第一篇:初三数学三角形知识点总结归纳
三角形的定义
三角形是多边形中边数最少的一种。它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在。另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的。三角形中有三条边,三个角,三个顶点。
三角形中的主要线段
三角形中的主要线段有:三角形的角平分线、中线和高线。这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。并且对这三条线段必须明确三点:
(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。
(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。
(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。在以后我们可以给出具体证明。今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。三角形的按边分类
三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等。所以三角形按 的相等关系分类如下:
等边三角形是等腰三角形的一种特例。判定三条边能否构成三角形的依据
△ ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”。可知: △ ③a+b>c,①a+c>b,②b+c>a △ 定理:三角形任意两边的和大于第三边。△ 由②、③得 b―a<c,且b―a>―c △ 故|a―b|<c,同理可得|b―c|<a,|a―c|<b。从而得到推论:
三角形任意两边的差小于第三边。
上述定理和推论实际上是一个问题的两种叙述方法,定理包含了推论,推论也可以代替定理。另外,定理和推论是判定三条线段能否构成三角形的依据。如:三条线段的长分别是5、4、3便能构成三角形,而三条线段的长度分别是5、3、1,就不能构成三角形。判定三条边能否构成三角形
对于某一条边来说,如一边a,只要满足|b-c|<a<b+c,则可构成三角形。这是因为|b-c|<a,即b-c<a,且b-c>-a.也就是a+c>b且a+b>c,再加上b+c>a,便满足任意两边之和大于第三边的条件。反过来,只要a、b、c三条线段满足能构成三角形的条件,则一定有|b-c|<a<b+c。
在特殊情况下,如果已知线段a最大,只要满足b+c>a就可判定a、b、c三条线段能够构成三角形。同时如果已知线段a最小,只要满足|b-c|<a,就能判定三条线段a、b、c构成三角形。
证明三角形的内角和定理
除了课本上给出的证明方法外还有多种证法,这里再介绍两种证法的思路: 方法1 如图,过顶点A作DE‖BC,运用平行线的性质,可得∠B=∠2,∠C=∠1,从而证得三角形的内角 和等于平角∠DAE。
方法2 如图,在△ABC的边BC上任取 一点D,过D作DE‖AB,DF‖AC,分别交AC、AB于E、F,再运用平行 线的性质可证得△ABC的内角和等于平角∠BDC。三角形按角分类
根据三角形的内角和定理可知,三角形的任一个内角都小于180°,其内角可能都是锐角,也可能有一个直角或一个钝角。三角形按角可分类如下:
根据三角形的内角和定理可有如下推论: 推论1 直角三角形的两个锐角互余。
推论2 三角形的一个外角等于和它不相邻的两个内角的和。推论3 三角形的一个外角大于任何一个和它不相邻的内角。同时我们还很容易得到如下几条结论:(1)一个三角形最多有一个直角或钝角。(2)一个三角形至少有两个内角是锐角。
(3)一个三角形至少有一个角等于或小于60°(否则,若三个内角都大于60°;则这个三角形的内角和大于180°,这与定理矛盾)。(4)三角形有六个外角,其中两两是对顶角相等,所以三角形的三个外角和等于360°。全等三角形的性质
全等三角形的两个基本性质
(1)全等三角形的对应边相等。(2)全等三角形的对应角相等。
确定两个全等三角形的对应边和对应角
怎样根据已知条件准确迅速地找出两个全等三角形的对应边和对应角?其方法主要可归结为:
(1)若两个角相等,这两个角就是对应角,对应角的对边是对应边。(2)若两条边相等,这两条边就是对应边,对应边的对角是对应角。(3)两个对应角所夹的边是对应边。(4)两个对应边所夹的角是对应角。由全等三角形的定义判定三角形全等
由全等三角形的定义知,要判定两个三角形全等,需要知道三条边,三个角对应相等,但在应用中,利用定义判定两个三角形全等却是十分麻烦的,因而需要找到能完全确定一个三角形的条件,以便用较少的条件,简便的方法来判定两个三角形的全等。判定两个三角形全等的边、角、边公理
内容:有两边和它们的夹角对应相等的两个三角形全等(即SAS)。
这个判定方法是以公理形式给出的,我们可以通过实践操作去验证它,但验证不等于证明,这点要区分开来。
公理中的题设条件是三个元素:边、角、边,意指两条边和这两条边所夹的角对应相等。不能理解成两边和其中一个角相等。否则,这两个三角形就不一定全等。例如 在△ABC和△A′B′C′中,如右图,AB=A′B′,∠A=∠A′,BC=A′C′,但是△ABC不全等于 △A′B′C′。又如,右图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,AC=A′C′,但△ABC和△A′B′C′不全等。
原因就在于两边和一角对应相等不是 公理中所要求的两边和这两条边的夹 角对应相等的条件。
说明:从以上两例可以看出,SAS≠SSA。判定两个三角形全等的第二个公理
内容:有两角和它们的夹边对应相等的两个三角形全等(即ASA)。这个公理也应该通过画图和实验去进一步理解它。
公理强调了两角和这两角的夹边对应相等,这里实质上包含了一个顺序关系。千万不能理解成为在其中一个三角形中是两角和其夹边,而在另一个三角形中却是两角和其中一角的对边。
如右图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′,AB=A′C′,但这两个三角形显然不全等。原因就是 没有注意公理中“对应”二字。
公理一中的边、角、边,其顺序是不能改变的,即SAS不能改为SSA或ASS。而ASA 公理却能改变其顺序,可改变为AAS或SAA,但两个三角形之间的“对应”二字不能变。同时这个公理反映出有两个角对应相等,实质上是在两个三角形中有三个角对应相等,故在应用过程中只须注意有一条对应边相等就行了。
由公理二可知,有一个锐角与一条边对应相等的两个直角三角形全等 判定两个三角形全等的边、边、边公理
公理:三条边对应相等的两个三角形全等(即边、边、边公理)。
边、边、边公理在判定两个三角形全等时,其对应边就是相等的两条边。
这个公理告诉我们,只要一个三角形的三边长度确定了,则这个三角形的形状就完全确定了。这就是三角形的稳定性。判定两个三角形全等
通过以上三个公理的学习,可以知道,在判定两个三角形全等时,无需根据定义去判定两个三角形的三角和三边对应相等,而只需要其中三对条件。
三个角和三条边这六个条件中任取三个条件进行组合。无非有如下情况:(1)三边对应相等。(2)两边和一角对应相等。(3)一边和两角对应相等。(4)三角对应相等。
HL公理
我们知道,满足边、边、角对应相等的两个三角形不一定全等。
但是,对于两个直角三角形来说,这个结论却一定成立。
斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(简写为HL)。这个公理的题设实质上也是三个元素对应相等,其本身包含了一个直角相等。这种边、边、角对应相等的两个三角形全等成立的核心是有一个角是直角的条件。由于直角三角形是一种特殊的三角形,所以过去学过的四种判定方法对于直角三角形照常适用。角平分线的性质定理和逆定理
性质定理:在角平分线上的点到这个角的两边的距离相等。
逆定理:到一个角的两边距离相等的点,在这个角的平分线上。点在角平分线上点到这个角的两边距离相等。用符号语言表示角平分线的性质定理和逆定理 性质定理:
∵P在∠AOB的平分线上 PD⊥OA,PE⊥OB ∴PD=PE 逆定理:
∵PD=PE,PD⊥OA,PE⊥OB ∴点P在∠AOB的平分线上。
角平分线定义
如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线。角的平分线是到角两边距离相等的所有点的集合。三角形角平分线性质
三角形三条平分线交于一点,并且交点到三边距离相等。互逆命题
在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
原命题和逆命题的真假性
每个命题都有逆命题,但原命题是真命题,而它的逆命题不一定是真命题,原命题和逆命题的真假性一般有四种情况:真、假;真、真;假、假;假、真。互逆定理
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。
每个命题都有逆命题,但不是所有的定理都有逆定理 尺规作图
限定用直尺(没有刻度)和圆规的作图方法叫尺规作图。基本作图
最基本最常见的尺规作图称之为基本作图,主要有以下几种:(1)作一个角等于已知角;(2)平分已知角;
(3)过一点作已知直线的垂线;(4)作已知线段的垂直平分线;
(5)过直线外一点作已知直线的平行线。有关概念
有两边相等的三角形称为等腰三角形。
三边都相等的三角形称为等边三角形,又称为正三角形。有一个直角的等腰三角形称为等腰直角三角形。
等边三角形和等腰直角三角形都是等腰三角形的特例。等腰三角形的有关概念
等腰三角形中,相等的两边称为腰,另一边称为底边,两腰的夹角称为顶角,底边上的两个角称为底角。
等腰三角形的主要性质 两底角相等。
如图,ΔABC中AB=AC,取BC中点D,连结AD,容易证明:ΔABD≌ΔACD,∴∠B=∠C。如图,ΔABC中为等边三角形,那么,由AB=AC,得∠B=∠C,由CA=CB,得∠A=∠B,于是∠A=∠B=∠C,但∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°
如图,ΔABC中AB=AC,且AD平分∠BAC,那么由ΔABD≌ΔACD,可得BD=CD,∠ADB=∠ADC,但∠ADB+∠ADC=180°,∴∠ADB=90°,从而AD⊥BC,由此又可得到另外两个重要推论。
两个重要推论
等腰三角形顶角的平分线垂直且平分底边; 等边三角形各内角相等,且都等于60°。等腰三角形性质及其推论的另一种论述方法 三角形中,相等的边所对的角相等。
等腰三角形顶角的平分线、底边上的中线和高三线合而为一。
等腰三角形的判定定理及其两个推论的核心都可概括为等角对等边。它们都是证明两条线段相等的重要方法。推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
容易证明:这个推论的逆命题也是正确的。即:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。运用
利用等腰三角形的判定定理和性质定理容易证明结论:“在一个三角形内,如果两条边不等,那么它们所对的角也不等,大边所对的角也较大;反过来,在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大。” 对称轴及中心
线段的垂直平分线把线段分为相等的两部分。
线段的中点就是它的中心,今后要学习“线段是关于中点对称的中心图形”。线段是以它的中垂线为对称轴的图形。三线合一的定理的逆定理
如图所示,线段中垂线的性质定理的几何语言为:,于是可以用来判定等腰三角形,其定理实质上是 三线合一定理的逆定理。
“距离”不同,“心”也不同
“线段垂直平分线的性质定理与逆定理中的“距离”是指“两点间的距离”,而角平分线的性质定理与逆定理中的“距离”是指“点到直线的距离”。三角形三条角平分线相交于一点,这点到三边的距离相等(这点称为三角形的内心)。
三角形三边的垂直平分线相交于一点,这点到三个顶点的距离相等(这点称为三角形的外心)。
重要的轨迹
图(A)所示。到角的两边OA、OB的距 离相等的点P1、P2,P3…组成一条射 线OP,即点的集合。
如图(B)所示,到线段AB的两端点的距离 相等的所有点P1、P2、P3…组成一条直 线P1P2,因此这条直线可以看成动点形 成的“轨迹”。
第十三节轴线称和轴对称图形 轴对称
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形叫做关于这条直线对称,也称轴对称。
根据定义,两个图形和如果关于直线l轴对称,则:(1)和这两个图形的大小及形状完全相同。
(2)把其中一个图形沿l翻折后,和应完全重合,自然两个图形中的有关对应点也应重合。事实上,直线l是两个轴对称图形中对应点连线的垂直平分线。所以容易得到如下性质: 性质1 关于某条直线对称的两个图形是全等形。
性质2 如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
性质3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点必在对称轴上。不难看出,如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。轴对称图形
如果一个图形沿着一条直线翻折,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形。
轴对称和轴对称图形的区别和联系
区别
①轴对称是指两个图形关于某条直线对称,而轴对称图形是一个图形关于某条直线对称。②轴对称的对应点分别在两个图形上,而轴对称图形中的对应点都在这一个图形上。
③轴对称中的对称轴可能在两个图形的外边,而轴对称图形中的对称轴一定过这个图形。联系
①都是沿着某一条直线翻折后两边能够完全重合。
②如果把轴对称的两个图形看成是一个整体,那么这个整体反映出的图形便是一个 轴对称图形;反过来,如果把一个轴对称图形中关于对称轴的两边部分看成是两个 图形,那么这两部分对应的两个图形则关于这条对称轴而成轴对称。第十四节 勾股定理
直角三角形
直角三角形中,两锐角互余,夹直角的两边叫直角边,直角的对边叫斜边,斜边最长。等腰直角三角形
等腰直角三角形是直角三角形中的特例。也是等腰三角形中的特例。等腰直角三角形的两个底角都等于45°,顶角等于90°,相等的两条直角边是腰。
勾股定理
直角三角形中,两直角边a、b的平方和等于斜边c的平方,即,这就是勾股定理。判定直角三角形
如果ΔABC的三边长为a、b、c,且满足,那么ΔABC是直角三角形,其中∠C=90°。第十五节勾股定理的逆定理 勾股定理的逆定理
勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。即:在△ABC中,若a2+b2=c2,则△ABC为Rt△。如何判定一个三角形是否是直角三角形 首先求出最大边(如c)。
验证c2与a2+b2是否具有相等关系。
若c2=a2+b2,则△ABC是以∠C=90°的直角三角形。若c2≠a2+b2,则△ABC不是直角三角形。
********************** *****攻关秘技**** 方法1: 证明“文字叙述的几何命题”的方法
这类题目证明起来较一般几何题要难,但还是有一定的思路和方法,一般先对题目进行总体分析,分析内容大致分为以下四点,然后逐步解决。
(1)分析命题的题设和结论;
(2)结合题设和结论画出图形;
(3)综合题设结论和图形写出已知、求证;
(4)进行证题分析。
方法2: 等腰三角形的边角求值法
在解等腰三角形的边角求值题时,应考虑到各种可能的情况,还要排除不能构成三角形的情形。特别在解决线段或角的和差倍半关系时,常利用合成法或分解法,借助添加辅助线来完成。
方法3: 判定一个三角形是
直角三角形的方法
判定一个直角三角形可利用勾股定理的逆定理、线段的垂直平分线性质或直角三角形的定义等,这些方法都要求掌握并能灵活运用。
方法4: 作图题
几何作图题的每一步都必须有根有据,所以就要求我们掌握好已学过的公理、定理等。要掌握好尺规作图,还要多画多练。
知识点: 全等三角形的判定与性质
方
法: 分析法
能
力: 分析与解决问题的能力
难
度: 中等
知识点: 全等三角形;角平分线
方
法: 合成法;分解法
能
力: 分析与解决问题的能力;
逻辑推理能力
难
度: 中等偏难
知识点: 等腰直角三角形的性质;
线段的垂直平分线性质;勾股定理
方
法: 综合法
能
力: 分析与解决问题的能力
难
度: 中等偏难
知识点: 线段的性质
方
法: 数形结合法
能
力: 空间想象能力;
分析与解决问题的能力
难
度: 中等偏难
专题1: 一题多问、一题多图和多题一解
提高分析问题和解决问题能力的方法是多种多样的,而认真的设计课本中例题、习题的变式,挖掘其潜能也是方法之一。课本中的例题、习题为中考命题提供了丰富的源泉,它们具有丰富的内涵,在由知识转化为能力上具有示范性和启发性,在解题思路和方法上具有典型性和代表性。如果我们不以得到解答为满足,而是在解完之后,深入其中作进一步的挖掘和多方位探索,不仅可得到一系列的新命题,也可从“题海”中解脱出来,达到事半功倍的效果。而且通过不同角度、不同方位去思考问题,探索不同的解答方案,从而拓宽了思路,培养了思维的灵活性和应变能力。
专题2: 利用扩、剖、串、改提高解题能力
学习几何时,感到例题好学易懂,但对稍加变化拓宽引申的问题束手无策,原因是把例题的学习看成是孤立的学一道题,学完就了事,致使解题时缺乏应变能力,但如果平时能重视对题目的扩充、剖解、串联和改编,就能较好地解决这一问题。1.扩充:将原题条件拓展,使结论更加丰富充分。
2.剖解:分析原题,将较复杂的图形肢解为若干个基本图形,使问题化隐为显。3.串联:由例题的形式(条件、结论等),联想与它相似、相近、相反的问题。4.改编:改变原题的条件形式,探索结论是否成立?
专题3: 分析、综合、辅助线
我们研究不等式的有关问题时,会发现很多巧妙的方法,还会不断学习掌握类比的数学思想,形数结合的思想,从未知向已知转化的化归思想,通过研究这些不断变化的问题,全面把握不等式及不等式组的解法,从而提高我们分析问题、解决问题的能力。
专题4: 不等式的若干应用
在平面几何里,证题思路主要有:(1)分析法,即从结论入手,逐步逆推,直至达到已知事实后为止。(2)综合法,先从已知条件入手,运用已学过的公式、定理、性质等推出证明的结论。(3)两头凑,就是将综合法和分析法有机地结合起来思考:一方面“从已知推可知”,从已知看可以推出哪些结论;另一方面“由未知看需知”,从所求结论逆推看需要什么条件,一旦可知与需知沟通,证题思路即有了。添加辅助线是证明几何题的重要手段,也是学习中的难点之一。
专题5: 几何证题的基本方法有两种:
一种是从条件出发,通过一系列已确立的命题逐步向前推演,直到达到证题目的,简言之,这是由因导果的方法,我们称之为直接证法或综合法,综合法证题的程序如下:欲证AB,由于AC,CD,…,x,而xB,故AB.另一种则反过来,先假定命题的结论成立,考虑达到目的需具备什么条件,通过一系列的逆推直到回朔到已知条件为止。简言之,这是执果索因的方法,我们称之为分析法,分析法证题的程序如下:欲证“AB”,也就是BA,若能分析出BC,CD,…,x,而xA,则断言BA,也就是AB。
在实际操作上,往往把这两种方法结合起来,先分析探求铺路,再综合解题成功,简言之就是“倒着推,顺着走”。
—平移、旋转、对称
在几何证题中,常需要将一个图形进行适当的变换,常见的几何变换有全等变换,等积变换和相似变换。
本章只讲全等变换,也就是不改变图形的形状和大小,只改变图形位置的变换。常见的全等变换的形式有三:
1.平移:将图形中的某些线段乃至整个图形平行移动到某一适当位置,作出辅助图形,使问题得
到解决。平移的基本特点是:任一线段在平移过 程中,其长度保持不变。
2.旋转:将平面图形绕平面内一定点M旋转一个定角α得到与原来形状和大小相同的图形,这样 的变换叫做旋转变换,M叫旋转中心,α角叫旋 转角。
旋转变换的主要性质:(1)变换后的图形与原图形全等;(2)原图中任一线段与旋转后的对应线段所成的角等于旋转角。
3.对称:将一个图形(或它的一部分)绕着一条直线翻转180°,得一个与原来形状、大小完全相同的图形,这种变换称为轴对称变换,轴对称变换的主要特点是:对称轴是一切翻转前后对应点连线的垂直平分线。
除轴对称外,还有中心对称,这一点我们将在下一章四边形中讲到。
方法总结:
复杂的图形都是由较简单的基本图形组成,故可将复杂的图形分解成几个基本图形这样使问题显而易见。
当直接证题有困难时,常通过添加辅助线构造基本图形以达到解题的目的。综合法是从已知条件出发探索解题途径的方法。
分析法是从结论出发,用倒推来寻找证明思路的方法。
两头“凑”的方法,也就是综合运用以上两种方法才能找到证明思路。(又叫分析――综合法)。转化思想就是将复杂问题转化、分解为简单的问题;或将陌生的问题转化为熟悉的问题来处理的一种思想。
第二篇:初三数学知识点总结和归纳
小编整理了关于初三数学知识点总结和归纳,包括三角形的定义、实数的概念运算、圆的知识点、代数、函数等有关知识点,初三数学知识点以供同学们参考和学习!
初三数学知识点 第一章 实数
★重点★ 实数的有关概念及性质,实数的运算
☆内容提要☆
一、重要概念
1.数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
初三数学知识点 第二章 代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根([a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴(—幂,乘方运算)
① a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/(a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: =(m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① ² =;② ÷ =;③ =;④ =;⑤
技巧:
5.乘法法则:⑴单³单;⑵单³多;⑶多³多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b)=
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: =;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C..11.科学记数法:(1≤a<10,n是整数=
三、应用举例(略)
四、数式综合运算(略)初三数学知识点:第三章 统计初步
★重点★
☆ 内容提要☆
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1.样本平均数:⑴;⑵若,„,,则(a—常数,,„,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴;⑵若 , ,„, ,则(a—接近、、„、的平均数的较“整”的常数);若、、„、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、应用举例(略)
初三数学知识点:第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成 13.公理、定理
14.逆命题二、三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,3.三角形的主要线段
讨论:①定义②³³线的交点—三角形的³心③性质
① 高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法—反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法
⑹证面积关系:将面积表示出来三、四边形
分类表:
1.一般性质(角)
⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
⑶判定步骤:四边形→平行四边形→矩形→正方形
┗→菱形——↑
⑷对角线的纽带作用:
3.对称图形
⑴轴对称(定义及性质);⑵中心对称(定义及性质)
4.有关定理:①平行线等分线段定理及其推论1、2
②三角形、梯形的中位线定理
③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。
四、应用举例(略)初三数学知识点 第五章 方程(组)
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆ 内容提要☆
一、基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2.分类:
二、解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc(c≠0)
三、解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法
②加减法四、一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤—推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:若,则以 为根的一元二次方程是:。
5.常用等式:
五、可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如,)
⑷验根及方法
2.无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!)②换元法(例,)⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
初三数学知识点
六、列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
二常用的相等关系
1.行程问题(匀速运动)
基本关系:s=vt
⑴相遇问题(同时出发):
+ =;
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行:;
2.配料问题:溶质=溶液³浓度
溶液=溶质+溶剂
3.增长率问题:
4.工程问题:基本关系:工作量=工作效率³工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
三注意语言与解析式的互化
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、„„
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
四注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算
如,“小时”“分钟”的换算;s、v、t单位的一致等。
七、应用举例(略)
初三数学知识点:第六章 一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆ 内容提要☆
1.定义:a>b、a
2.一元一次不等式:ax>b、ax
3.一元一次不等式组:
4.不等式的性质:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac
⑷(传递性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
7.应用举例(略)初三数学知识点 第七章 相似形
★重点★相似三角形的判定和性质
☆内容提要☆
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中“对应”二字的含义;
②平行→相似(比例线段)→平行。
二、相似三角形性质
1.对应线段„;2.对应周长„;3.对应面积„。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1.“等积”变“比例”,“比例”找“相似”。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。⑴
⑵
⑶
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
五、应用举例(略)
初三数学知识点 第八章 函数及其图象
★重点★正、反比例函数,一次、二次函数的图象和性质。
☆ 内容提要☆
一、平面直角坐标系
1.各象限内点的坐标的特点
2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点
4.坐标平面内点与有序实数对的对应关系
二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数
(定义→图象→性质)
1.正比例函数
⑴定义:y=kx(k≠0)或y/x=k。
⑵图象:直线(过原点)
⑶性质:①k>0,„②k<0,„
2.一次函数
⑴定义:y=kx+b(k≠0)
⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
⑶性质:①k>0,„②k<0,„
⑷图象的四种情况:
3.二次函数
⑴定义:
特殊地,都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧„,右侧„;a<0时,在对称轴左侧„,右侧„。
4.反比例函数
⑴定义: 或xy=k(k≠0)。
⑵图象:双曲线(两支)—用描点法画出。
⑶性质:①k>0时,图象位于„,y随x„;②k<0时,图象位于„,y随x„;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法
1.用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
六、应用举例(略)
初三数学知识点 第九章 解直角三角形
★重点★解直角三角形
☆ 内容提要☆ 一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函数值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3.互余两角的三角函数关系:sin(90°-α)=cosα;„
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
1.俯、仰角: 2.方位角、象限角: 3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
四、应用举例(略)
初三数学知识点 第十章 圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆ 内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
5.与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.三种位置及判定与性质:
2.切线的性质(重点)
3.切线的判定定理(重点)。圆的切线的判定有⑴„⑵„
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:
内角的一半:(右图)
(解Rt△OAM可求出相关元素,、等)
六、一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、点的轨迹
六条基本轨迹
八、有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:
4、8;
6、3等分
九、基本图形
十、重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦
第三篇:初三数学旋转知识点总结
第23章
旋转知识点总结
一、旋转
1、定义
把一个图形绕某一点O转动一个角度的叫做旋转,其中O叫做,叫做旋转角。
2、性质
(1)对应点到的距离相等。
(2)对应点与旋转中心所连线段的夹角等于。
二、中心对称
1、定义
把一个图形绕着某一个点旋转,如果旋转后的图形能够和原来的图形互相,那么这个图形叫做中心对称图形,这个点就是它的。
2、性质
(1)关于中心对称的两个图形是
形。
(2)关于中心对称的两个图形,对称点连线都经过对称,并且被对称中心。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点,那么这两个图形关于这一点对称。
三、坐标系中对称点的特征
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号,即点P(x,y)关于原点的对称点为P’(,)
.2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x,y的符号,即点P(x,y)关于x轴的对称点为P’(,)
.3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,相等,的符号相反,即点P(x,y)关于y轴的对称点为
P’(,)
.旋转练习题
一、细心选一选(每题3分,共30分)
1.下面的图形中,既是轴对称图形又是中心对称图形的是
()
A.
B.
C.
D.
2.如果一个多边形绕它的中心旋转60°,才和原来的图形重合,那么这个多边形是
()
A.正三角形
B.正四边形
C.正五边形
D.正六边形
3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()
A.3个
B.4个
C.5个
D.6个
4.如图1,四边形ABCD是正方形,ΔADE绕着点A旋转900后到达ΔABF的位置,连接EF,则ΔAEF的形状是()
图1
A.等腰三角形
B.直角三角形
C
D
B
E
A
C.等腰直角三角形
D.等边三角形
5.如图2,把ΔABC绕点C顺时针旋转90°得到ΔDEC,若∠A=25°,则∠CED=________.A、45°
B、55°
C、65°
D、75°图2
6.在坐标系中,点(5,3)关于原点的对称点坐标是()
A、(-5,4)
B、(-5,-3)
C、(-3,-5)
D、(5,3)
7.下列命题中的真命题是
()
A.全等的两个图形是中心对称图形.B关于中心对称的两个图形全等.C.中心对称图形都是轴对称图形.D.轴对称图形都是中心对称图形.8.观察下列图案,其中旋转角最大的是
()
9.如图将叶片图案旋转180°后,得到的图案是
()
叶片图案
D
C
A
B
10.在艺术字中,有些字母是中心对称图形,下面的5个字母E、H、I、N、A是中心对称图形的有()个。
A、5
B、5
C、3
D、2
二、填空题
11、如图,ΔABC按顺时针方向旋转一个角后成为ΔADE.已知∠B=93°,∠AED=48°,则旋转角等于 ___ °.12、在平面直角坐标系中,点关于原点对称点的坐标是
.
13、钟表上的分针绕其轴心旋转,经过25分钟后,分针转过的角度是______________.14.如图,镜子中号码的实际号码是_____________.O15、如右图
所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.
16、已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),将△ABO绕点O
按顺时针旋转135°则点A,B的对应点A1,B1的坐标分别是A1(____,____),B1(____,____).三、解答题
17、如图是某汽车的标志,它可以看作是由什么“基本图案”通过怎样旋转得到的?每次旋转了多少度?
18、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB
上,∠AOD=90°,求∠B的度数。
19.如图8,在直角坐标系中,点P的坐标为(3,4),将OP
绕原点O逆时针旋转90°得到线段OP′,(1)在图中画出线段OP′;
(2)求P′的坐标和PP′的长度.图820、如图是由若干个边长为1的小正方形组成的网格,请在图中作出将“蘑菇”ABCDE绕A点逆时针旋转90°再向右平移2个单位的图形(其中C、D为所在小正方形边的中点).
A
B
E
C
D
第四篇:初三数学圆知识点总结
初三数学
圆知识点总结
一、本章知识框架
二、本章重点
1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合.
2.判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有
d>r点P在⊙O
外;
d=r点P在⊙O
上;
d 内. 3.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. (3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示. (3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线. (2)切线的性质: ①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心. (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长. (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系: 设⊙O 半径为R,点O到直线l的距离为d. (1)直线和圆没有公共点直线和圆相离d>R. (2)直线和⊙O有唯一公共点直线l和⊙O相切d=R. (3)直线l和⊙O 有两个公共点直线l和⊙O 相交d 9.圆和圆的位置关系: 设的半径为R、r(R>r),圆心距. (1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r. (2)没有公共点,且的每一个点都在外部内含d (3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r. (4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r. (5)有两个公共点相交R-r 10.两圆的性质: (1)两个圆是一个轴对称图形,对称轴是两圆连心线. (2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:,周长C=2πR. 圆心角为n°、半径为R的弧长. 圆心角为n°,半径为R,弧长为l的扇形的面积. 弓形的面积要转化为扇形和三角形的面积和、差来计算. 圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为. 圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl,全面积为,母线长、圆锥高、底面圆的半径之间有. 【经典例题精讲】 例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变? 分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律. 解: 连结OP,P点为中点. 小结:此题运用垂径定理进行推断. 例2 下列命题正确的是() A.相等的圆周角对的弧相等 B.等弧所对的弦相等 C.三点确定一个圆 D.平分弦的直径垂直于弦. 解: A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确. B.等弧就是在同圆或等圆中能重合的弧,因此B正确. C.三个点只有不在同一直线上才能确定一个圆. D.平分弦(不是直径)的直径垂直于此弦. 故选B. 例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D. 分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等. 解: 设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x. x+2x+3x+2x=360°,x=45°. ∴∠D=90°. 小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长. 例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm. 分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过 P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解. 解: . 小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型. 例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距. 解:分两种情况讨论: (1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴. 又∵AB=16 ∴AC=8. 在中,. 在中,. 故. (2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结. ∵垂直平分AB,∴. 又∵AB=16,∴AC=8. 在中,. 在中,. 故. 注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题. 三、相关定理: 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等) 说明:几何语言: 若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理) 例1. 已知P为⊙O内一点,⊙O半径为,过P任作一弦AB,设,则关于的函数关系式为。 解:由相交弦定理得,即,其中 2.切割线定理 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB 例2. 已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。 解:设TD=,BP=,由相交弦定理得: 即,(舍) 由切割线定理,由勾股定理,∴ ∴ ∴ 四、辅助线总结 1.圆中常见的辅助线 1).作半径,利用同圆或等圆的半径相等. 2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明. 3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算. 4).作弦构造同弧或等弧所对的圆周角. 5).作弦、直径等构造直径所对的圆周角——直角. 6).遇到切线,作过切点的弦,构造弦切角. 7).遇到切线,作过切点的半径,构造直角. 8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径. 9).遇到三角形的外心常连结外心和三角形的各顶点. 10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点. 11).遇相交两圆,常作:(1)公共弦;(2)连心线. 12).遇两圆相切,常过切点作两圆的公切线. 13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边. 2、圆中较特殊的辅助线 1).过圆外一点或圆上一点作圆的切线. 2).将割线、相交弦补充完整. 3).作辅助圆. 例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为() A.2 B.3 C.4 D.5 分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=DE.设AE=x,则在Rt△CEO中,即,则,(舍去). 答案:A. 例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于() A.35° B.90° C.110° D.120° 分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C. 例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于() A. B. C. D. 分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高,即.答案:B. 例4 如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,. 求:EM的长. 简析:(1)由DC是⊙O的直径,知DE⊥EC,于是.设EM=x,则AM·MB=x(7-x),即.所以.而EM>MC,即EM=4. 例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程(其中m为实数)的两根. (1)求证:BE=BD; (2)若,求∠A的度数. 简析:(1)由BE、BD是关于x的方程的两根,得,则m=-2.所以,原方程为.得.故BE=BD. (2)由相交弦定理,得,即.而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,则,所以,所以.在Rt△ACB中,故∠A=60°. 九年级数学上册知识点 (为重中之重) 第一章 二次根式 二次根式:形如()的式子为二次根式; 性质:()是一个非负数; 。 二次根式的乘除: 。 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。 二次根式的混合运算 第二章 一元二次方程 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。 一元二次方程的解法 ① 配方法:将方程的一边配成完全平方式,然后两边开方; ② 公式法:(其中当△=>0时,方程有两个不同的实数根:;当△==0时方程有两个相等的实数根:;当△=<0时,方程无实数根) ③ 因式分解法:左边是两个因式的乘积,右边为零。 一元二次方程在实际问题中的应用 韦达定理:设是方程的两个根,那么有 第三章 旋转 图形的旋转 旋转:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转。 性质:①对应点到旋转中心的距离相等; ②对应点与旋转中心所连的线段的夹角等于旋转角 ③旋转前后的图形全等。 会画出一个图形顺时针或逆时针旋转30°、60°、90°后的图形。 中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。 中心对称图形:把一个图形绕着某个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。 会画出一个图形关于原点对称得图形,也就是中心对称图形。 关于原点对称的点的坐标 已知点P的坐标是(x,y):关于原点对称的点的坐标是(-x,-y) 关于x轴对称的点的坐标是(x,-y) 关于y轴对称的点的坐标是(-x,y) 第四章 圆 圆、圆心、半径、直径、圆弧、弦、半圆的定义 垂直于弦的直径 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧。 弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 点和圆的位置关系 点在圆外 点在圆上 d=r 点在圆内 d 定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。 6直线和圆的位置关系 相交 d 相切 d=r 相离 d>r 切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线; 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。 圆和圆的位置关系 外离 d>R+r 外切 d=R+r 相交 R-r 内切 d=R-r 内含 d 正多边形和圆 正多边形的中心:外接圆的圆心 正多边形的半径:外接圆的半径 正多边形的中心角:没边所对的圆心角 正多边形的边心距:中心到一边的距离 弧长和扇形面积 弧长 扇形面积: 圆锥的侧面积和全面积 侧面积: 全面积 (附加)相交弦定理、切割线定理 第五章 概率初步 概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。 用列举法求概率 一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)= 用频率去估计概率第五篇:初三数学上册知识点总结