初中数学相似三角形定理知识点总结

时间:2019-05-15 14:23:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学相似三角形定理知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学相似三角形定理知识点总结》。

第一篇:初中数学相似三角形定理知识点总结

相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。下面是小编为大家带来的初中数学相似三角形定理知识点总结,欢迎阅读。

相似三角形定理

1.相似三角形定义:

对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:

相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边

成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:

(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性

如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

第二篇:初中数学知识点总结:相似三角形

知识点总结

一、平行线分线段成比例定理及其推论:

1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2.性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3.判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。四、三角形相似的证题思路:

五、利用相似三角形证明线段成比例的一般步骤:

一定:先确定四条线段在哪两个可能相似的三角形中;

二找:再找出两个三角形相似所需的条件;

三证:根据分析,写出证明过程。

如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。

六、相似与全等:

全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:

1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。

2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改对应边相等成对应边成比例。

常见考法

(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。

误区提醒

(1)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;(2)在定理的实际应用中,常常忽视夹角相等这个重条件,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。

第三篇:初中数学 三角形知识点填空

1、定理 三角形两边的和____________第三边

2、推论 三角形两边的差

3、三角形内角和定理 三角形三个内角的和等于___________

4、推论1 直角三角形的两个锐角___________

5、推论2 三角形的一个外角_________和它不相邻的两个内角的和

6、推论3 三角形的一个外角_________任何一个和它不相邻的内角

7、全等三角形的对应边、对应角__________

8、边角边公理(SAS)有___________和它们的___________对应相等的两个三角形全等

9、角边角公理(ASA)有___________和它们的___________对应相等的两个三角形全等

10、推论(AAS)有_________和其中___________对应相等的两个三角形全等

11、边边边公理(SSS)有___________对应相等的两个三角形全等

12、斜边、直角边公理(HL)有__________和一条__________对应相等的两个直角三角形全等

13、定理1 在角的平分线上的点到这个角的两边的_________相等

14、定理2 到一个角的两边的__________相同的点,在这个角的平分线上

15、角的平分线是到角的两边_________相等的所有点的集合16、等腰三角形的性质定理 等腰三角形的两个底角___________(即等边对等角)

17、推论1 等腰三角形顶角的平分线_________底边并且_________底边

18、等腰三角形的顶角平分线、底边上的中线和底边上的高___________

19、推论3 等边三角形的各角都__________,并且每一个角都等于___________

20、等腰三角形的判定定理

如果一个三角形有两个角_______,那么这两个角所对的边也_________(等角对等边)

21、推论1 三个角都_________的三角形是等边三角形

22、推论 2 有一个角等于_________的等腰三角形是等边三角形

23、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的________

24、直角三角形斜边上的中线等于斜边的__________

25、定理 线段垂直平分线上的点和这条线段两个端点的距离_________

26、逆定理 和一条线段两个端点距离________的点,在这条线段的垂直平分线上

27、线段的垂直平分线可看作和线段两端点距离_________的所有点的集合28、定理1 关于某条直线_________的两个图形是全等形

29、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的___________

30、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在_________上

31、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线_______

32、勾股定理 直角三角形两直角边a、b的_______、等于斜边c的________,即________

33、勾股定理的逆定理 如果三角形的三边长a、b、c有关系________,那么这个三角形是_____三角形

第四篇:《相似三角形的判定定理二》说课稿

《相似三角形的判定定理二》说课稿

一、说教材

1、教材的地位和作用

众览本章教材。在前面,学生已经了解图形并且掌握了一定的图形知识。学过图形的全等和全等三角形的有关知识,也研究了几种图形的变换。全等是相似的一种特殊情况,从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章研究的问题实际上是在前面研究图形的全等和一些全等变换的基础上拓广展的。在后面,学生还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识,不仅在数学中,在物理中,学习力学、光学等,也要用到相似的知识。因此这些内容也是今后学习所必具备的基础知识。另外,本节内容相似三角形的判定定理2还应用在实际生活中的建筑设计、测量、绘图等许多方面。因此这一节乃至整章内容对于学生今后从事各种实际工作也具有重要作用。

2、教学目标:

根据数学课程标准和本节课的教学内容特点,针对学生已有的认知水平,我们将从知识、能力、情感态度与价值观三个方面来确定本节课的教学目标为:

(1)知识目标 : 掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

(2)能力目标 : 渗透数学中普遍存在着相互联系、相互转化,经历探索两个三角形相似条件的过程,分析归纳结论的过程;在定理论证中,体会转化思想的应用。

(3)情感价值目标 : 从认识上培养学生从特殊到一般的方法认 识事物,从思维上培养学生用类比的方法展开思维;通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。

3、教学重难点: 教学重点:

两个三角形相似的判定方法2及其应用。教学难点: 探究三角形相似的条件;运用三角形相似的判定定理解决问题。

二、说学情分析

在课堂教学中,作为学生学习的组织者引导着与合作者。注意突出学生的数学实践活动,变“教学”为“导学”提高课堂效率。在教学中我们尽量引导学生成为知识的发现者,把教师的点播和解决学生的实际问题结合起来,为学生创设情境,鼓励学生亲自动动手实践,在实践中发现知识,培养学生的创新精神和实践能力。

三、说教法、学法: 〈一〉 教法:

教学有法但教无定法,在教学过程中,我们充分运用启发式教学方法和现代化教学手段,把传授知识和培养学生的教学素养结合起来,为创造人才的成长打下坚实的基础。

〈二〉 学法:

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人。”因而教师要特别注重对学生学法方式的指导。由于学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“观察——猜想——验证——归纳——反馈——实践”的主线进行学习。

四、说教学理念

1本节课的基本理念是本着义务教育的基础性普遍性和发展性联系学生生活实际面向全体学生。

2从现实生活中发现问题并提出问题,让学生亲身参与活动,进行探索和发现。

五、说教学流程

本节课按照“知识回顾”——“情景导入、激发兴趣”——“类比联想、探索交流” “应用新知”—— “运用提高”——“归纳小结”的流程展开.

本节课主要是探究相似三角形的判定方法2,由于上两节课已经学习了探究两个三角形相似的判定引例﹑预备定理﹑判定方法1,因此本课教学力求使探究途径多元化,通过欣赏图片的形式把数学与现实生活紧密联系,学生利用刻度尺、量角器等作图工具作静态探究与应用“几何画板”等计算机软件作动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵。协同式小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力。

习题设置由浅到深,即考察了学生的动手能力,又考察了学生对知识的灵活运用。

六、说课件设计

我们所用的课件是以POWERPOINT为模板插入相应的图片设计简单易操作,充分体现了教学手段是为教学内容服务的原则。

七、说板书设计

八、自我评价在提高

我的目的是通过学生的动手操作得出结论。突出学生的主体地位,在操作交流中使学生的学习成果得以展示获得成功的快乐。

第五篇:九年级数学《相似三角形》说课稿

【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助!

相似三角形说课稿

今天,我的说课将分三大部分进行:

一、说教材;

二、说教学策略;

三、说教学程序。

一、说教材

从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

1、本课内容在教材中的地位

本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

2.学习目标

知识与技能方面:

探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

过程与方法方面:

培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

情感态度与价值观方面:

让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

3.教学重点、难点

立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。

教学重点:相似三角形、相似多边形的性质及其应用

教学难点:①相似三角形性质的应用;

②促进学生有条理的思考及有条理的表达。

4.学情分析

从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。

对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。

大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。

5.教学准备

教师:直尺、多媒体课件

学生:必要的学习用具

二、说教学策略

从设计的指导思想、教学方法、学习方法三方面阐述

新课程标准指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现学生主体教师主导的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。

采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

有一位教育家说过:教给学生良好的学习方法比直接教给学生知识更重要。本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由被动学会变成主动会学。

三、说教学程序

(一)类比研究,明确目标

师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?

生:已经研究了相似三角形的定义、判别条件。

师:那么我们今天该研究什么了?

生:相似三角形的性质。

设计意图:

从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。

(二)提出问题,感受价值,探究解决

师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。

生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?

设计意图:

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:

给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?

生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

情境一:如图,ABC∽DEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ABC的周长(学生只能用相似三角形对应边成比例求出ABC的三边长,然后求其周长)

(2)如果DEF的周长为20,则ABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

(3)如果ABC∽DEF,相似比为k:1,且DEF三边长分别用d、e、f表示,求ABC与DEF的周长之比。

结论:相似三角形的周长之比等于相似比。

情境二:

师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?

生:面积比问题。

师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到相似三角形的对应高之比等于相似比的结论。进而解决相似三角形的面积比等于相似比的平方的问题。体现教材整合。

(三)拓展研究,形成策略,回归生活

拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)

拓展研究二:由相似三角形研究拓展到相似多边形研究

师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。

说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略转化为三角形来研究。然后通过师生活动合作研究得结论。

拓展结论1:相似多边形的周长之比等于相似比;

相似多边形的面积之比等于相似比的平方。

(结合相似五边形研究过程)

拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;

相似多边形中对应对角线之比等于相似比;

进而拓展到:相似多边形中对应线段之比等于相似比等。回归生活一:

师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的相似形你还能解决吗?

回归生活二:(以师生聊天的方式进行)

其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?

生:相似比的立方。

设计意图:新课程标准指出数学教学活动要建立在学生已有生活经验的基础上---;教育心理学认为:源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果;于新华老师在一些教研活动中曾经说过:源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。

而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。

(四)操作应用,形成技能

课内检测:

1.已知两上三角形相似,请完成下面表格:

相似比 2

对应高之比 0.5

周长之比 3 k

面积之比 100

2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。

设计意图:落实双基,形成技能

(五)习题拓展,发展能力

已知,如图,ABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。

(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?

(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?

答: 最大值,最小值(填有或没有)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。

(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:

①当点P为AB中点时,矩形PMNQ的面积最大;

②当PM=PQ时,矩形PMNQ的面积最大。

你认为哪一个猜想较为合理?为什么?

(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。

设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

(六)作业(略)

另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

下载初中数学相似三角形定理知识点总结word格式文档
下载初中数学相似三角形定理知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形相似教案

    相似三角形的判定(1)教学设计 一、课题 相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时) 二、教材分析 1.内容要点 本节课让学生利用相似三角形的定义来进一步......

    相似三角形教案

    相似三角形 【基础知识精讲】 1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系. 2.进一步体会数学内容之间的内在联系,初步认识特殊......

    《相似三角形》说课稿

    《相似三角形》说课稿范文1 各位领导老师大家好:今天我说课的课题是华师版初中三年级数学 “相似三角形的性质”。下面,我分以下几个部分来汇报我对这节课的教学设计,“教材分......

    三角形相似说课稿

    相似三角形说课稿 一、说教材 从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述 1、本课内容在教材中的地位 本节教学内容是本章的重要内容之一。本节内......

    三角形相似说课稿

    相似三角形说课稿 今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。 一、说教材 从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐......

    初中数学知识点总结

    初中数学知识点总结 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取......

    初中数学知识点总结

    初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某......

    初中数学知识点总结

    初中数学知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点......