初中数学的相似初中数学组卷

2020-08-13 15:20:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《初中数学的相似初中数学组卷》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学的相似初中数学组卷》。

2020年06月18日初中数学的初中数学组卷

一.选择题(共11小题)

1.下列计算结果正确的是()

A.=±6

B.(﹣ab2)3=﹣a3b6

C.tan45°=

D.(x﹣3)2=x2﹣9

2.如图是由3个大小相同的小正方体组成的几何体,它的左视图是()

A.

B.

C.

D.

3.一组数据2,1,2,5,3,4的中位数和众数分别是()

A.2,2

B.3,2

C.2.5,2

D.3.5,2

4.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196

000米.196

000用科学记数法表示应为()

A.1.96×105

B.19.6×104

C.1.96×106

D.0.196×106

5.下列图形中,既是轴对称图形又是中心对称图形的有()

A.4个

B.3个

C.2个

D.1个

6.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()

A.y=﹣

B.y=﹣

C.y=﹣

D.y=

7.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()

A.点B坐标为(5,4)

B.AB=AD

C.a=﹣

D.OC•OD=16

8.计算﹣1的结果为()

A.

B.x

C.1

D.

9.矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3.AE=,则BD=()

A.2

B.4

C.4

D.2

10.如图,一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,则当y1<y2时x的取值范围是()

A.x<﹣1

B.x>2

C.﹣1<x<2

D.x<﹣1或x>2

11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.

其中正确的结论有()

A.1个

B.2个

C.3个

D.4个

二.填空题(共6小题)

12.某多边形内角和与外角和共1080°,则这个多边形的边数是

13.分解因式:2a2+4a+2=

14.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是

15.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=

度.

16.若一次函数y=kx+b(b为常数)的图象过点(3,4),且与y=x的图象平行,这个一次函数的解析式为

17.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为

三.解答题(共5小题)

18.计算:﹣|﹣2|+()﹣1﹣2cos45°

19.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.

(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?

(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.

20.如图,AC为⊙O的直径,B为AC延长线上一点,且∠BAD=∠ABD=30°,BC=1,AD为⊙O的弦,连结BD,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.

(1)求证:直线BD是⊙O的切线;

(2)求⊙O的半径OD的长;

(3)求线段BM的长.

21.如图,直线AD与x轴交于点C,与双曲线y=交于点A,AB⊥x轴于点B(4,0),点D的坐标为(0,﹣2).

(1)求直线AD的解析式;

(2)若x轴上存在点M(不与点C重合),使得△AOC和△AOM相似,求点M的坐标.

22.如图,已知抛物线y=﹣x2+ax+3的顶点为P,它分别与x轴的负半轴、正半轴交于点A,B,与y轴正半轴交于点C,连接AC,BC,若tan∠OCB﹣tan∠OCA=.

(1)求a的值;

(2)若过点P的直线l把四边形ABPC分为两部分,它们的面积比为1:2,求该直线的解析式.

2020年06月18日初中数学的初中数学组卷

参考答案与试题解析

一.选择题(共11小题)

1.下列计算结果正确的是()

A.=±6

B.(﹣ab2)3=﹣a3b6

C.tan45°=

D.(x﹣3)2=x2﹣9

【解答】解:A、原式=6,不符合题意;

B、原式=﹣a3b6,符合题意;

C、原式=1,不符合题意;

D、原式=x2﹣6x+9,不符合题意.

故选:B.

2.如图是由3个大小相同的小正方体组成的几何体,它的左视图是()

A.

B.

C.

D.

【解答】解:如图所示:它的左视图是:

故选:D.

3.一组数据2,1,2,5,3,4的中位数和众数分别是()

A.2,2

B.3,2

C.2.5,2

D.3.5,2

【解答】解:将数据重新排列为1、2、2、3、4、5,则这组数据的中位数为=2.5,众数为2,故选:C.

4.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196

000米.196

000用科学记数法表示应为()

A.1.96×105

B.19.6×104

C.1.96×106

D.0.196×106

【解答】解:196

000=1.96×105,故选:A.

5.下列图形中,既是轴对称图形又是中心对称图形的有()

A.4个

B.3个

C.2个

D.1个

【解答】解:第1个图形是中心对称图形,也是轴对称图形,符合题意;

第2个图形不是中心对称图形,是轴对称图形,不符合题意;

第3个图形是中心对称图形,也是轴对称图形,符合题意;

第4个图形是中心对称图形,也是轴对称图形,符合题意.

共3个图形符合题意.

故选:B.

6.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()

A.y=﹣

B.y=﹣

C.y=﹣

D.y=

【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.

7.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()

A.点B坐标为(5,4)

B.AB=AD

C.a=﹣

D.OC•OD=16

【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).

故A无误;

如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)

∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;

设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;

∵OC=8,OD=3,∴OC•OD=24,故D错误.

综上,错误的只有D.

故选:D.

8.计算﹣1的结果为()

A.

B.x

C.1

D.

【解答】解:原式=

=,故选:A.

9.矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3.AE=,则BD=()

A.2

B.4

C.4

D.2

【解答】解:∵四边形ABCD是矩形,∴OA=OB=OD,∵OE:ED=1:3,∴OE:OD=1:2,∴OE=OB,∵AE⊥BD,∴AE垂直平分OB,∴AB=OA,∴△ABO是等边三角形,∵AE=,∴OE=AE=1,∴OB=2OE=2,∴BD=2OB=4;

故选:C.

10.如图,一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,则当y1<y2时x的取值范围是()

A.x<﹣1

B.x>2

C.﹣1<x<2

D.x<﹣1或x>2

【解答】解:∵一次函数y1=kx+b与二次函数y2=ax2交于A(﹣1,1)和B(2,4)两点,从图象上看出,当x>2时,y1的图象在y2的图象的下方,即y1<y2,当x<﹣1时,y1的图象在y2的图象的下方,即y1<y2.

∴当x<﹣1或x>2时,y1<y2.

故选:D.

11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.

其中正确的结论有()

A.1个

B.2个

C.3个

D.4个

【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);

∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);

∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);

∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).

故选:B.

二.填空题(共6小题)

12.某多边形内角和与外角和共1080°,则这个多边形的边数是 6 .

【解答】解:∵多边形内角和与外角和共1080°,∴多边形内角和=1080°﹣360°=720°,设多边形的边数是n,∴(n﹣2)×180°=720°,解得n=6.

故答案为:6.

13.分解因式:2a2+4a+2= 2(a+1)2 .

【解答】解:原式=2(a2+2a+1)

=2(a+1)2,故答案为:2(a+1)2.

14.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是 6 .

【解答】解:y=x﹣2,当y=0时,x﹣2=0,解得:x=4,即OA=4,过B作BC⊥OA于C,∵△OAB是以OA为斜边的等腰直角三角形,∴BC=OC=AC=2,即B点的坐标是(2,2),设平移的距离为a,则B点的对称点B′的坐标为(a+2,2),代入y=x﹣2得:2=(a+2)﹣2,解得:a=6,即△OAB平移的距离是6,故答案为:6.

15.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F处,连接FC,若∠DAF=18°,则∠DCF= 36 度.

【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=(90°﹣18°)=36°,∴∠AEF=∠AEB=90°﹣36°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=36°;

故答案为:36.

16.若一次函数y=kx+b(b为常数)的图象过点(3,4),且与y=x的图象平行,这个一次函数的解析式为 y=x+1 .

【解答】解:∵一次函数y=kx+b的图象平行于y=x,∴k=1,∴这个一次函数的解析式为y=x+b.

把点(3,4)代入得,4=3+b,解得b=1,所以这个一次函数的解析式为y=x+1,故答案为y=x+1.

17.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为 y= .

【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).

∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.

∴E(x,4).

∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).

∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20,∴反比例函数的解析式为y=

故答案为y=.

三.解答题(共5小题)

18.计算:﹣|﹣2|+()﹣1﹣2cos45°

【解答】解:原式=2﹣2+3﹣2×

=2+1﹣

=+1.

19.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.

(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?

(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.

【解答】解:(1)设1辆甲种客车与1辆乙种客车的载客量分别为x人,y人,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;

(2)设租用甲种客车a辆,依题意有:,解得:6>a≥4,因为a取整数,所以a=4或5,∵5×400+1×280>4×400+2×280,∴a=4时,租车费用最低,为4×400+2×280=2160.

20.如图,AC为⊙O的直径,B为AC延长线上一点,且∠BAD=∠ABD=30°,BC=1,AD为⊙O的弦,连结BD,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.

(1)求证:直线BD是⊙O的切线;

(2)求⊙O的半径OD的长;

(3)求线段BM的长.

【解答】解:(1)证明:∵OA=OD,∠BAD=∠ABD=30°,∴∠BAD=∠ADO=30°,∴∠DOB=∠BAD+∠ADO=60°,∴∠ODB=∠180°﹣∠DOB﹣∠ABD=90°,∵OD为⊙O的半径,∴直线BD是⊙O的切线;

(2)∵∠ODB=90°,∠ABD=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;

(3)∵OD=1,∴DE=2,BD=,∴BE==,如图,连接DM,∵DE为⊙O的直径,∴∠DME=90°,∴∠DMB=90°,∵∠EDB=90°,∴∠EDB=∠DME,又∵∠DBM=∠EBD,∴△BMD∽△BDE,∴=,∴BM===.

∴线段BM的长为.

21.如图,直线AD与x轴交于点C,与双曲线y=交于点A,AB⊥x轴于点B(4,0),点D的坐标为(0,﹣2).

(1)求直线AD的解析式;

(2)若x轴上存在点M(不与点C重合),使得△AOC和△AOM相似,求点M的坐标.

【解答】解:(1)把x=4代入y=得到y=2,∴A(4,2),设直线ADA的解析式为y=kx+b,则有,解得.

∴直线AD的解析式为y=x﹣2.

(2)对于直线y=x﹣2,令y=0,得到x=2,∴C(2,0),∴OC=2,∵A(4,2),∴OA==2,在△AOC中,∠ACO是钝角,若M在x轴的负半轴上时,∠AOM>∠ACO,因此两三角形不可能相似,所以点M只能在x轴的正半轴上,设OM=m,∵M与C不重合,∴△AOC∽△AOM不合题意舍弃,∴当=,即=时,△AOC∽△MOA,解得m=10,∴点M的坐标为(10,0).

22.如图,已知抛物线y=﹣x2+ax+3的顶点为P,它分别与x轴的负半轴、正半轴交于点A,B,与y轴正半轴交于点C,连接AC,BC,若tan∠OCB﹣tan∠OCA=.

(1)求a的值;

(2)若过点P的直线l把四边形ABPC分为两部分,它们的面积比为1:2,求该直线的解析式.

【解答】解:(1)∵抛物线y=﹣x2+ax+3与x轴交于点A,B,∴方程﹣x2+ax+3=0有两个不同的实数根.

设这两个根分别为x1、x2,且x1<0,x2>0,由韦达定理得:x1+x2=a,∵当x=0时,y=﹣x2+ax+3=3,∴OC=3.

∵tan∠OCB﹣tan∠OCA=.

∴﹣=,∴OB﹣OA=2,∴x2﹣(﹣x1)=2,即x2+x1=2,∴a=2.

(2)由(1)得抛物线的解析式为y=﹣x2+2x+3,∴其顶点坐标为P(1,4).

解方程﹣x2+2x+3=0,得x1=﹣1、x2=3,∴A(﹣1,0),B(3,0).

延长PC交x轴于点D,作PF⊥x轴于点F,∴S四边形ABPC=S△PDB﹣S△CDA

=DB•PF﹣DA•OC

=(3+3)×4﹣(3﹣1)×3

=9.

设直线l与x轴交于点M(m,0),则BM=3﹣m,∴S△PMB=×(3﹣m)×4=6﹣2m,当6﹣2m=×9=3时,m=,此时M(,0),即直线l过点P(1,4),M(,0),∭由待定系数法可得l的解析式为y=﹣8x+12;

同理,当6﹣2m=×9=6时,m=0,此时M(0,0),即直线l过点P(1,4),M(0,0),由待定系数法可得l的解析式为y=4x;

综上所述,直线l的解析式为y=﹣8x+12或y=4x.

声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布

日期:2020/6/21

7:16:01;用户:初中数学;邮箱:jnjp057@xyh.com;学号:22545438

下载初中数学的相似初中数学组卷word格式文档
下载初中数学的相似初中数学组卷.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学组大全

    2014年杨浦区第十一届“百花杯”教师教学比赛获奖名单 数学、(高中组、初中组)、中学信息技术、中学艺术(初中八、九年级、高中)、 初中美术(初中六、七年级)、初中音乐学科(初中六......

    初中数学组工作计划

    初中数学组工作计划 初中数学组工作计划1 一、本学期工作指导思想:在校长室、教导处领导下,以学校总体教学工作为指导,贯彻落实教导处工作计划。以教学管理常规落实为基础,以创......

    初中数学组工作计划

    《初中数学组工作计划》 一、 指导思想本学期数学组教研工作以课堂改革实践为主线,以提高数学课堂教学效率为重点,认真搞好教学研究、促进教师、学生和谐发展,切实加强教研组建......

    初中关于相似说课稿

    导语:“说课”是教学改革中涌现出来的新生事物,是进行教学研究、教学交流和教学探讨的一种新的教学研究形式,也是集体备课的进一步发展,而【说课稿】则是为进行说课准备的文稿,它......

    初中数学相似三角形定理知识点总结

    相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几......

    初中数学组教研计划

    篇一:初中数学组教研计划 一、 指导思想: 认真贯彻校教务处工作计划。以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建自主学习课堂教学模式为主题,以提高队伍素......

    初中数学组教研工作总结

    初中数学组教研工作总结 初中数学组教研工作总结1 本学期我们二年级数学备课组在校领导的关心指导下,经过组员的共同努力,团结协作,比较圆满地完成了本学期的各项工作。现将本......

    初中数学组教研工作计划

    初中数学组教研工作计划 篇1 一、指导思想本学年初中数学组教研工作将仍以课程改革实验为主线,非毕业班以提高初中数学教学优秀率、合格率为重点,毕业班以拔高尖子生数学成......