零件的空间交错问题
模具零件在三维空间上相互交错,因此难于保证模块组合后没有发生空间干涉;难于清晰地进行模块划分。
笔者采取以下办法来克服这个问题:(1)利用Pro/E(或UGII等三维软件)的虚拟装配功能检测干涉;(2)按结构与功能划分相结合。模块划分就是部件划分并抽取共性过程。结构相对独立的部件按结构进行划分,设计出所谓的结构模块;而在空间上离散或结构变化大的部件则按功能划分,设计出所谓的功能模块。这样划分并进行相应的程序开发后,结构模块的结构可由结构参数为主,功能参数为辅简单求得;而对于功能模块,可由功能参数为主,结构参数为辅出发进行推理,在多种多样的结构形式中做出抉择。
3.1.2 凸凹模及某些零部件外形无法预见
某些模具零件(如凸凹模)的形状和尺寸由产品决定因而无法在模块设计时预见到,所以只能按常见形状设计模块(如圆形或矩形的冲头),适用面窄;某些模具零件(如冲压模的工件定位零件)虽然互相配合执行某一功能,但它们的空间布置难寻规律与共性,因此即使按功能划分也不能产生模块。
笔者认为,模块化是部件级的标准化,而零件标准化可视为零件级的模块化。两个级别上的标准化是互相配合的。因此,要开发零件库并纳入模块库,以弥补模块覆盖不全的缺憾。当零件必须逐个构造时,一个齐全的便于使用的零件库对提高效率很有帮助。
3.1.3 模具类型与结构变化多
模具可有不同的工序性质,如落料、冲孔等;有不同的组合方式,如简单模、连续模等;还有不同的结构形式,种类极其繁多。因此,必须找到适当途径,使较少的模块能组合出多种多样模具。
为此,笔者提出了以下方法:(1)在Pro/E(或UGII等三维软件)的参数化设计功能及用户自定义特征功能的基础上进行二次开发,使模块具有较大“可塑性”,能根据不同的输入参数可产生较大的结构变化;(2)分层次设计模块。用户可调用任一层次上的模块,达到了灵活与效率两个目标。使用小模块有灵活多变的优点,但效率低,使用大模块则相反。
3.2 模具模块化设计的实施
为了实施模块化设计,并证明以上方法的可行性,笔者基于Pro/E二次开发,开发出一套模具模块化CAD系统。系统分两大部分:模块库与模块库管理系统。
3.2.1 模块库的建立
模块库的建立有三个步骤:模块划分、构造特征模型和用户自定义特征的生成。标准零件是模块的特例,存在于模块库中。标准零件的定义只需进行后两步骤。
模块划分是模块化设计的第一步。模块划分是否合理,直接影响模块化系统的功能、性能和成本[3]。每一类产品的模块划分都必须经过技术调研并反复论证才能得出划分结果。对于模具而言,功能模块与结构模块是互相包容的。结构模块的在局部范围内可有较大的结构变化,因而它可以包含功能模块;而功能模块的局部结构可能较固定,因而它可以包含结构模块。
模块设计完成后,在Pro/E的零件/装配(Part/Assembly)空间中手工建构所需模块的特征模型,运用Pro/E的用户自定义特征功能,定义模块的两项可变参数:可变尺寸与装配关系,形成用户自定义特征(User-Defined Features,UDFs)。生成用户自定义特征文件(以gph为后缀的文件)后按分组技术取名存储,即完成模块库的建立。
3.2.2 模块库管理系统开发
系统通过两次推理,结构选择推理与模块的自动建模,实现模块的确定。第一次推理得到模块的大致结构,第二次推理最终确定模块的所有参数。通过这种途径实现模块“可塑性”目标。
在结构选择推理中,系统接受用户输入的模块名称、模块的功能参数和结构参数,进行推理,在模块库中求得适用模块的名称。如果不满意该结果,用户可指定模块名称。在这一步所得到的模块仍是不确定的,它缺少尺寸参数、精度、材料特征及装配关系的定义。
在自动建模推理中,系统利用输入的尺寸参数、精度特征、材料特征与装配关系定义,驱动用户自定义特征模型,动态地、自动地将模块特征模型构造出来并自动装配。自动建模函数运用C语言与Pro/E的二次开发工具Pro/TOOLKIT开发而成。UDFs的生成方法及参数驱动实现自动建模的程序见参考文献[4]。
通过模块的调用可迅速完成模具设计。这个系统在本厂应用后了模具设计周期明显缩短。由于在模块设计时认真考虑了模块的质量,因而对模具的质量起基础保证作用。模块库中存放的是相互独立的UDFs文件,因此本系统具有可扩充性。总结
由于采取了上述措施,科龙集团某一新品种空调的模具从设计到验收只需三个月就完成了,按可比工作量计算,开发周期比以前缩短了约1/4,而且模具质量和成本都有所改善,明显增强企业竞争力。
第三篇:冲压模具课程设计
前言
冲压是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。冲压模具在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。冲压模具是冲压生产必不可少的工艺装备,是技术密集型产品。冲压件的质量、生产效率以及生产成本等,与模具设计和制造有直接关系。模具设计与制造技术水平的高低,是衡量一个国家产品制造水平高低的重要标志之一,在很大程度上决定着产品的质量、效益和新产品的开发能力。
我国的冲压模具设计制造能力与市场需要和国际先进水平相比仍有较大差距。这些主要表现在飞行器钣金件、高档轿车和大中型汽车覆盖件模具及高精度冲模方面,无论在设计还是加工工艺和能力方面,都有较大差距。覆盖件模具,具有设计和制造难度大,质量和精度要求高的特点,可代表覆盖件模具的水平。虽然在设计制造方法和手段方面已基本达到了国际水平,模具结构功能方面也接近国际水平,在模具国产化进程中前进了一大步,但在制造质量、精度、制造周期等方面,与国外相比还存在一定的差距。标志冲模技术先进水平的多工位级进模和多功能模具,是我国重点发展的精密模具品种。有代表性的是集机电一体化的铁芯精密自动阀片多功能模具,已基本达到国际水平。
因此我们在学习完《飞机钣金成形原理和工艺》等模具相关基础课程后,安排了模具设计课程设计,以帮助我们掌握模具设计的过程,为以后参加工作打下基础。
设计内容
一、零件的工艺性分析
图1 零件图
1)零件的尺寸精度分析 如图1所示零件图,该零件外形尺寸为R11,19;内孔尺寸为R3,6,均未标注公差,公差等级选用IT14级,则用一般精度的模具即可满足制件的精度要求。
2)零件结构工艺性分析 零件形状简单,适合冲裁成形。
3)制件材料分析 制件材料为45钢,抗剪强度为432~549Mpa,抗拉强度为540~685Mpa,伸长率为16%。适合冲压成形。
综合以上分析,得到最终结论:该制件可以用冲压生产的方式进行生产。但有几点应注意:
1)孔与零件左边缘最近处仅为2mm,在设计模具是应加以注意。2)制件较小,从安全方面考虑,要采取适当的取件方式。
3)有一定批量,应重视模具材料和结构的选择,保证一定的模具寿命。
二、工艺方案的确定
由零件图可知,该制件需落料和冲孔两种冲压工艺,设计模具时可有以下三种方案:
方案一:先落料,再冲孔,采用单工序模生产。方案二:冲孔、落料连续冲压,采用级进模生产。方案三:落料和冲孔复合冲压,采用复合模生产。方案一采用单工序模生产,模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件年产20万件的需求,而且要考虑第二套模具中工序件的定位问题,操作不便。
方案二采用级进模生产,可有效地提高生产效率,但连续模制造和设计难度大,费用高,用于生产该制件达不到经济性要求。
方案三采用复合模生产,亦有很高的生产效率,复合模能在压力机一次行程内,完成落料、冲孔两道工序,所冲压的工件精度较高,不受送料误差影响,能较好的满足该制件内孔与外形同心的要求。
通过对比,故采用方案三,比较适合该零件。
三、模具结构形式的确定
(一)模具类型及卸料方式分析
因制件材料较薄,为了保证制件的平整度,所以采用正装式复合模,即凸凹模安装在上模,这样,从模柄中穿入导杆可以直接把嵌在凸凹模里的废料从刃口中打下,卡在凸凹模凸模刃口上的材料可以用弹性卸料板卸料;冲孔凸模与落料凹模安装于下模,用顶件器带动卸料板顶出制件。
(二)模具定位方式分析
在模具设计中,抛弃了传统的销钉定位,而是把凸凹模和凹模分别在上、下模座定位,上、下模座的定位沉台在制造时是和导柱、导套固定在一起加工完成的,这样保证了上、下模工作零件的同轴度,从而达到保证零件尺寸精度的目的。同时没有使用销钉,也使模具的维修方便了很多,即使多次拆卸也能保证零件的精度不变。
四、工艺设计与计算
(一)制件排样与材料利用率计算
采用单排直排有废料排样,如图2所示。
由文献【1】表3-17查得制件间搭边值a=0.8mm,侧搭边值a1=1mm,则送料步距L=19+0.8=19.8;条料宽度B=22+1+1=24;经计算制件面积S=284.73mm2,一个步距的材料利用率为:
η=S/(BL)×100%=284.73/(24 ×19.8)×100%=59.92%
图2 排样图
由文献【2】表4-1冷轧钢板的尺寸,选板料规格为1200mm×600mm×1mm,剪裁条料时采用横裁法,于是条料尺寸为24mm×600mm。
每板条料数n1=1200/24=50(条);
每条制件数n2=(600-0.8×2)/19.8=30(件); 每块板制件数n3= n1×n2=50×30=1500(件)材料总利用率η=1500×284.73/(1200×600)=59.3﹪
(二)冲压力的计算
冲裁力可按以下公式[1]计算:
F=KLtτ
kp,式中:t—材料厚度(mm); L—冲裁件周长(mm);τ已知K=1.3, t=1 mm;查文献【2】表4-12得τ
kp
kp
--材料抗剪强度(Mpa)。
kp
=432~549,取τ=500;经计算得外形周长L1=67.57mm,内孔周长L2=30.85mm。所以
落料冲裁力 F1= KL1tτ冲孔冲裁力 F2= KL2tτ
kp
=1.3×67.57×500×1=43.92kN =1.3×30.85×500×1=20.05 kN
kp推件力和卸料力可用以下经验公式[ 1]进行估算:
F推件=nK推F F卸料=K卸F 式中:F—冲裁力;n为同时卡塞在凹模内的零件数,一般为3~5;K推—推件力系数;K卸—卸料力系数。查文献【1】表3-15得,K推=0.055,K卸=0.04~0.05,所以
F卸料=K卸F1=0.04×43.92=1.7568 kN F推件=nK推F2=5×0.055×20.05=5.51 kN 由于该制件模具采用弹性卸料装置,所以总冲压力的计算公式为: F总= F1+F2+F卸料+F推件=43.92+20.05+1.7568+5.51=71.24 kN(三)初选压力机
根据总压力71.24 kN,查文献【2】表4-33开式压力机的主要技术参数,初选压力机型号规格为J23-10,其主要参数如下:
公称压力:100 kN 滑块行程:45mm 最大闭合高度:180mm 最大装模高度:145mm 工作台尺寸:370mm×240mm 模柄孔尺寸:∅30mm×55mm(四)计算压力中心
该制件图形较规则,上下对称,故采用解析法求压力中心较为方便。建立如下图所示坐标系。
1x
设压力中心为(x0,y0),因为上下对称,所以y0=0,只需求x0,又因为内孔为轴对称图形,所以只需考虑外形。经计算得L1=15.1mm,L2=52.47mm,x2=3.165, x1=-8。根据合力矩定理得
所以,压力中心为(0.72,0)。
(五)计算凸凹模刃口尺寸
本制件形状简单,可按分别加工方法制造凸、凹模,凸、凹模的制造公差 δp和δp必须满足不等式[ 1]:
δp+δd≤Zmax-Zmin。
根据制件的材料和厚度,由文献【3】表2-14 汽车、拖拉机等行业冲裁模初始双边间隙值,查得 :
Zmax=0.140mm,Zmin=0.100mm;
根据制件的基本尺寸和厚度,由文献【3】表2-19 汽车、拖拉机等行业简单形状制件凸、凹模的制造偏差,查得:
落料部分:凸模-0.020mm,凹模+0.020 冲孔部分:凸模-0.020mm,凹模+0.020 验证制造偏差是否合格:
δp+δd =0.02+0.02=0.04 Zmax-Zmin=0.140-0.100=0.04 所以,δp+δd=Zmax-Zmin=0.04,合格,可以采用该公差值。
由于零件图未注公差,为了降低工作难度,所以在实际生产中按照IT14等级确定制件各尺寸公差,查文献【3】附录一 标准公差数值和表2-17 磨损系数x得:
落料部分:尺寸R11,公差为0.43mm,取x=0.5;
尺寸19,公差为0.52mm,取x=0.5;
冲孔部分:尺寸R3 ,公差为0.25mm,取x=0.5;
尺寸6,公差为0.3mm,取x=0.75。
1)落料 尺寸R
Dd=(Dmax-xΔ
=(11.215-0.5×0.43=
Dp=(Dd-Zmin=(11-0.100= 尺寸 Dd=(Dmax-xΔ=(19.26-0.5×0.52=
Dp=(Dd-Zmin=(19-0.100=
2)冲孔 尺寸R dp=(dmin+xΔ=(2.875+0.5×0.25=
dd=(dp+ Zmin=(3+0.100=
尺寸 dp=(dmin+xΔ=(5.85+0.75×0.3=
dd=(dp+ Zmin
五、模具结构设计
(一)凹模设计
=(6.075+0.100=
因制件形状简单,轮廓近似圆形,且总体尺寸不大,选用整体式圆形凹模较为合理。因制件精度较低,厚度较小,由文献【2】表3-5 冷冲模工作零件的材料及热处理要求,选用9Mn2V为凹模材料。
1)确定凹模厚度H值:由凹模厚度经验公式[4]估算:
H=K1K
2式中,F—冲裁力,N;K1—凹模材料修正系数,合金钢取1,碳素钢取1.3;K2—凹模刃口周边长度修正系数。
本例中冲裁力F=43.92kN;凹模材料为合金钢,故K1取1;凹模刃口周边长度为67.57mm,查文献【4】表3-34凹模刃口周边长度修正系数,得K2=1.12,所以
H=K1K2
=1×1.12×
=19.06mm 2)确定凹模周界尺寸D:根据条料宽度B=24mm,材料厚度t=1mm,由文献【4】表3-33,查得凹模孔壁厚c=22mm。所以 D=2R+2c=22+266mm 由文献【2】表5-45 圆形凹模板尺寸,可查到较为靠近凹模周界尺寸为63mm×20mm,故凹模周界尺寸取为63mm×20mm。其结构图如图3所示。
图3 凹模
(二)其他冲模零件设计
据以上确定的凹模周界尺寸,查文献【2】表5-5 复合模圆形厚凹模典型组合尺寸,可得其他冲模零件的数量、尺寸及主要参数。
1)卸料板 标准编号JB/T7643.5-1994,周界尺寸63mm×8mm,结构图如图4所示。
图4卸料板
2)凸凹模固定板 标准编号JB/T7643.5-1994,周界尺寸63mm×12mm,结构图如图5所示。
图5凸凹模固定板
3)顶件块 非标准件,尺寸根据凸、凹模尺寸确定,结构图如图6所示。
图6顶件块
4)凸凹模
凸凹模采用直通式结构,固定部分简化为圆形,因采用弹压卸料,所以凸凹 模长度按下式[6]计算
L=h1+h2+t+h 式中,h1—凸凹模固定板厚度,mm;h2—卸料板厚度,mm;t—材料厚度,mm;h—增加长度。它包括凸凹模修磨量、凸凹模进入凹模的深度(0.5~1mm)、凸凹模固定板与卸料板之间的安全距离等,一般取10~20mm。
本例中,h1=12mm,h2=8mm,t=1mm,h取14mm,所以凸凹模长度 L=h1+h2+t+h=12+8+1+14=35mm
凸凹模结构图如图7所示。
图7 凸凹模 5)凸模
凸模亦采用直通式,固定部分简化成圆形,长度L=19.5mm,其结构图如图8所示。
图8 凸模
(三)选择模架
由凹模周界尺寸63mm×20mm及模架闭合高度110mm,查文献【2】表5-8滑动导向后侧导柱模架规格,选用后侧导柱模座,其主要参数如下:
上模座 63mm×63mm×25mm(GB/T2855.5-1990); 下模座 63 mm×63mm×30mm(GB/T2855.6-1990); 导柱 16mm×110mm×30mm(GB/T2861.2-1990); 导套 16mm×50mm×23mm(GB/T2861.6-1990)。模架具体结构尺寸,参照文献【5】表4-6后侧导向模柱、表3-38导柱和表3-39导套设计。
(四)模柄设计
本例采用凸缘模柄,尺寸与模柄孔配做。
六、校核压力机安装尺寸
模座外形尺寸为63mm×63mm,闭合高度为110mm,J23-10型压力机工作台尺寸为370mm×240mm,最大闭合高度为180mm,故此压力机能满足要求。
七、绘制装配图
图9 装配图
结束语
钣金冲压成形课程设计是我们在大学期间的一门重要课程,是对我们将理论应用于实践能力的考核。通过这次课程设计我加深了对冲压成形的理解,掌握了模具设计的基本方法,很好地巩固了以前所学的知识,相信对我将来从事工作将有很大帮助。在本设计过程中,各位老师和同学们给予我大量的指导和帮助,在此表示衷心的感谢。
由于个人水平有限,在设计中难免出现错误和不足,还请老师批评指正。
致谢
经过两周的忙碌和工作,本次课程设计终于完成了,作为一个本科生的课程设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的督促指导,以及一起工作的同学们的帮助,想要完成这个设计是很难的。
在这里首先要感谢郭拉凤和张春元老师。他们平日里工作繁多,但在我做课程设计的整个过程中都给予了我悉心的指导。我的装配图较为复杂,但是郭老师仍然细心地纠正图纸中的错误。除了敬佩老师的专业水平外,他们严谨的治学态度和科学的研究精神也是我学习的榜样,并将对我今后的学习和工作产生积极影响。
其次要感谢和我一起作课程设计的谢现龙同学,在本次设计中他给了我极大的帮助。
然后还要感谢大学四年来所有的老师,为我们打下机械专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励。此次课程设计才会顺利完成。
参考文献
【1】翟平.飞机钣金成形原理与工艺.西安:西北工业大学出版社,1995 【2】史铁梁.模具设计指导.北京: 机械工业出版社,2006 【3】孙京杰.冲压模具设计与制造实训教程.北京:化学工业出版社,2009 【4】康俊远.冲压成型技术.北京:北京理工大学出版社.2008 【5】王立人.冲压模设计指导.北京:北京理工大学出版社.2009 【6】李奇涵.冲压成形工艺与模具设计.北京:科学出版社,2007
第四篇:典型冲压模具总体形势的确定和分析毕业论文
典型冲压件模具总体形式确定的分析研究
1.1冲压的概念、特点及应用
冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。
冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。
与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点。主要表现如下。
(1)冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是因为冲压是依靠冲模和冲压设备来完成加工,普通压力机的行程次数为每分钟可达几十次,高速压力要每分钟可达数百次甚至千次以上,而且每次冲压行程就可能得到一个冲件。
(2)冲压时由于模具保证了冲压件的尺寸与形状精度,且一般不破坏冲压件的表面质量,而模具的寿命一般较长,所以冲压的质量稳定,互换性好,具有“一模一样”的特征。
(3)冲压可加工出尺寸范围较大、形状较复杂的零件,如小到钟表的秒表,大到汽车纵梁、覆盖件等,加上冲压时材料的冷变形硬化效应,冲压的强度和刚度均较高。
(4)冲压一般没有切屑碎料生成,材料的消耗较少,且不需其它加热设备,因而是一种省料,节能的加工方法,冲压件的成本较低。
但是,冲压加工所使用的模具一般具有专用性,有时一个复杂零件需要数套模具才能加工成形,且模具 制造的精度高,技术要求高,是技术密集形产品。所以,只有在冲压件生产批量较大的情况下,冲压加工的优点才能充分体现,从而获得较好的经济效益。
冲压地、在现代工业生产中,尤其是大批量生产中应用十分广泛。相当多的工业部门越来越多地采用冲压法加工产品零部件,如汽车、农机、仪器、仪表、电子、航空、航天、家电及轻工等行业。在这些工业部门中,冲压件所占的比重都相当的大,少则60%以上,多则90%以上。不少过去用锻造=铸造和切削加工方法制造的零件,现在大多数也被质量轻、刚度好的冲压件所代替。因此可以说,如果生产中不谅采用冲压工艺,许多工业部门要提高生产效率和产品质量、降低生产成本、快速进行产品更新换代等都是难以实现 的。1.2 冲压的基本工序及模具
由于冲压加工的零件种类繁多,各类零件的形状、尺寸和精度要求又各不相同,因而生产中采用的冲压工艺方法也是多种多样的。概括起来,可分为分离工序和成形工序两大类;分离工序是指使坯料沿一定的轮廓线分离而获得一定形状、尺寸和断面质量的冲压(俗称冲裁件)的工序;成形工序是指使坯料在不破裂的条件下产生塑性变形而获得一定形状和尺寸的冲压件的工序。
上述两类工序,按基本变形方式不同又可分为冲裁、弯曲、拉深和成形四种基本工序,每种基本工序还包含有多种单一工序。
在实际生产中,当冲压件的生产批量较大、尺寸较少而公差要求较小时,若用分散的单一工序来冲压是不经济甚至难于达到要求。这时在工艺上多采用集中的方案,即把两种或两种以上的单一工序集中在一副模具内完成,称为组合的方法不同,又可将其分为复合-级进和复合-级进三种组合方式。
复合冲压——在压力机的一次工作行程中,在模具的同一工位上同时完成两种或两种以上不同单一工序的一种组合方法式。
级进冲压——在压力机上的一次工作行程中,按照一定的顺序在同一模具的不同工位上完面两种或两种以上不同单一工序的一种组合方式。
复合-级进——在一副冲模上包含复合和级进两种方式的组合工序。
冲模的结构类型也很多。通常按工序性质可分为冲裁模、弯曲模、拉深模和成形模等;按工序的组合方式可分为单工序模、复合模和级进模等。但不论何种类型的冲模,都可看成是由上模和下模两部分 组成,上模被固定在压力机工作台或垫板上,是冲模的固定部分。工作时,坯料在下模面上通过定位零件定位,压力机滑块带动上模下压,在模具工作零件(即凸模、凹模)的作用下坯料便产生分离或塑性变形,从而获得所需形状与尺寸的冲件。上模回升时,模具的卸料与出件装置将冲件或废料从凸、凹模上卸下或推、顶出来,以便进行下一次冲压循环。
1.3 冲压技术的现状及发展方向
随着科学技术的不断进步和工业生产的迅速发展,许多新技术、新工艺、新设备、新材料不断涌现,因而促进了冲压技术的不断革新和发展。其主要表现和发展方向如下。(1).冲压成形理论及冲压工艺方面
冲压成形理论的研究是提高冲压技术的基础。目前,国内外对冲压成形理论的研究非常重视,在材料冲压性能研究、冲压成形过程应力应变分析、板料变形规律研究及坯料与模具之间的相互作用研究等方面均取得了较大的进展。特别是随着计算机技术的飞跃发展和塑性变形理论的进一步完善,近年来国内外已开始应用塑性成形过程的计算机模拟技术,即利用有限元(FEM)等有值分析方法模拟金属的塑性成形过程,根据分析结果,设计人员可预测某一工艺方案成形的可行性及可能出现的质量问题,并通过在计算机上选择修改相关参数,可实现工艺及模具的优化设计。这样既节省了昂贵的试模费用,也缩短了制模具周期。
研究推广能提高生产率及产品质量、降低成本和扩大冲压工艺应用范围的各种压新工艺,也是冲压技术的发展方向之一。目前,国内外相继涌现出精密冲压工艺、软模成形工艺、高能高速成形工艺及无模多点成形工艺等精密、高效、经济的冲压新工艺。其中,精密冲裁是提高冲裁件质量的有效方法,它扩大了冲压加工范围,目前精密冲裁加工零件的厚度可达25mm,精度可达IT16~17级;用液体、橡胶、聚氨酯等作柔性凸模或凹模的软模成形工艺,能加工出用普通加工方法难以加工的材料和复杂形状的零件,在特定生产条件下具有明显的经济效果;采用爆炸等高能效成形方法对于加工各种尺寸在、形状复杂、批量小、强度高和精度要求较高的板料零件,具有很重要的实用意义;利用金属材料的超塑性进行超塑成形,可以用一次成形代替多道普通的冲压成形工序,这对于加工形状复杂和大型板料零件具有突出的优越性;无模多点成形工序是用高度可调的凸模群体代替传统模具进行板料曲面成形的一种先进技术,我国已自主设计制造了具有国际领先水平的无模多点成形设备,解决了多点压机成形法,从而可随意改变变形路径与受力状态,提高了材料的成形极限,同时利用反复成形技术可消除材料内残余应力,实现无回弹成形。无模多点成形系统以CAD/CAM/CAE技术为主要手段,能快速经济地实现三维曲面的自动化成形。
(2.)冲模是实现冲压生产的基本条件.在冲模的设计制造上,目前正朝着以下两方面发展:一方面,为了适应高速、自动、精密、安全等大批量现代生产的需要,冲模正向高效率、高精度、高寿命及多工位、多功能方向发展,与此相比适应的新型模具材料及其热处理技术,各种高效、精密、数控自动化的模具加工机床和检测设备以及模具CAD/CAM技术也在迅速发展;另一方面,为了适应产品更新换代和试制或小批量生产的需要,锌基合金冲模、聚氨酯橡胶冲模、薄板冲模、钢带冲模、组合冲模等各种简易冲模及其制造技术也得到了迅速发展。
精密、高效的多工位及多功能级进模和大型复杂的汽车覆盖件冲模代表了现代冲模的技术水平。目前,50个工位以上的级进模进距精度可达到2微米,多功能级进模不仅可以完成冲压全过程,还可完成焊接、装配等工序。我国已能自行设计制造出达到国际水平的精度达2~5微米,进距精度2~3微米,总寿命达1亿次。我国主要汽车模具企业,已能生产成套轿车覆盖件模具,在设计制造方法、手段方面已基本达到了国际水平,但在制造方法手段方面已基本达到了国际水平,模具结构、功能方面也接近国际水平,但在制造质量、精度、制造周期和成本方面与国外相比还存在一定差距。
模具制造技术现代化是模具工业发展的基础。计算机技术、信息技术、自动化技术等先进技术正在不断向传统制造技术渗透、交叉、融合形成了现代模具制造技术。其中高速铣削加工、电火花铣削加工、慢走丝切割加工、精密磨削及抛光技术、数控测量等代表了现代冲模制造的技术水平。高速铣削加工不但具有加工速度高以及良好的加工精度和表面质量(主轴转速一般为15000~40000r/min),加工精度一般可达10微米,最好的表面粗糙度Ra≤1微米),而且与传统切削加工相比具有温升低(工件只升高3摄氏度)、切削力小,因而可加工热敏材料和刚性差的零件,合理选择刀具和切削用量还可实现硬材料(60HRC)加工;电火花铣削加工(又称电火花创成加工)是以高速旋转的简单管状电极作三维或二维轮廓加工(像数控铣一样),因此不再需要制造昂贵的成形电极,如日本三菱公司生产的EDSCAN8E电火花铣削加工机床,配置有电极损耗自动补偿系统、CAD/CAM集成系统、在线自动测量系统和动态仿真系统,体现了当今电火花加工机床的技术水平;慢走丝线切割技术的发展水平已相当高,功能也相当完善,自动化程度已达到无人看管运行的程度,目前切割速度已达到300mm2/min,加工精度可达±1.5微米,表面粗糙度达Ra=01~0.2微米;精度磨削及抛光已开始使用数控成形磨床、数控光学曲线磨床、数控连续轨迹坐标磨床及自动抛光等先进设备和技术;模具加工过程中的检测技术也取得了很大的发展,现在三坐标测量机除了能高精度地测量复杂曲面的数据外,其良好的温度补偿装置、可靠的抗振保护能力、严密的除尘措施及简单操作步骤,使得现场自动化检测成为可能。此外,激光快速成形技术(RPM)与树脂浇注技术在快速经济制模技术中得到了成功的应用。利用RPM技术快速成形三维原型后,通过陶瓷精铸、电弧涂喷、消失模、熔模等技术可快速制造各种成形模。如清华大学开发研制的“M-RPMS-Ⅱ型多功能快速原型制造系统”是我国自主知识产权的世界惟一拥有两种快速成形工艺(分层实体制造SSM和熔融挤压成形MEM)的系统,它基于“模块化技术集成”之概念而设计和制造,具有较好的价格性能比。一汽模具制造公司在以CAD/CAM加工的主模型为基础,采用瑞士汽巴精化的高强度树脂浇注成形的树脂冲模应用在国产轿车试制和小批量生产开辟了新的途径。(3)冲压设备和冲压生产自动化方面
性能良好的冲压设备是提高冲压生产技术水平的基本条件,高精度、高寿命、高效率的冲模需要高精度、高自动化的冲压设备相匹配。为了满足大批量高速生产的需要,目前冲压设备也由单工位、单功能、低速压力机朝着多工位、多功能、高速和数控方向发展,加之机械乃至机器人的大量使用,使冲压生产效率得到大幅度提高,各式各样的冲压自动线和高速自动压力机纷纷投入使用。如在数控四边折弯机中送入板料毛坯后,在计算机程序控制下便可依次完成四边弯曲,从而大幅度提高精度和生产率;在高速自动压力机上冲压电机定转子冲片时,一分钟可冲几百片,并能自动叠成定、转子铁芯,生产效率比普通压力机提高几十倍,材料利用率高达97%;公称压力为250KN的高速压力机的滑块行程次数已达2000次/min以上。在多功能压力机方面,日本田公司生产的2000KN“冲压中心”采用CNC控制,只需5min时间就可完成自动换模、换料和调整工艺参数等工作;美国惠特尼公司生产的CNC金属板材加工中心,在相同的时间内,加工冲压件的数量为普通压力机的4~10倍,并能进行冲孔、分段冲裁、弯曲和拉深等多种作业。
近年来,为了适应市场的激烈竞争,对产品质量的要求越来越高,且其更新换代的周期大为缩短。冲压生产为适应这一新的要求,开发了多种适合不同批量生产的工艺、设备和模具。其中,无需设计专用模具、性能先进的转塔数控多工位压力机、激光切割和成形机、CNC万能折弯机等新设备已投入使用。特别是近几年来在国外已经发展起来、国内亦开始使用的冲压柔性制造单元(FMC)和冲压柔性制造系统(FMS)代表了冲压生产新的发展趋势。FMS系统以数控冲压设备为主体,包括板料、模具、冲压件分类存放系统、自动上料与下料系统,生产过程完全由计算机控制,车间实现24小时无人控制生产。同时,根据不同使用要求,可以完成各种冲压工序,甚至焊接、装配等工序,更换新产品方便迅速,冲压件精度也高。(4)冲压标准化及专业化生产方面
模具的标准化及专业化生产,已得到模具行业和广泛重视。因为冲模属单件小批量生产,冲模零件既具的一定的复杂性和精密性,又具有一定的结构典型性。因此,只有实现了冲模的标准化,才能使冲模和冲模零件的生产实现专业化、商品化,从而降低模具的成本,提高模具的质量和缩短制造周期。目前,国外先进工业国家模具标准化生产程度已达70%~80%,模具厂只需设计制造工作零件,大部分模具零件均从标准件厂购买,使生产率大幅度提高。模具制造厂专业化程度越不定期越高,分工越来越细,如目前有模架厂、顶杆厂、热处理厂等,甚至某些模具厂仅专业化制造某类产品的冲裁模或弯曲模,这样更有利于制造水平的提高和制造周期的缩短。我国冲模标准化与专业化生产近年来也有较大发展,除反映在标准件专业化生产厂家有较多增加外,标准件品种也有扩展,精度亦有提高。但总体情况还满足不了模具工业发展的要求,主要体现在标准化程度还不高(一般在40%以下),标准件的品种和规格较少,大多数标准件厂家未形成规模化生产,标准件质量也还存在较多问题。另外,标准件生产的销售、供货、服务等都还有待于进一步提高。设计要求:设计该零件的冲裁模 冲压件图如下图所示:
+0.250+0.30+0.150+0.200-0.4312±0.2521±0.5288.90-0.5231.5±0.25冲压技术要求: 1.材料:H62 2.材料厚度:4mm 3.生产批量:中批量 4.未注公差:按IT14级确定.2 冲裁件的总体工艺分析
一 冲裁件的工艺性分析
冲裁件的工艺性是指冲裁件对冲裁工艺的适应性。也就是工件在冲裁加工过程中的难易程度
冲裁工艺性好是指能用普通冲裁方法,在模具寿命和生产率较高,成本较低的条件下得到质量合格的冲裁件 包括: 冲裁件的尺寸和形状
冲裁件的尺度精度和表面粗糙度
冲裁材料 冲裁件尺寸标注
冲裁模类型的确定 冲裁顺序的安排
3案例的工艺性分析
1、冲压件工艺分析
零件尺寸精度:υ5-0.01公差为0.03,则是属于IT9级之间,其他未注公差为IT14级。
所以,零件最高精度要求为IT9,因此可用于一般的冲裁,普通冲
+0.02 裁可以达到要求。由于冲裁件没有断面粗糙度的要求,我们不必考虑。
(2)零件结构工艺分析 a、零件结构简单、对称;
b、最小壁厚:孔边距b1=(8.5-5)/2=1.75>1.5t c、无悬臂窄槽b1=4>2t=2.25>2t d、无尖角
e、冲孔Φ5,查表得τ=400~700 Mpa >400Mpa,5>1.3t=1.3
所以,一般冲模可以冲出此孔,无小孔;
f、无圆角。(3)零件材料分析:
45号钢
τ=440~700Mpa
σs=550~700Mpa
δ﹪
所以,45号钢强度较高,塑性和韧性尚好,综上所述:该零件符合冲裁工艺性要求,可以利用普通冲裁加工。
2、工艺方案制定
(1)基本工序:冲孔、落料。(2)工艺方案:
方案一:单工序模,落料模、冲孔模2套模具; 方案二:复合模,落料、冲孔1套模具; 方案三:级进模,冲孔、落料级进模1套模具。
10=14分析3个方案:
a、第一种方案的优点是模具设计、制造简单、周期短,模具结构简单,甚至可以采用标准化得模具成型零件,因此,模具和制件的制造成本均低。但因采用两副模具分别进行落料和冲孔,其冲压生产率低,不能满足该零件中批量生产的要求。
b、第二种方案的优点是冲压的生产效率较高,且制件的平整度较高。但模具结构较第一种方案复杂,因此设计制造周期长,模具成本较高。
c、第三种方案的优点是冲压的生产过程易于实现机械化和自动化,生产效率较高。但模具结构较第一种复杂,因此设计制造周期较长,模具成本较高。
综上分析,以满足制件质量和生产纲领为主要因素,可以得出冲件的精度和平直度较好,生产率较高,操作方便,因此采用复合模进行加工。
3弯曲件总体工艺分析
弯曲件工艺性分析
1.材料分析
如果弯曲件的材料具有足够的塑性,屈强比小,屈服点和弹性模量的比值小,则有利于弯曲成形和工件质量的提高。如软刚、黄铜和铝等材料的弯曲成形性能好。而脆性大的材料,如磷青铜、铍青铜和弹簧钢等,则最小型对弯曲半径大,回弹大,不利于成形。
2.结构分析(1)最小弯曲半径和弯曲件的弯边高度
弯曲半径
弯曲件的弯曲半径不宜小于最小弯曲半径,也不宜过大。因为过大时,受到回弹的影响,弯曲的角度与弯曲半径的精度都不易保证。
弯边高度
弯曲件的弯边高度不宜过小,其值应为hr2t。当h较小时,弯边在模具上支持的长度过小,不容易形成足够的弯矩,很难得到形状准确的工件。若hr2t时,则须先压槽,或增加弯边高度,弯曲后再切掉
(2)预冲工艺孔或切槽
如图45所示,对阶梯形坯料进行局部弯曲时(见图45a),在弯曲线与外形轮廓相一致的情况下,会使根部撕裂或畸变,这时应改变弯曲线的位置(见图45b)。必要时,在弯曲部分与不弯曲部分之间切槽或在弯曲前冲出工艺孔(见图45c、d、e),工艺槽深度A大于弯曲半径,槽宽B大于材料厚度。
(3)弯曲件孔边距离
弯曲有孔的工序件时,如果孔位于弯曲变形区内,则弯曲时孔要变形。为此必须使孔处于变形区之外(见图46)。一般孔边至弯曲半径r中心的距离按料厚确定,即当t2mm时,Lt;当t2mm时,L2t。
如果孔边至弯曲半径r中心的距离过小,为防止弯曲时孔变形,可采取冲凸缘形缺口或月牙槽的措施(见图47a, b)。或在弯曲变形区内冲工艺孔,以转移变形区(见图47c)。
(4)弯曲样的几何形状
弯曲件应尽量设计成对称状,弯曲半径左右一致,以防弯曲变形时坯料受力不均而产生偏移。如果不对称,应增设工艺孔定位(见图48b)。有些带缺口的弯曲件,如图48a所示,若将坯料冲出缺口,弯曲变形时会出现叉口,严重时无法成形,这时应在缺口处留连接带,待弯曲成形后再将连接带切除。
(5)弯曲件的尺寸标注
尺寸标 注对弯曲件的工艺有很大的影响。
例如,图49是弯曲件孔的位置尺寸的三
种标注法。对于第一种标注法,孔的位
图48 增添连接带和定位工艺孔的弯曲件 置精度不受坯料展开长度和回弹的 影响,将大大简化工艺和模具设计。因此在不要求弯曲件有一定装配关系时,应尽量考虑冲压工艺的方便来标注尺寸。图49a可以采用先落料冲孔(复合
工序),然后压弯成形,工艺比较简单。
图49b,c所示的尺寸标注方法,冲孔只能
图49 尺寸标注对弯曲工艺的影响 在压弯成形后进行,这会造成许多不便。
3.弯曲件的尺寸偏差弯曲件的精度
受坯料定位、偏移、翘曲和回弹等因素的影响,弯曲的工序数目越多,精度也越低。对弯曲件的精度要求应合理,一般弯曲件长度的尺寸公差等级在IT13级以下,角度公差大于15′
3拉深件总体工艺分析
① 拉深件底部与直臂间的内R,即凸模的R角应大于(3~5)t;拉深件凸缘与直臂间的内R,即凹模的R角应大于(4~8)t,否则需增加整形工序。
② 拉深件的凸缘直径D与筒内径d应满足公式>d+12t。
③ 在使用条件允许的情况下,拉深件应尽可能采用轴对称回转体零件,且形状力求简化,以便于模具设计与制造。
④ 拉深件的精度一般圆筒件可达IT8~T10级,对于一般异形件可低1~2级
第五篇:冲压模具课程设计说明书(参考)
江苏省自学考试
《冲压工艺与模具设计》
课程设计计算书
设计题目 学生姓名 准考证号 指导老师 成绩评定
周 忠 旺
南京工程学院 二〇一三年 月
南京工程学院《冲压工艺及模具设计》课程设计
目 录
前言
1.设计题目 …………………………………………………………………………………1 2.冲压件工艺分析与计算 2.1 2.2 3.模具结构方案设计与计算 3.1 3.2 4.模具主要零件设计 4.1 4.2 5.装配总图的设计与绘制
5.1 5.2 6.课程设计总结 7.主要参考资料 8.附件(图纸)
(以上目录供参考,可以自动生成目录,最多到三级目录)
南京工程学院《冲压工艺及模具设计》课程设计
前 言
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
拖拉机连接板落料模的设计
(小三号黑体,居中,空一行)
1.设计题目(黑体,四号)
1.1 xxx(二级标题,黑体,小四号)
(正文内容,宋体小四号,行间距1.5倍,以下同)
1.2
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
2.冲压件工艺性分析与计算
2.1分析冲压件工艺性
2.2工艺计算及设计
2.2.1 排样的选择与条料宽度的计算 2.2.2 拉深工序尺寸计算(如果有此工序)2.2.3 其他工艺尺寸计算
2.3确定冲压工艺方案 2.3.1 冲压工序分析 2.3.2 工艺方案的拟定 2.3.3 工艺方案的比较 2.3.4 工艺方案的确定 2.4 工艺文件
(包含冲压工艺卡和冲压工序卡,需作为工艺文件提交检查)
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
3.模具结构方案设计与计算
3.1模具结构方案确定与分析
3.2冲压力计算
(包含冲裁力、弯曲力、拉深力、压边力、卸料力、顶件力等)
3.3冲压设备的选择
3.4卸料机构的设计与计算
3.5推件机构的设计(如有)
3.6压边装置设计(如有)
3.7顶件机构的设计(如有)
3.8 模架的选用(或设计)
(以上条目仅供参考,可以根据所设计模具进行调整)
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
5.设计并绘制装配总图
5.1模具装配总图的设计
5.2 模具结构介绍
5.3模具主要零件名称及材料
5.4模具工作原理
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
6.课程设计总结
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
7.主要参考资料
[1]贾俐俐.冲压工艺与模具设计[M].北京:人民邮电出版社,2009年版 [2] [3]
(6-10个参考资料)
(另起一页)
南京工程学院《冲压工艺及模具设计》课程设计
8.附件
1)xxxx冲压工艺卡; 2)xxxx冲压工序卡; 3)xxxx模具的装配图; 4)xxxx零件图 5)6)
南京工程学院《冲压工艺及模具设计》课程设计
排版说明:
1.页面设置:统一用A4纸打印,页面设置页边距上2.8cm,下2.5cm,左右各2.5cm,装订线位置选择左侧。正文页脚注上页码,页码格式为阿拉伯数字,居右。
2.正文部分:标题四号宋体加粗;正文内容,小四号宋体,所有内容字间距为标准字间距,1.5倍行距;
课程设计工作量要求;1.论文总页码不少于25页(不含附件); 2.装配总图1张(A0或A1图纸一张); 3.主要零件图纸不少于4张(越多越好);
4.工艺文件(冲压工艺卡片和冲压工序卡片)1套; 5.提供打印稿和电子稿;