第一篇:九年级数学相似三角形知识精讲
新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
初三数学相似三角形知识精讲
(二)重要知识点介绍: 1.比例线段的有关概念: 在比例式abcd(a:bc:d)中,a、d叫外项,b、c叫内项,a、c叫前项,b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2.比例性质: ①基本性质:abcdadbc ②合比性质:ababcdcda±bbc±dd
③等比性质:…mn(bd…n≠0)ac…mbd…nab
3.平行线分线段成比例定理:
①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
则ABBCDEEF,ABACDEDF,BCACEFDF,…
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4.相似三角形的判定:
①两角对应相等,两个三角形相似
②两边对应成比例且夹角相等,两三角形相似
③三边对应成比例,两三角形相似
④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似
⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
5.相似三角形的性质
①相似三角形的对应角相等
②相似三角形的对应边成比例
③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比
④相似三角形周长的比等于相似比
⑤相似三角形面积的比等于相似比的平方
【典型例题】
例1.(1)在比例尺是1:8000000的《中国行政区》地图上,量得A、B两城市的距离是7.5厘米,那么A、B两城市的实际距离是__________千米。
(2)小芳的身高是1.6m,在某一时刻,她的影子长2m,此刻测得某建筑物的影长是18米,则此建筑物的高是_________米。
解:这是两道与比例有关的题目,都比较简单。
(1)应填600(2)应填14.4。
例2.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是:____________
A.C.ADABDEBCAEACADBDB.CECFEFABEAFB
DEBCADBD,D.CFCB 分析:由DE∥BC,EF∥AB可知,A、B、D都正确。而不能得到故应选C。利用平行线分线段成比例定理及推论求解时,一定要分清谁是截线、谁是被截
线,C中DEBC很显然是两平行线段的比,因此应是利用三角相似后对应边成比
DEBCADABAEAC例这一性质来写结论,即
例3.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP1,CD23,求△ABC的边长
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
解:∵△ABC是等边三角形
∴∠C=∠B=60°
又∵∠PDC=∠1+∠APD=∠1+60°
∠APB=∠1+∠C=∠1+60°
∴∠PDC=∠APB ∴△PDC∽△APB ∴PCABCDPB
设PC=x,则AB=BC=1+x 23,∴x2,1x1x ∴ ∴AB=1+x=3。
∴△ABC的边长为3。
例4.如图:四边形ABEG、GEFH、HFCD都是边长为a的正方形,(1)求证:△AEF∽△CEA(2)求证:∠AFB+∠ACB=45°
分析:因为△AEF、△CEA有公共角∠AEF 故要证明△AEF∽△CEA 只需证明两个三角形中,夹∠AEF、∠CEA的两边对应成比例即可。
证明:(1)∵四边形ABEG、GEFH、HFCD是正方形
∴AB=BE=EF=FC=a,∠ABE=90° ∴AEAEEFAEEF2a,EC2a
∴2aaECAE2,ECAE2a2a2
∴
又∵∠CEA=∠AEF ∴△CEA∽△AEF(2)∵△AEF∽△CEA ∴∠AFE=∠EAC ∵四边形ABEG是正方形
∴AD∥BC,AG=GE,AG⊥GE ∴∠ACB=∠CAD,∠EAG=45°
∴∠AFB+∠ACB=∠EAC+∠CAD=∠EAG ∴∠AFB+∠ACB=45°
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
例5.已知:如图,梯形ABCD中,AD∥BC,AC、BD交于点O,EF经过点O且和两底平行,交AB于E,交CD于F
求证:OE=OF 证明:∵AD∥EF∥BC ∴ ∴ ∴OEBCOEBC1BCAEABOEAD1,OEADAEAB1EBABEBAB
ABAB1
ADOE111 同理: BCADOF
∴1OE1OF
∴OE=OF 从本例的证明过程中,我们还可以得到以下重要的结论: ①AD∥EF∥BC1AD1BC1OE12
②AD∥EF∥BCOEOF ③AD∥EF∥BC 1AD1BCEF 1OE
112EF2OF
即1AD1BC2EF
这是梯形中的一个性质,由此可知,在AD、BC、EF中,已知任何两条线段的长度,都可以求出第三条线段的长度。
例6.已知:如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
求证:AEAFACAB
分析:观察AE、AF、AC、AB在图中的位置不宜直接通过两个三角形相似加以解决。因此可根据图中直角三角形多,因而相似三角形多的特点,可设法寻求中间量进行代
换,通过△ABD∽△ADE,可得:可得到AD2ABADADAE,于是得到AD2AE·AB,同理 ACABAF·AC,故可得:AE·ABAF·AC,即AEAF
证明:在△ABD和△ADE中,∵∠ADB=∠AED=90°
∠BAD=∠DAE ∴△ABD∽△ADE ∴ABADADAE
∴AD2=AE·AB 同理:△ACD∽△ADF 可得:AD2=AF·AC ∴AE·AB=AF·AC ∴AEAFACAB
例7.如图,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长。
分析:本题的图形是证明比例中项时经常使用的“公边共角”的基本图形,我们可以由基本图形中得到的相似三角形,从而得到对应边成比例,从而构造出关于所求线段的方程,使问题得以解决。
解:在△ADC和△BAC中
∵∠CAD=∠B,∠C=∠C ∴△ADC∽△BAC ∴ADABDCACDCACACBC
又∵AD=6,AD=8,BD=7 ∴AC7DC34
3DCAC4 即
AC347DC 解得:DC=9
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
例8.如图,在矩形ABCD中,E是CD的中点,BE⊥AC于F,过F作FG∥AB交AE于G,求证:AG=AF·FC 证明:在矩形ABCD中,AD=BC,∠ADC=∠BCE=90°
又∵E是CD的中点,∴DE=CE ∴Rt△ADE≌Rt△BCE ∴AE=BE ∵FG∥AB ∴AEBEAGBF2
∴AG=BF 在Rt△ABC中,BF⊥AC于F ∴Rt△BFC≌Rt△AFB ∴AFBFFBFC
∴BF2=AF·FC ∴AG2=AF·FC
例9.如图,在梯形ABCD中,AD∥BC,若∠BCD的平分线CH⊥AB于点H,BH=3AH,且四边形AHCD的面积为21,求△HBC的面积。
分析:因为问题涉及四边形AHCD,所以可构造相似三角形。把问题转化为相似三角形的面积比而加以解决。
解:延长BA、CD交于点P ∵CH⊥AB,CD平分∠BCD ∴CB=CP,且BH=PH ∵BH=3AH ∴PA:AB=1:2 ∴PA:PB=1:3 ∵AD∥BC ∴△PAD∽△PBC
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
∴S△PAD:S△PBC1:9 ∵S△PCH12S△PBC
∴S△PADS四边形AHCD2:7
∵S四边形AHCD
21∴S△PAD6
∴S△PBC54 ∴S△HBC
一、填空题: 1.已知a2b2ab9512S△PBC27,则a:b__________ 2.若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm 3.如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
4.已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________ 6.已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________ 7.如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________
8.如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
二、选择题:
1.如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________ A.9:16 C.3:4 __________米 A.10mab42 B.3:2 D.3:7 2.在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是
B.10mab
42C.abm104
D.abm1042
3.已知,如图,DE∥BC,EF∥AB,则下列结论:
① ③AEECEFABBEFCDEBC
②④
ADBFCECFABBCEABF
其中正确的比例式的个数是__________ A.4个
B.3个
C.2个
D.1个
4.如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________
A.16 B.14
C.16或14
D.16或9 5.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________
A.△AED∽△ACB C.△BAE∽△ACE
三、解答题:
新课标第一网----免费课件、教案、试题下载
B.△AEB∽△ACD D.△AEC∽△DAC 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
1.如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
2.如图,△ABC中,D是AB上一点,且AB=3AD,∠B=75°,∠CDB=60°,求证:△ABC∽△CBD。
3.如图,BE为△ABC的外接圆O的直径,CD为△ABC的高,求证:AC·BC=BE·CD 4.如图,Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE·AD=16,AB45,(1)求证:CE=EF(2)求EG的长
新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
[参考答案]
一、填空题: 1.19:13 4.6
2.24 5.12
3.3;1:4 6.只要是使得其中两个数的比值等于另外两个数的比值即可,如:
22、22等。
7.14.4
8.166
二、选择题: 1.C 2.D
3.B
4.D
5.C
三、解答题:
1.解:∵AD∥EG∥BC ∴在△ABC中,有EGBCABEFBE 在△ABD中,有 ADABAE
∵AE:AB=2:3 ∴BE:AB=1:3 ∴EG23BC,EF13AD
∵BC=9,AD=6 ∴EG=6,EF=2 ∴GF=EG-EF=4 2.解:过点B作BE⊥CD于点E,∵∠CDB=60°,∠CBD=75°
∴∠DBE=30°,∠CBE=∠CBD-∠DBE=75°-30°=45°
∴△CBE是等腰直角三角形。
∵AB=3AD,设AD=k,则AB=3k,BD=2k ∴DE=k,BE ∴BCBDBC3k
6k
2k6k6k3k2323 ∴,BCAB
∴BDBCBCAB
∴△ABC∽△CBD 3.连结EC,新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台
∵BCBC
∴∠E=∠A 又∵BE是⊙O的直径
∴∠BCE=90°
又∵CD⊥AB ∴∠ADC=90°
∴△ADC∽△ECB ∴ACEBCDBC
即AC·BC=BE·CD 4.(1)∵AD平分∠CAB ∴∠CAE=∠FAE 又∵AE⊥CF ∴∠CEA=∠FEA=90°
又∵AE=AE ∴△ACE≌△AFE(ASA)
∴CE=EF(2)∵∠ACB=90°,CE⊥AD,∠CAE=∠DAC ∴△CAE∽△DAC ∴ACADAEAC
∴AC2AE·AD16
在Rt△ACB中
BC2AB2AC2(45)2166
4∴BC8
又∵CE=EF,EG∥BC ∴FG=GB ∴EG是△FBC的中位线
∴EG
12BC4
新课标第一网----免费课件、教案、试题下载
第二篇:九年级数学《相似三角形》说课稿
【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助!
相似三角形说课稿
今天,我的说课将分三大部分进行:
一、说教材;
二、说教学策略;
三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现学生主体教师主导的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:教给学生良好的学习方法比直接教给学生知识更重要。本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由被动学会变成主动会学。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ABC∽DEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ABC的周长(学生只能用相似三角形对应边成比例求出ABC的三边长,然后求其周长)
(2)如果DEF的周长为20,则ABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ABC∽DEF,相似比为k:1,且DEF三边长分别用d、e、f表示,求ABC与DEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到相似三角形的对应高之比等于相似比的结论。进而解决相似三角形的面积比等于相似比的平方的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略转化为三角形来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的相似形你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出数学教学活动要建立在学生已有生活经验的基础上---;教育心理学认为:源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果;于新华老师在一些教研活动中曾经说过:源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比 2
对应高之比 0.5
周长之比 3 k
面积之比 100
2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答: 最大值,最小值(填有或没有)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
第三篇:九年级数学上册《相似三角形的应用》学案分析
九年级数学上册《相似三角形的应用》
学案分析
【教材分析】
(一)教材的地位和作用
《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。
(二)教学目标
、。知识与能力:)
进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:)通过利用相似形知识解决生活实际问题,使学生体验数学于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
【教法与学法】
(一)教法分析
为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:
.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学于生活又服务于生活”。
2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。
3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。
(二)学法分析
按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。
【教学过程】
一、知识梳理、判断两三角形相似有哪些方法?)定义:
2)定理:
3)判定定理一:
4)判定定理二:
5)判定定理三:
2、相似三角形有什么性质?
对应角相等,对应边的比相等
(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)
二、情境导入
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。
古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?
(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)
三、例题讲解
例1(教材P49例3——测量金字塔高度问题)
《相似三角形的应用》教学设计
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:略(见教材P49)
问:你还可以用什么方法来测量金字塔的高度?(如用身高等)
解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)
例2(教材P50练习——测量河宽问题)
《相似三角形的应用》教学设计《相似三角形的应用》教学设计
分析:设河宽AB长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.
解:略(见教材P50)
问:你还可以用什么方法来测量河的宽度?
解法二:如图构造相似三角形(解法略).
四、巩固练习
.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
2.小明要测量一座古塔的高度,从距他2米的一小块积水处c看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处c的距离是40米.求塔高?
五、回顾小结
一)相似三角形的应用主要有如下两个方面
测高
测距
二)测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决
三)测距的方法
测量不能到达两点间的距离,常构造相似三角形求解
(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)
六、拓展提高
怎样利用相似三角形的有关知识测量旗杆的高度?
七、作业
课本习题27.2
0题、11题。
【教学设计说明】
相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,最大限度地调动学生学习的积极性和主动性。
第四篇:三角形相似教案
相似三角形的判定(1)教学设计
一、课题
相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时)
二、教材分析
1.内容要点
本节课让学生利用相似三角形的定义来进一步探索相似三角形的判定条件,从而让学生在学习新知里发展思维,加强与前面已学过的知识:图形的相似、相似多边形的主要特征(相似多边形对应的角相等,对应边的比相等),相似比甚至引导学生联系八年级上册所学的相等三角形的判定定理和平行从对比探索中增强学生的推理归纳和类比应用的能力。2.地位
本节课处于承上启下的位置,既增强了对图形的相似和相似多边形定义联系和运用,又为下一课时相似三角形的判定2以及以后的几何证明奠定了基础。3.作用
从初步认识相似三角形到探索如何利用平行线的特点判定两个三角形相似,从无到有的知识萌发,让学生由探究得到的平行线分线段成比例定理初步返回去严谨地认识两个图形的相似,在探索过程中掌握自主探究、类比、归纳以及转化的思想方法,增强推理能力,进而让学生感受到数学图形之美。经过对平行线分线段成比例定理以及相似三角形判定定理的探究学习,使学生的合情推理意识和主动探究的学习习惯得到发展。
三、学情分析 1.认知基础
学生在八年级上册中已经全面地认识了三角形,并且掌握了全等三角形的判定定理,加上平行线同位角等性质,并且在上一节课已学过了图形的相似以及相似多边形的主要特征,为本节课的学习相似三角形打下了基础。学生在观察、想象、合作探究、归纳概括等方面有了初步的体验,再加上学生会做辅助线,这为本课的学习奠定了一定的基础,但学生对转化思想,几何论证推理能力还在初步形成阶段,这使本节课的学习还有一定的困难。2.情意基础
学生是九年级的学生,对于新知识有一定的接受能力,且数形结合思想,转化思想都相对成熟,对探索学习饶有兴趣,但是思维容易固化,对问题看待不够全面。
四、教学目标
1.理解相似三角形不因位置改变而改变,书写三角形相似时对应角的字母顺序对应;
2.能运用平行线和三角形中线比例关系证明“A字型”三角形相似,能运用三角形全等的方法将“X字型”三角形转化为“A字型”三角形证明其相似;
3.理解相似三角形概念,能正确找出相似三角形的对应边和对应角; 4.能掌握并运用相似三角形判定的“预备定理”; 5.让学生参与探索,获取相似三角形判定条件,感受数学的魅力,体会到数学的充满探索与创造,在学习中发现数学的乐趣并在数学学习生活中形成自主,自信,健康的心理。
五、教学重难点
1.教学重点
相似三角形判定的“预备定理”的探索; 2.教学难点
探索过程中的各种三角形相似的有关证明;
六、教学方法和手段 1.教学方法 引导探究法 2.教学媒体 PPT
七、教学设计思想
探究式的教学方法是新课改的一个重要内容,布鲁纳主张学习的目的是以发现学习的方式使学科的基本结构转变为学生头脑中的认知结构,并且指出学生的知识学习是通过类别化信息的加工过程,积极主动地形成认知结构。利用学生的好奇心,设疑,解疑,组织互动,有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探究与合作交流中理解和掌握本节课的内容,增强直观效果,提高课堂效率。其次,数形结合思想,化归思想以及归纳法和分析法的应用,让学生对新知的认识更加透彻,对问题的探索思路更加明确,并从中让思维得到进一步的提升。
八、教学过程
(一)复习引入(5分钟)1.复习概念性质(3分钟)
T:同学们还记得相似图形的概念是什么吗? S:对应角相等,对应边成比例的两个图形相似。T:相似的两个图形会随它们位置的改变而改变吗? S:不会。
T:很好,大家先记着我们刚刚回忆的内容。下面我们来了解一下最简单的多边形----三角形的相似情况。
T:刚才我们回忆了相似图形的一些性质,那现在我手头上有根据相似图形性质画出来的两个相似三角形,不论它们之间的相对位置如何,乃至处于不同的平面,这两个三角形仍然是相似的。(老师拿出两个相似三角形并在同一平面变换两个三角形纸片的位置,然后让两纸片处于不同平面变换位置)(老师将两纸片贴在黑板上并标明字母)T:同学们我们要用字母表示这两个三角形相似,应该怎么写呢?我们一起来写,首先把两个三角形表示出来,分别是∆ABC∆DEF,同学在写的时候还要注意对应的顶点字母相对应,那中间用什么符号来表示两个三角形相似呢?有同学可以告诉我吗?
S:大写字母S横着写。
T:很好,这跟我们曾经学过的什么符号很像呢? SSS:全等符号。
T:那课后大家思考全等三角形与相似三角形之间有什么联系,下节课我再叫同学回答这个问题。2.创设情境(2分钟)
(老师利用这组相似三角形纸片,将两个三角形的一个对应顶点重叠,贴在黑板上)
T:同学们你们看,相似三角形∆ABC和∆DEF的∆ABC的顶点A与∆DEF的顶点D重合并且∠BAC与∠EDF重合,那边EF和边BC有什么关系吗?
S:平行。
T:为什么呢?
S:同位角相等两直线平行。
T:嗯,AEB三点共线,且∠AEF=∠ABC,所以EF和BC平行。
(二)探索新知(20分钟)
T:如果平行于∆ABCBC边的直线与其他两边AB、AC相交与点E、F,所构成的∆AEF是否与∆ABC相似呢?
S:相似(不相似)。
T:大部分同学都说相似,接下来我们该做些什么去证明这两个三角形相似呢?
T:首先我们从我们学过的类似的图形出发,假设这条平行线是三角形中位线,我们来证明看看。同学们自行思考,待会来分享思路。[PPT显示相应题目和图形](2min过去了,期间教师下台观察学生情况,选一名写完了的同学上台分享思路)
S1:(在黑板上画△ABC并取分别AB、AC中点D、E,连接DE)∵DE是△ABC的中位线∴DE=1/2BC(由三角形中位线定理)
∴AB/AD =AC/AE =BC/DE =1/2.又∵两直线平行同位角相等 ∴∠ADE=∠B,∠AED=∠C,∠A=∠A ∴△ADE∽△ABC.T:同学们觉得S1的解答对吗? S:对。
T:S1的解答充分运用了已学的三角形中位线的知识,找出来隐含在三角形ADE和三角形ABC中边的比例关系,依照定义证明出了这两个三角形相似,证明过程很完整,是对的,让我们给他一些掌声鼓励。(解析S1的做法,并给予肯定)
(老师和学生一起鼓掌)T:接下来加大难度咯,“如图过点D作DE∥BC交AC于点E,那么△ADE与△ABC相似吗?”,请同学们自行思考,待会请同学上来分享思路。[PPT显示相应题目和图形](4min过去了)
S2:由同位角相等可知三个角对应相等,只需证明对应边成比例.因为DE∥BC,所以AD/AB=AE/EC=k, 只需证明DE/BC=k.过点D作DF∥AC交BC于点F,则由两组对边分别平行,得四边形DFCE为平行四边形.所以DE/BC=FC/BC,∵DF∥AC ∴FC/BC=DA/BA,故DE/BC= DA/BA =k ∴△ADE∽△ABC.T:S2将问题转化为了求三角形的一边对应成比例,通过作辅助线DF,构造出了平行四边形,并灵活运用平行四边形和相似的性质,得到了三边对应相等,从而证明了两个三角形相似,做的很棒,让我们把掌声送给他!(和同学们一起鼓掌)T:以上都是平行线与边AB和边AC相交的情况,现在我们延长AB和AC,如图当DE与三角形两边延长线交于边BC下方时,所构成的三角形和原三角形是否相似呢? [PPT显示相应题目和图形] S:相似。
T:要怎样证明呢? S:和上一题一样。
T:对,没错。像这种平行线位于点A下方的,我们统称为“A字型”,凡是拥有这种形状的三角形和平行线,都隐藏着相似三角形。那如果DE与三角形两边延长线交于边点A上方时,所构成的三角形和原三角形是否相似呢?请同学们自行思考。[PPT显示相应题目和图形](T下台观察、指点。2min后)
T:老师刚刚发现,大部分同学都不再用定义进行繁琐的证明了,而是直接由“A字型”的结论出发,将新图形转换为“A字型”加以证明。有哪位同学愿意上台分享一下,你是怎样转化的呢?
S3:分别在边AB和边AC作点N’和M’,使AN=AN’,AM=AM’,由对顶角相等和SAS可得
△AMN≌△AM’N’,从而得到“A字型”,故新三角形和原三角形相似。T:S3分析的很好!让我们给他掌声鼓励!(和同学们一起鼓掌)我们称这种图形为“X字型”,通过“A字型”和“X字型”的相似三角形探究,我们现在可以总结得出我们一开始要证明的结论了,同学们还记得是什么吗?
S:逆命题(刚刚的猜想)。
T:没错,我们给这个刚刚证明的猜想一个名称“预备定理”,大家请看屏幕,一齐朗读一边[PPT显示预备定理] S:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
T:预备定理比定义要简便的多,它的几何语言也是相当简洁 ∵EF∥BC ∴△ADE∽△ABC.(三)知识迁移(7分钟)(备注:此环节题目让学生以同桌为单位交流完成,老师再请同学发言说明思路)
(四)总结反思(7分钟)
定义:„„。要求三边三角满足对应关系,非常严谨但证明过程过于繁琐且使用条件有限。
预备定理:„„。只要求有找到原三角形一边的平行线,构成“A字型”或“X字型”,极大简化了证明过程。
(备注:以上总结,老师说整体性语言,关键字引导学生说出)
(五)布置作业(1分钟)
1.常规作业(第几页第几题)
2.探索作业:请以本节课所学知识,“测量”教室天花板的高度,写一测量方案。
九、板书设计
十、反思
第五篇:相似三角形教案
相似三角形
【基础知识精讲】
1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系.
2.进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学习数学的兴趣和自信心.
【重点难点解析】
相似三角形的概念及相似三角形的基本定理.
【典型热点考题】
例1 如图4-21,□ABCD中,M是AD延长线上一点,BM交AC于点F,交DC于G,则下列结论中错误的是()
图4-21 A.△ABM∽△DGM B.△CGB∽△DGM C.△ABM∽△CGB D.△AMF∽△BAF
点悟:用本节概念和定理直接判断. 解:应选D.
例2 如图4-22,已知MN∥BC,且与△ABC的边CA、BA的延长线分别交于点M、N,点P、Q分别在边AB、AC上,且AP∶PB=AQ∶QC.
图4-22 求证:△APQ∽△ANM. 证明:∵ AP∶PB=AQ∶QC,∴ PQ∥BC,又MN∥BC,∴ MN∥PQ ∴ △APQ∽△ANM.
例3 写出下列各组相似三角形的对应边的比例式.
(1)如图4-23(1),已知:△ADE∽△ABC,且AD与AB是对应边.(2)如图4-23(2),已知:△ABC∽△AED,∠B=∠AED.
图4-23 点悟:要写出两个相似三角形的对应边的比例式,首先要确定两个相似三角形的对应边.因为相似三角形是全等三角形的推广,所以要确定两个相似三角形的各组的对应边,可以参照确定全等三角形对应边的方法,从确定这两个相似三角形对应的顶点出发.
解:(1)已知△ADE∽△ABC,且AD和AB是对应边,它们所对的顶点E和C为对应顶点,而A是两三角形的公共顶点,∠BAC为公共角,所以两三角形另两组对
ADDEBCEACA应边为DE和BC,EA和CA,得AB.
(2)已知△ABC∽△AED,且∠ABC=∠AED,A为公共顶点,另一对应顶点为D和C,三组对应边分别是AD和AC,AE和AB,DE和CB.
ADAEABDECB得AC.
本题两类相似三角形的图形是相似三角形的基本图形. 第一类为平行线型.
平行线型是由两条平行线和其他直线配合构成的两个相似三角形,它的对应元素比较明显,对应边,对应角,对应顶点有同样的顺序性,对应边平行或重合.基本图形有两种(图4-24):
图4-24 第二类是相交线型.
这一类型的对应元素不十分明显,对应顺序也不一致,对应边相交.它的基本图形,也有两种,一种是有一个公共角,另一种是一组对顶角(图4-25).
图4-25 其他类型的相似形多可以分解成这两种基本类型或转化为这两种基本类型. 例4 如图4-26,已知:△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于F.求证:AB·DF=BC·EF.
图4-26 点悟:如果我们把条件和结论涉及的线段AD,CE,AB,DF,BC,EF在图中都描成红线,可以发现一个完全由红线构成的三角形,即△DBE,还有一条线AC,是△DBE的截线,分别截△DBE的三边DB,BE,DE(或它们的延长线)于A,C,F.这类问题添辅助线的方法至少有三种,即过红线三角形任一顶点作对边的平行线,并与该三角形的截线或其延长线相交(如图4-27),在每一种图形中,虽然只有一对平行线,但与这对平行线有关的基本图形都能找到两对,根据每一个基本图形都可以写出包含辅助线段在内的一个比例式.
图4-27
ADDFBHEFCEBC以(2)为例,可以写出ABBHABDFAD,又可以写出BH.前两式均有BH,于是
BC可得,及
BHBCEF,所以,有
ABDFEF.又因为ADCEADCE=CE,于是有AB·DF=BC·EF.(证略)利用比例线段也可以证明两直线平行或两线段相等.
例5 如图4-28,已知:梯形ABCD中,AD∥BC,E,F分别是AD,BC的中点,AF与BE相交于G,CE和DF相交于H,求证:GH∥AD.
图4-28 点悟:条件中的AD∥BC,给出了两个基本图形,而AE=ED,BF=FC,又使从两
AGDHHF个基本图形中给出的比例式有一个公共的比值,从中可以得到GF.所以GH∥AD.
证明:∵ AD∥BC,AEAGGFEDDHHF∴ BF,FC.
∵ AE=ED,BF=FC,AGDHHF∴ GF,∴ GH∥AD.
例6 如图4-29,已知:AD平分∠BAC,DE∥AC,EF∥BC,AB=15cm,AF=4cm. 求:BE和DE的长.
图4-29 点悟:题设中的两对平行线起着不同的作用.由DE∥AC,AD平分∠BAC,可以得到AE=DE.这样已知及欲求的线段BE,AE,AB,AF都在AB和AC这两条边上,利用EF∥BC,就可以得到相应的比例线段.求得答案. 解:∵ DE∥AC,∴ ∠3=∠2,又AD平分∠BAC,∴ ∠1=∠2,∴ ∠1=∠3,∴ ED=AE. ∵ EF∥BC,ED∥CF,∴ EDCF为平行四边形,∴ ED=CF=AE.
设AE=x,则 CF=x,BE=15-x. ∵ EF∥BC,AEAFCFx4x∴ BE,即15x,2∴ x4x600
解得,x110(舍),x26. ∴ DE=6cm,BE=9cm.
例7 如图4-30,已知:在△ABC中,AD和BE相交于G,BD∶DC=3∶1,AG=GD. 求BG∶GE.
图4-30 点悟:按照例4的分析,过点G作GM∥AC,根据平行线截得比例线段定理,得BG∶GE=BM∶MC,于是只要求出BM∶MC的值即可. 解:作GM∥AC交BC于M,则 BG∶GE=BM∶MC. ∵ AG=GD,DMMC12DC∴ .
BD∵ DCBD131,61BD即2DC,MC61161.
71BDMCMCBM,即MC,∴ BG∶GE=7∶1.
点拨:以上四例中,我们复习了线段成比例和平行线分线段成比例的有关知识.
【易错例题分析】
例1 已知:在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点. 求证:△ADQ∽△QCP. 证明:在正方形ABCD中,∵ Q是CD的中点,AD2∴ QCBP,3BC4DQ∵ PC,∴ PC.又∵ BC=2DQ,∴ PCDQPC,∠C=∠D=90°,2.
AD在△ADQ和△QCP中,QC∴ △ADQ∽△QCP. 警示:证此类题应避免没有目标而乱推理的情况.
例2 一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如图4-31(1)、(2)所示,请你用学过的知识说明哪位同学的加工方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).
解:由AB=1.5米,SΔABC1.5平方米,得BC=2米.设甲加工的桌面边长为x米,∵DE∥AB,Rt△CDE∽Rt△CBA,CDDEAB672xx1.5∴ CB,即2.
解得 x,过点B作Rt△ABC斜边AC上的高BH,交DE于P,交AC于H.
由AB=1.5米,BC=2米,SΔABC1.5平方米得AC=2.5米,BH=1.2米. 设乙加工的桌面边长为y米,∵ DE∥AC,∴ Rt△BDE∽Rt△BAC.
BPDEAC1.2yy2.5∴ BHy,即1.2
3037303722即x>y,xy,解得,6因为7所以甲同学的加工方法符合要求. 警示:解此类要避免看不出相似直角三角形而无法解的情况,更要避免看不出对应线段造成的比值写错而形成的计算错误.
例3 如图4-32,AD是直角△ABC斜边上的高,DE⊥DF,且DE和DF分别交AB、AFBEBDAC于E、F.求证:AD.
图4-32(2002年,安徽)正解:∵ BA⊥AC,AD⊥BC,∴ ∠B+∠BAD=∠BAD+∠DAC=90°,∴ ∠B=∠DAC.又∵ ED⊥DF,∴ ∠BDE+∠EDA=∠EDA+∠ADF=90°,∴ ∠BDE=∠ADF,∴ △BDE∽△ADF.
BDBEAFAFBEBD∴ AD,即 AD.
警示:本例常见的错误是不证三角形相似,直接进行线段的比,这是规范的一种情况.
【同步达纲练习】
一、选择题
1.如图4-33,在△ABC中,AB=AC,AD是高,EF∥BC,则图中与△ADC相似的三角形共有()
A.1个 B.2个 C.3个 D.多于3个
2.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图4-34在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3…若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是()
A.24 B.25 C.26 D.27
图4-33 图4-34
二、填空题
3.如图4-35,△AED∽△ABC,其中∠1=∠B,则AD∶________=________∶BC=________∶AB.
图4-35 图4-36 4.如图4-36,D、E、F分别是△ABC的边AB、BC、CA的中点,则图中与△ABC相似的三角形共有________个,它们是_______________.
5.阳光通过窗口照到室内,在地面上留下2.7m宽的亮区,已知亮区到窗下的墙脚最远距离是8.7m,窗口高1.8m,那么窗口底边离地面的高等于________.
三、解答题
6.如图4-37,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2PEPF.
7.已知:如图4-38,等腰△ABC中,AB=AC,∠BAC=36°,AE是△ABC的外角平分线,BF是∠ABC的平分线,BF的延长线交AE于E.求证:(1)AF=BF=BC;(2)EF∶BF=BC∶FC.
图4-37 图4-38 8.四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于F,∠ECA=∠D.求证:AC·BE=AD·CE.
参考答案
【同步达纲练习】
1.C 2.C 3.AC,ED,AE 4.4,△ADF、△DBE、△FEC、△EFD
5.4m 6.连结PC,先证明△ABP≌△ACP,∴PB=PC,再证明△PCF∽△PEC,∴PC∶PE=PF∶PC.∴PC2PEPF,∴PB2PEPF
7.(1)由已知可求得∠ABF=∠BAC=36°,∠C=∠BFC=72°,∴BC=BF=AF
(2)∵△EAF、△BCF都是底角为72°的等腰三角形,∴△EAF∽△BCF,∴EF∶BF=AF∶CF,又AF=BC,∴EF∶BF=BC∶FC
8.∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∵∠ECA=∠D,∴∠ECA=∠B,又∵∠E=∠E,∴△ECA∽△EBC,∴AC∶BC=CE∶BE,∴AC∶AD=CE∶BE,∴AC·BE=AD·CE