快速成型技术课程感想 苏飞

时间:2019-05-12 07:57:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《快速成型技术课程感想 苏飞》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《快速成型技术课程感想 苏飞》。

第一篇:快速成型技术课程感想 苏飞

快速成型技术课程感想

三维打印机是快速成型的一种工艺,采用层层堆积的方式分层制作出三维模型,其运行过程类似于传统打印机,只不过传统打印机是把墨水打印到纸质上形成二维的平面图纸,而三维打印机是把液态光敏树脂材料、熔融的塑料丝、石膏粉等材料通过喷射粘结剂或挤出等方式实现层层堆积叠加形成三维实体。这一学期,刘老师为我们开了快速成型课程。刚开始,同学们并不清楚什么是快速成型,在后来的学习中,我们逐渐了解到快速成型是近年来发展起来的一种先进制造技术。快速成形技术20世纪80年代起源于美国,很快发展到日本和欧洲,是近年来制造技术领域的一次重大突破。快速成形是一种基于离散堆积成形思想的数字化成形技术;是CAD、数控技术、激光技术以及材料科学与工程的技术集成。它可以自动、快速地将设计思想物化为具有一定结构和功能的原型或直接制造零部件,从而可对产品设计进行快速评价、修改,以响应市场需求,提高企业的竞争能力。

几节课过后,老师给我们布置了作业,让我们分组讨论方案然后用犀牛建模,最后用三维打印机打印出来。我们组的构想是一款新颖的眼镜,想法是由姜飞提出的,我们都非常支持这一想法,所以就这一方案进行了许多的改善。最终方案确定,拿给老师看,成功通过,我们都非常兴奋。下一步就是犀牛建模了,眼镜草图画起来很容易但是用犀牛建模就不简单了,一些拐角部分的曲面很难一次性的建模成功。我们都很焦急,担心完不成这个作业,最后姜飞提出可以把眼镜分成几个部分来分开建模来降低难度。很好的方法,我们将眼镜劈成三个部分,主体部分和眼架部分。这样一分开之后,思路也清晰了,避免了很多误区。克服了众多困难之后,终于把把眼镜建模完成。一切准备就绪后去工程训练中心打印,不过打印机的速度真的不敢恭维,等了几个小时才将眼镜打印出来,而且中间还出了一些问题。不过庆幸的是最终成功的把眼镜打印了出来。付出终有回报,这么一段时间的努力终于获得了收货。虽然最终打印出来的眼镜仍然有一些问题,但是这毕竟是第一次用三维打印机将自己心中的想法形象的表达出来,心中的喜悦之情于言表。也正是这一次作业,同学们切身感觉到了三维打印这一技术的便利性,低成本,高效率的吧心中的想法变成现实。

虽然这一次的快速成型课程很快就结束了,但是它带我们的确很多很多,科学技术是第一生产力,憧憬着未来能打印世界打印未来。

第二篇:快速成型技术复习重点

1.快速成型:简称RP,即将计算机辅助设计CAD计算机辅助制造CAM计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。.

快速成形技术全过程步骤:a.前处理b.分层叠加成型c.后处理 快速成形制造流程:CAD模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型 2. 什么是快速模具制造技术?该技术有何特点? 快速模具制造就是以快速成形技术制造的快速成型零件为母模,采用直接或间接的方法实现硅胶模、金属模、陶瓷模等模具的快速制造从而形成新产品的小批量制造,降低新产品的开发成本。特点:制模周期短、工艺简单、易于推广,制模成本低,精度和寿命都能满足特定的功能需要,综合经济效益好,特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产

LOM涂布工艺

采用薄片型材料,如纸 塑料薄膜 金属箔等,通过计算机控制激光束,按模型每一层的内外轮廓线切割薄片材料,得到该层的平面轮廓形状,然后逐层堆积成零件原型。

SLS技术(选择性激光烧结成型技术)利用粉末材料如金属粉末 非金属粉末,采用激光照射的烧结原理,在计算机控制下进行层层堆积,最终加工制作成所需的模型或产品。4. 快速成形与传统制造方法的区别?

传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。

硅胶模及制作方法 硅胶模具是制作工艺品的专用模具胶。

制作工艺 原型表面处理 制作型框和固定型框 硅橡胶计量,混合并真空脱泡 硅橡胶浇注及固化 拆除型框,刀剖并取出原型 7.构造三维模型的主要方法:a应用计算机三维设计软件,根据产品的要求设计三维模型b应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型c防制产品时,应用反求设备和反求软件,得到产品的三维模型d利用网络将用户设计好的三维模型直接传输到快速成形工作站 光固化快速成形(SLA)有那几种形式的支撑?

a.角板支撑b.投射特征边支撑c.单臂板支撑d.臂板结构支撑e.柱形支撑

6.目前比较成熟的快速成型技术有哪几种?它们的成型原理上分别是什么?

液态光固化聚合物选择性固化成形简称SLA,粉末材料选择性烧结成形简称SLS,薄型材料选择性切割成形简称LOM,丝状材料选择性熔覆成形简称FDM

⑦SLA原理:1利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;2当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;3激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;4重复2、3步,至整个零件原型制造完毕。『或SLA是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(λ=325nm)和功率(P=30mW)的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也从液态转变成固态』

⑦SLS原理: 1在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;2成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;3激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;4第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型 FDM原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作X—Y平面运动和高度Z方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。

LOM:LOM快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。热黏压机构将一层层成形材料粘合在一起。可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。b 原型制件过程

模型剖分 基底制作原型制作 余料,废料去除 后继处理

8.哪些成形方法需要支撑材料?为什么?

SLA、FDM需要制作支撑,LOM、SLS不需要制作支撑。原因:在SLA成形过程中为了确保制件的每一部分可靠固定,同时减少制件的翘曲变形,仅靠调整制件参数远不能达到目的,必须设计并在加工中制作一些柱状或筋状的支撑结构;LOM:工件外框与截面轮廓间的多余材料在加工中起到支撑作用,故不需支撑材料;SLS:未烧结的松散粉末可以作为自然支撑,故不需要支撑材料。

10.常用的快速成形技术所用的成形材料分别是什么?分别有什么要求?

SLA:材料为光固化树脂。要求:a.成形材料易于固化,且成形后具有一定的粘接强度b.成形材料的粘度不能太高,以保证加工层平整并减少液体流平时间c.成形材料本身的热影响区小,收缩应力小d.成形材料对光有一定的透过深度,以获得具有一定固化深度的曾片。

SLS:材料为所有受热后能相互粘结的粉末材料或表面覆有热塑(固)性黏结剂的粉末。要求:a.具有良好的烧结成形性能,即无需特殊工艺即可快速精确地成形原理b.对直接用作功能零件或模具的原型,其力学性能和物理性能要满足使用要求c.当原型间接使用时,要有利于快速、方便的后续处理和加工工艺。

LOM:薄层材料多为纸材,黏结剂一般多为热熔胶。对纸材要求:a.抗湿性b.良好的浸润性c.收缩率小d.一定的抗拉强度e.剥离性能好f.易打磨g.稳定性好。对热熔胶的要求:a.良好的热熔冷固性b.在反复熔化-固化条件下,具有较好的物理化学稳定性c.熔融状态下与纸材具有良好的涂挂性与涂匀性d.与纸具有足够的粘结强度e.良好的废料分离性能 FDM:材料为丝状热塑性材料。材料要求:a.黏度低b.熔融温度低c.黏结性要好d.收缩率对温度不能太敏感 11.这四种快速成形技术的优缺点分别是什么?

SLA优点:技术成熟应用广泛,成形速度快精度高,能量低。缺点:工艺复杂,需要支撑结构,材料种类有限,激光器寿命短原材料价格高。

SLS优点:不需要支撑结构,材料利用率高,选用的材料的力学性能比较好,材料价格便宜,无气味。缺点:能量高,表面粗糙,成形原型疏松多孔,对某些材料需要单独处理。LOM优点:对实心部分大的物体成形速度快,支撑结构自动的包含在层面制造中,低的内应力和扭曲,同一物体中可包含多种材料和颜色。缺点:能量高,对内部空腔中的支撑物需要清理,材料利用率低,废料剥离困难,可能发生翘曲 FDM优点:成形速度快,材料利用率高,能量低,物体中可包含多种材料和颜色。缺点:表面光洁度低,粗糙。选用材料仅限于低熔点的材料。

12.主要快速成形系统选用原则:A:成形件的用途(a检查并核实形状、尺寸用的样品b性能考核用的样品c模具d小批量和特殊复杂零件的直接生产e新材料的研究)B:成形件的形状C:成形件的尺寸大小D成本(a设备购置成本b设备运行成本c人工成本)E技术服务(a保修期b软件的升级换代c技术研发力量)F用户环境

13.快速成形的全处理主要包括:CAD三维模型的构建、CAD三维模型STL格式化以及三维模型的切片处理等

14.在快速成型的前处理阶段为什么要把三维模型转化为STL文件格式?STL格式文件的规则和常见错误有哪些? 由于产品上有一些不规则的自由曲面,为方便的获得曲面每部分的坐标信息,加工前必须对其进行近似处理,此近似处理的三维模型文件即为STL格式文件

规则:a共顶点规则b取向规则c取值规则d合法实体规则 常见错误:a出现违反共顶点规则的三角形b出现违反取向规则的三角形c出现错误的裂缝或孔洞d三角形过多或过少e微小特征遗漏或出错

分析SLS SLA FOM LOM 质量及精度的影响因素及解决措施

从快速成型三个过程讨论

首先是前处理,四大成型工艺前处理工作基本相似,模型建立和切片。影响精度主要是切片,厚度越厚,叠加后工件侧面的台阶缺陷越明显,厚度越小,精度越高

SLA 1 树脂收缩及原因

树脂会发生收缩 导致零件成型过程中产生变形:翘曲

收缩原因;固化收缩和温度变化的热胀冷缩机器误差

设备自身精度所带来的误差 加工参数设置误差

激光功率 扫描速度 扫描间距设置误差 FDM 1 设备精度误差 由于设备自身有一定的加工范围以及其加工精度,对最后加工工件有一定的误差 2 成型过程的误差a 不一致约束 由于相邻两层的轮廓有所不同 成型轨迹也不同 每层都要受到相邻层的约束 导致内应力 从而产生翘曲 b 成型功率控制不当 功率过大 会导致刮破前一层 同时会烧纸 机器寿命降低 过小 粘结不好c工艺参数不稳定

会导致层与层制件或同层不同位置成型状况的差异 从而导致翘曲 或度不均

SLS 主要是激光的参数 1 激光功率密度过大 扫描速度过小 则局部温度过高 导致粉末气化 烧结表面凹凸不平反之 则粉末烧结不充分甚至不能烧结 建立的制件强度低或者不能成行 2 激光束扫描间距与激光束半径配合会影响激光烧结的质量

LOM 过程中误差造成的缺陷 1 喷头起停误差 2 路间缺陷 解决方法 控制相邻路间的粘结温度使得接触牢固 控制材料的横向流动填补空洞

后处理影响精度主要有 人为修整带来的缺陷 有支持结构的成型工艺在除去支付结构时对工件表面的破坏等

第三篇:快速成型技术及应用学习心得

《快速成型技术及应用》学习心得

对于本学期黄老师的《快速成型技术及应用》学习心得,主要从RP技术的应用现状和发展趋势、主要的RP成型工艺分析和RP技术在当代模具制造行业的应用三个方面进行说明:

一、RP技术的应用现状与发展趋势

快速成型(Rapid Prototyping)技术是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。

目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。

RP技术虽然有其巨大的优越性,但是也有它的局限性,由于可成型材料有限,零件精度低,表面粗糙度高,原型零件的物理性能较差,成型机的价格较高,运行制作的成本高等,所以在一定程度上成为该技术的推广普及的瓶颈。从目前国内外RP 技术的研究和应用状况来看,快速成型技术的进一步研究和开发的方向主要表现在以下几个方面:

(1)大力改善现行快速成型制作机的制作精度、可靠性和制作能力,提高生产效率,缩短制作周期。尤其是提高成型件的表面质量、力学和物理性能,为进一步进行模具加工和功能试验提供平台。

(2)开发性能更好的快速成型材料。材料的性能既要利于原型加工,又要具有较好的后续加工性能,还要满足对强度和刚度等不同的要求。

(3)提高RP 系统的加工速度和开拓并行制造的工艺方法。目前即使是最快的快速成型机也难以完成象注塑和压铸成型的快速大批量生产。

(4)RPM 与CAD、CAM、CAPP、CAE 以及高精度自动测量、逆向工程的集成一体化。该项技术可以大大提高新产品的第一次投入市场就十分成功的可能性,也可以快速实现反求工程。

(5)研制新的快速成型方法和工艺。除了目前SLA、LOM、SLS、FDM 外,直接金属成型工艺将是以后的发展焦点。

二、几种常见RP工艺

1、FDM,丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料ABS、聚碳酸酯PC等)加热熔化进而堆积成型方法,简称FDM。

2、SLA,光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,是最早出现的一种快速成型技术。

3、SLS,粉末材料选择性烧结(Selected Laser Sintering)是一种快速原型工艺,简称SLS。粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉等与粘结剂的混合粉)进行选择性烧结,是一种由离散点一层层堆集成三维实体的快速成型方法。

4、LOM,箔材叠层实体制作(Laminated Object Manufacturing)快速原型技术是薄片材料叠加工艺,简称LOM。箔材叠层实体制作是根据三维CAD模型每个截面的轮廓线,在计算机控制下,发出控制激光切割系统的指令,使切割头作X和Y方向的移动,最后叠加成型。

三、RP技术在模具制造中的应用

传统的模具制造方法可分为两种,一种是借助母模翻制模具,另一种就是用数控机床直接制造模具。在新产品开发过程中,减少模具制造所需成本和时间对缩短整个产品开发时间及降低成本是最有效的步骤,快速成型技术的一个飞跃就是进入模具制造领域,其潜力所在正是能降低模具制造成本并减少模具开发时间。将快速成型技术引入模具制造过程后的模具开发制造就是快速模具制造。

快速成型技术在模具制造领域的应用主要是用来制作模具设计制造过程中所用的母模,有时也用快速成型技术直接制造模具。因此可以将基于RP的快速模具制造分为两类,即:直接制模法和间接制模法。(这里就不一一阐述了)

利用RP 技术发展快速模具制造技术还存在以下主要问题需要解决或者说需要进一步提高。

(1)表面质量如何满足模具的要求,否则无法承受如注射成型这样的高压。分层制造法不可避免会产生台阶,斜面时更严重,后处理是目前通用的作法。

(2)尺寸精度如何满足模具制造的要求,尤其是制造较大模具时,尺寸更不稳定。

(3)用作母模时的强度,耐热和耐腐蚀性,形状和尺寸的时效问题。

(4)塑料或树脂类模具的导热性很差,导热差虽然带来了可用较低注射压力的好处,但生产周期太长也必须考虑。

(5)多数所谓金属模具都需要最后渗铜,这就造成这种金属模具的使用温度不可太高,可能超过500 ℃就不行了。

(6)使用寿命的进一步延长和使用成本的进一步降低。

(7)目前所能制造的模具的体积都很小,怎样制造大型模具?

(8)受不可缺少的后处理工序的限制,目前还不能制造具有很小细节特征的模具,尤其是具有内凹形状的模具。

(9)目前快速成型方法所能成型的材料种类及其有限,需要开发新型材料。

第四篇:3D打印快速成型技术

特种加工论文

题目3D打印快速成型技术

姓名 专业 班级 学号

3D打印快速成型技术

摘要:

本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。

关键词:特种加工技术,3D打印快速成型,特点,应用。

Abstract:

This article mainly introduced the special processing of 3 d printing rapid prototyping technology, introduces its processing principle, and analyzes its characteristics, processing methods, and then explain the main application in practical production and the development direction.Key words:Special processing technology, 3 d printing rapid prototyping, characteristics, application.一、引言

3D打印(3D PRINTING)即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。

3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。

自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。

二、打印系统的工作原理

3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系统以平面加工方式,有序地连续加工出每个薄层,并使它们自动粘接而成型,从而制造出所需产品的实物样件或成品,这就是材料的堆积过程。已知自由曲面CAD模型,如果使用传统的方法和数控机床进行加工,那么复杂的自由曲面,成本高,效率低。近年来,3D打印即广泛的被运用于工业生产中。各种3D打印技术的过程都包括CAD模型建立、生成STL文件格式、3D打印制作、模型分层切片和后置处理五个步骤。

三、打印过程

(1)三维设计

三维打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区成逐层的截面,即切片,从而指导打印机逐层打印。

设计软件和打印机之间协作的标准文件格式是STL文件格式。一个STL文件使用三角面来近似模拟物体的表面。三角面越小其生成的表面分辨率越高。PLY是一种通过扫描产生的三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。(2)切片处理

打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。

打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex 系列还有三维 Systems' ProJet 系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。

传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。(3)完成打印

三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。

四、打印造型法主要种类

(1)利用激光固化树脂材料的光造型法(Stereolithography)。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层薄片的高度,以固化的树脂薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢粘结在前一层上,如此重复不已,直到整个产品成型完毕。最后升降台升出液体树脂表面,取出工件,进行清洗、去处支撑、二次固化以及表面光洁处理等。激光立体造型制造精度目前可达±0.1mm,主要用作为产品提供样品和实验模型。光敏树脂选择性固化快速成型技术适合于制作中小形工件,能直接得到树脂或类似工程塑料的产品。主要用于概念模型的原型制作,或用来做简单装配检验和工艺规划。

(2)粉末材料选择性烧结(Selected Laser Sintering)是一种快速原型工艺,简称SLS。

粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉等与粘结剂的混合粉)进行选择性烧结,是一种由离散点一层层堆集成三维实体的快速成型方法。粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉、陶瓷与粘结剂的混合粉、金属与粘结剂的混合粉等)进行选择性烧结,是一种由离散点一层层对集成三维实体的工艺方法。

在开始加工之前,先将充有氮气的工作室升温,并保持在粉末的熔点一下。成型时,送料筒上升,铺粉滚筒移动,先在工作平台上铺一层粉末材料,然后激光束在计算机控制下按照截面轮廓对实心部分所在的粉末进行烧结,使粉末溶化继而形成一层固体轮廓。第一层烧结完成后,工作台下降一截面层的高度,在铺上一层粉末,进行下一层烧结,如此循环,形成三维的原型零件。最后经过5-10小时冷却,即可从粉末缸中取出零件。未经烧结的粉末能承托正在烧结的工件,当烧结工序完成后,取出零件。粉末材料选择性烧结工艺适合成型中小件,能直接的到塑料、陶瓷或金属零件,零件的翘曲变形比液态光敏树脂选择性固化工艺要小。但这种工艺仍需对整个截面进行扫描和烧结,加上工作室需要升温和冷却,成型时间较长。此外,由于受到粉末颗粒大小及激光点的限制,零件的表面一般呈多孔性。在烧结陶瓷、金属与粘结剂的混合粉并得到原型零件后,须将它置于加热炉中,烧掉其中的粘结剂,并在孔隙中渗入填充物,其后处理复杂。粉末材料选择性烧结快速原型工艺适合于产品设计的可视化表现和制作功能测试零件。由于它可采用各种不同成分的金属粉末进行烧结、进行渗铜等后处理,因而其制成的产品可具有与金属零件相近的机械性能,但由于成型表面较粗糙,渗铜等工艺复杂,所以有待进一步提高。

(3)熔融造型法熔融造型法(FDM)。工作时直接由计算机控制。喷头挤出热塑材料并按照层面几何信息逐层由下而上制作出实体模型。FDM技术的最大特点是速度快(一般模型仅需几小时即可成型)、无污染,在原型开发和精铸蜡模等方面得到广泛应用。FDM生产可选成型材料种类较多,原材料费用低,因而的到广泛的应用。但是FDM也有其固有的缺点。精度低,热融制造中很难控制精度,难以制造结构复杂的构件,且材料的制造是处于熔点附近,因而构件的强度小,也不适合制造大型的制件,这些特点都限制了FDM的应用范围。

(4)热可塑造型法(SLS)。该方法是用2CO激光熔融烧结树脂粉末的方式制作样件。工作时,由2CO激光器发出的光束在计算机控制下,根据几何形体各层横截面的几何信息对材料粉末进行扫描,激光扫描处粉末熔化并凝固在一起。然后,铺上一层新粉末,再用激光扫描烧结,如此反复,直至制成所需样件。

五、3D打印制造特点

3D打印技术突破了“毛坯→切削→加工品”传统的零件加工模式,开创了不用刀具制作零件的先河,是一种利用的薄层叠加的加工方法。与传统的切削加工方法相比,3D打印加工至少具有以下特点:

(1)可迅速制造出具有自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,这些利用传统工艺很难加工的,从而大大降低了新产品的开发成本和开发周期。在时间尤其重要的今天,它可以为企业节省大量的研发时间。

(2)它属于非接触加工,不需要切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。只需要一套特定的设备,工序简单,没有传统加工的烦琐的工序。传统的加工中每一个工序都需要机床等复杂加工设备,且加工过程复杂,对操作人员的技术要求很高。

(3)无振动、噪声和切削废料。可以为企业节省宝贵的试制原料,简化生产。传统的制造中由于多是机械制造,噪音较大。且加工时边角料多。造成资源的浪费。

(4)可实现完全自动化生产。操作可以由电脑控制,无需人的过多干预。真正实现了自动化。

(5)加工效率高,能快速制作出产品实体模。精度高,生产的产品质量好。(6)3D打印技术在产品开发中的关键作用和重要意义是很明显的,它不受复杂形状的限制,可迅速地将示于计算机屏幕上的设计变为进一步评估的实物。根据原型,可对设计的正确性、造型的合理性、可装配性和干涉性,进行具体的检验。通过原型的检验可使开发产品中的风险减到最底的限度。

六、主要限制因素

(1)材料限制:虽然高端工业印刷可以实现塑料、某些金属或者陶瓷打印,但无法实现打印的材料都是比较昂贵和稀缺的。另外,打印机也还没有达到成熟的水平,无法支持日常生活中所接触到的各种各样的材料。虽然研究者们在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。

(2)机器限制:3D打印技术在重建物体的几何形状和机能上已经获得了一定的水平,几乎任何静态的形状都可以被打印出来,但是那些运动的物体和它们的清晰度就难以实现了。这个困难对于制造商来说也许是可以解决的,但是3D打印技术想要进入普通家庭,每个人都能随意打印想要的东西,那么机器的限制就必须得到解决才行。

七、3D打印技术成型主要应用

应用领域:

3D打印机的应用对象可以是任何行业,只要这些行业需要模型和原型。以色列的Stratasys公司认为,3D打印机需求量较大的行业包括政府、航天和国防、医疗设备、高科技、教育业以及制造业。

八、结束语

最近两年,3D打印技术概念引起了国内外政府、军方、企业的高度重视,但其实3D打印技术已经发展有30余年。美国著名智库高德纳(Gartner)公司2012《高德纳新兴IT技术显示度周期特别报告》认为,3D打印技术正处于高循环曲线显示度顶点。预计该技术在未来2~5年内到达生产力成熟期。然而,通过分析发现,3D打印技术却很难取代传统制造工艺,在军事领域的应用主要集中在对受损部件的修复、复杂结构部件的生产以及小批量部件生产等方面,与传统制造工艺形成了较好的互补关系。例如,美国计划使用3D打印技术在太空空间站上。

参考文献:

[1] 3D打印(简介、原理及技术).designspark.2013-10-29.[2] 颜永年,张人佶.快速制造技术的发展道路与发展趋势[J].电加工与模具,2007,2:25-29.[3](美)胡迪·利普森 梅尔芭·库曼.3D打印:从想象到现实.2013年4月

[4] 王运赣.3D打印技术(修订版).2014-07-01

[5] 杨继全.3D打印:面向未来的制造技术.2014年02月

[6] 白基成,刘晋春,郭永丰,杨晓冬.特种加工.2013.05

References:

[1] 3 d printing(introduction, principle and technology).Designspark.2013-10-29.[2] yongnian yan, zhang Ji.The development and trend of development of rapid manufacturing technology [J].Electric processing and mould, 2007, 2:25 to 29.[3](America)woody, lipson MEL ba, Manhattan.3 d printing: from imagination to reality.In April 2013.[4] Wang Yun jiangxi.3 d printing(revised edition).2014-07-01.[5] ji-quan Yang.3 d printing: manufacturing technology for the future.02, 2014.[6], Bai Ji Liu Jinchun Guo Yongfeng, jack Yang.Special processing.2013.05.

第五篇:3D打印快速成型技术及其应用

3D打印快速成型技术及其应用

3D打印快速成型技术及其应用

摘要:本文介绍了3D打印技术的基本原理及其制造流程。通过一些实例说明了3D打印的应用主要是说明在现代军事方面的应用。

一.引言

3D打印(3D PRINTING)即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。

3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光 技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。

自从美国3D公司在1987年推出世界上

3D打印快速成型技术及其应用

二.3D打印技术的简介

2.1 3D打印系统的工作原理和制造工艺

3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系统以平面加工方式,有序地连续加工出每个薄层,并使它们自动粘接而成型,从而制造出所需产品的实物样件或成品,这就是材料的堆积过程。已知自由曲面CAD模型,如果使用传统的方法和数控机床进行加工,那么复杂的自由曲面,成本高,效率低。近年来,3D打印即广泛的被运用于工业生产中。各种3D打印技术的过程都包括CAD模型建立、生成STL文件格式、3D打印制作、模型分层切片和后置处理五个步骤,其制造过程如图1所示

(1)利用激光固化树脂材料的光造型法(Stereolithography)。光造型装置一直以美国3DSYSTEMS公司的SLA型产品独占鳌头,并形成垄断市场。其工作原理如下:由激光器发出的紫外光,经光学系统汇集成一支细光束,该光束在计算机控制下有选择的扫描液体光敏树脂表面,利用光敏树脂遇紫外光凝固的机理,一层一层固化光敏树脂,每固化一层后,工作台下降一精确距离,并按新一层表面几何信息使激光扫描器对液面进行扫描,使新一层树脂固化并紧紧粘在前一层已固化的树脂上,如此反复,直至制作生成零件实体模型。激光立体造型制造精度目

3D打印快速成型技术及其应用

前可达±0.1mm,主要用作为产品提供样品和实验模型。此外,日本的帝人制机开发的SOLIFORM可直接制作注射成型模具和真空注塑模具。

(2)纸张叠层造型法。纸张叠层造型法目前以HELISYS公司开发的LOM装置应用最广。该装置采用专用滚筒纸,由加热辊筒使纸张加热联接,然后用激光将纸切断,待加热辊筒自动离开后,再由激光将纸张裁切成层面要求形状。

(3)熔融造型法熔融造型法(FDM)。以美国STRATASYS公司开发的产品FDM(FUSED DEPOSITION MODELLING)应用最为广泛。工作时,直接由计算机控制。喷头挤出热塑材料并按照层面几何信息逐层由下而上制作出实体模型。FDM技术的最大特点是速度快(一般模型仅需几小时即可成型)、无污染,在原型开发和精铸蜡模等方面得到广泛应用。FDM生产可选成型材料种类较多,原材料费用低,因而的到广泛的应用。但是FDM也有其固有的缺点。精度低,热融制造中很难控制精度,难以制造结构复杂的构件,且材料的制造是处于熔点附近,因而构件的强度小,也不适合制造大型的制件,这些特点都限制了FDM的应用范围。

(4)热可塑造型法(SLS)。以DTM公司开发的选择性激光烧结即SLS(SELECTIVE LASER SINTERING)应用较多。该方法是用CO2激光熔融烧结树脂粉末的方式制作样件。工作时,由CO2激光器发出的光束在计算机控制下,根据几何形体各层横截面的几何信息对材料粉末进行扫描,激光扫描处粉末熔化并凝固在一起。然后,铺上一层新粉末,再用激光扫描烧结,如此反复,直至制成所需样件。

2.2 3D打印制造的优点

3D打印技术的加工特点:3D打印技术突破了“毛坯→切削→加工品”传统的零件加工模式,开创了不用刀具制作零件的先河,是一种利用的薄层叠加的加工方法。与传统的切削加工方法相比,3D打印加工至少具有以下优点:(1)可迅速制造出具有自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,这些利用传统工艺很难加工的,从而大大降低了新产品的开发成本和开发周期。在时间尤其重要的今天,它可以为企业节省大量的研发时间。

3D打印快速成型技术及其应用

(2)它属于非接触加工,不需要切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。只需要一套特定的设备,工序简单,没有传统加工的烦琐的工序。传统的加工中每一个工序都需要机床等复杂加工设备,且加工过程复杂,对操作人员的技术要求很高。

(3)无振动、噪声和切削废料。可以为企业节省宝贵的试制原料,简化生产。传统的制造中由于多是机械制造,噪音较大。且加工时边角料多。造成资源的浪费。

(4)可实现完全自动化生产。操作可以由电脑控制,无需人的过多干预。真正实现了自动化。

(5)加工效率高,能快速制作出产品实体模型及模具。精度高,生产的产品质量好。

(6)3D打印技术在产品开发中的关键作用和重要意义是很明显的,它不受复杂形状的限制,可迅速地将示于计算机屏幕上的设计变为进一步评估的实物。根据原型,可对设计的正确性、造型的合理性、可装配性和干涉性,进行具体的检验。通过原型的检验可使开发产品中的风险减到最底的限度。

三.3D打印技术在军事方面的应用

当前,3D打印技术在军事领域的应用主要是武器装备受损部件的维修和复杂结构件的生产。

3D打印快速成型技术及其应用

3D打印成型技术打印出的手枪及零部件

4.1武器装备受损部件维修

美国国防部曾采用激光近净成型进行受损零件现场维修,以及专用零件的小批量生产。安妮斯顿陆军基地采用激光近净成型成功维修M1艾布拉姆斯坦克的燃气涡轮。美国海军水下作战中心(NUWC)实施了快速制造与维修(RMR)计划,该计划采用选择性激光烧结,直接金属激光烧结、熔融堆积成型以及电子束。4.2武器装备复杂结构件生产

红石兵工厂的美国陆军航空与导弹研究开发与工程中心(AMRDEC)通过立体光刻成型技术、熔融沉积建模、分层制造、激光近净成型、选择性激光烧结等技术,进行设计验证和最优化研究。为了评估人机工程特性与性能,AMEDEC 采用立体光刻成型技术制造导弹控制操纵杆,避免了传统生产设备所需花费的大量时间和设备成本,降低了总生产成本,缩短了开发周期。美国国防部与工业界联合实施了采用类似立体光刻成型的方法合金结构件快速生产的项目,其生产效率比传统的铁合金加工工艺高80%。F-15猎鹰喷气式战斗机铁合金外挂架冀肋备件采用激光3D打印工艺,使零件的需求能够在2个月内得到快速满足,并最大限度保持飞机的可用性。正是由于这些优点,选择性激光烧结工艺被授予2003 年国防制造技术成就奖。使用3D打印技术制造UH-60直升机门把手,相比传统

3D打印快速成型技术及其应用

工艺节省了140万美元,从而验证了3D打印技术在成本方面具有一定优势。除了美国,欧洲宇航防务集团(EADS)的一个科研小组也致力于使用3D打印技术制造飞机的整个机翼。截止2011年3月研究者已使用该技术制造出了飞机起落架的支架和其它飞机零件。

四.结束语

最近两年,3D打印技术概念引起了国内外政府、军方、企业的高度重视,但其实3D打印技术已经发展有30余年。美国著名智库高德纳(Gartner)公司2012《高德纳新兴IT技术显示度周期特别报告》认为,3D打印技术正处于高循环曲线显示度顶点。预计该技术在未来2~5年内到达生产力成熟期。然而,通过分析发现,3D打印技术却很难取代传统制造工艺,在军事领域的应用主要集中在对受损部件的修复、复杂结构部件的生产以及小批量部件生产等方面,与传统制造工艺形成了较好的互补关系。例如,美国计划使用3D打印技术在太空空间站上制造空间站部件备件。因此,未来3D打印技术可能会在武器装备制造、航空航天中的一些特定领域有所应用,但大面积,全方位的替代传统工艺的可能性不大。

3D打印快速成型技术及其应用

参考文献

[1]颜永年,张人佶.快速制造技术的发展道路与发展趋势[J].电加工与模具,2007,2:25-29 [2]朱辉杰.融入载人航天精神的Dimension3D打印机———推动中国空间事业的持续发展[J].CAD/CAM与制造业信息化,2011,8:58 [3]张德胜.利用太阳能的三维打印线聚光光源和打印方法:中国,102886901A[p].2013-01-23.

下载快速成型技术课程感想  苏飞word格式文档
下载快速成型技术课程感想 苏飞.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    快速成型技术复习小结[推荐五篇]

    快速成型技术复习小结 1.快速成型:简称RP,即将计算机辅助设计CAD计算机辅助制造CAM计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的......

    发言稿快速成型

    怎样写好领导讲话、工作报告、典型材料 拿起笔杆子是领导者的一种重要方法,能使你在写材料的过程中提高你的逻辑思维能力、综合分析能力、统筹安排能力、驾驭全局能力。因此,......

    快速成型读书报告

    《快速成型》读书报告 摘要 本文简单介绍了多个先进制造系统的特点及快速成型制造技术产生的背景系统地说明了快速成型制造技术的工作原理列举了多种主要的快速成型制造工......

    快速成型技术在铸造中的应用

    快速成型技术在铸造中的应用快速成形制造技术是目前国际上成型工艺中备受关注的焦点。铸造作为一项传统的工艺,制造成本低、工艺灵活性大,可以获得复杂形状和大型的铸件。充分......

    热成型技术(定稿)

    王辉:热成型技术可以帮助汽车节能减排http://auto.QQ.com2009年10月20日18:31 腾讯汽车 我要评论(0) 主持人:下面进行今天最后一个主题演讲。下面有请本特勒汽车工业亚太区车......

    密封技术课程感想(精选合集)

    对于密封技术,我有比较深的认识,今年暑假期间我在新乡市金鑫化工机械厂实习,接触了实际的压力容器制造过程,对制造有了一个深入的了解,设计时要考虑的因素很多,压力、温度、强度、......

    SLS激光快速成型技术原理特点及工艺方法[本站推荐]

    激光快速成型技术原理特点及工艺方法 快速成型技术是近年来制造技术领域的一次重大突破和革命性的发展,激光快速成型技术是其必不可少的重要组成部分。今天由湖南华曙高科专......

    快速成型制造实习提纲

    快速成型制造实习提纲1、实习目的以快速成型制造实训为媒介,就是为了让我们同学在自己设计原型件,设计硅胶模及其流道,浇注树脂成型工件等一系列的过程中同时自己动手操作深刻......