第一篇:九年级数学4.3 相似多边形教案
4.3 相似多边形
【教学目标】
经历相似多边形概念的形成过程,了解相似多边形的含义.【教学重难点】
重点:探索相似多边形的定义过程,以及用定义判断两个多边形是否相似.难点:探索相似多边形的定义过程.【教学过程】
一、课前准备
活动内容:图片收集(提前布置)以小组为单位,开展收集活动: 各尽所能收集生活中各类相似图形
二、情境引入(获取信息,体会特点)
1.活动内容:各小组派代表展示自己课前所收集得到的资料 2.教师展示课件(播放动画)
三、例题讲解
例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.1.各角对应相等、各边对应成比例的两个多边形叫做相似多边形.2.相似多边形对应边的比叫做相似比.3.相似用“∽”表示,读作“相似于”.四、合作学习
1.(想一想)如果两个多边形相似,那么它们的对应角有什么关系?对应边呢? 板书:相似多边形的对应角相等,对应边成比例
2.如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
3.通过反例分析,使学生进一步理解相似多边形的本质特征.4.—块长3 m,宽1.5 m的矩形黑板,镶在其外围的木制边框宽7.5 cm,由边框的内外边缘所构成的矩形相似吗?为什么?
五、巩固练习活动内容:
2.如图,下面的两个菱形相似吗?为什么?满足什么条件的两个菱形一定相似?
六、活动与探究
如图,将一张长、宽之比为√2的矩形纸ABCD依次不断对折,可以得到矩形纸BCFE,AEML,GMFH,LGPN.(1)矩形 ABCD、BCFE、AEML、GMFH、LGPN 长与宽的比改变了吗?(2)在这些矩形中,有成比例的线段吗?(3)你认为这些大小不同的矩形相似吗?
七、课堂小结 本节课应掌握: 两个图形的相似必须同时满足:各角对应相等、各边对应成比例,两个条件缺一不可,两个图形不相似时,它们的对应角也可能相等(如两个矩形),或者对应边也可能对应成比例(如两个菱形).⑴全等图形是相似比为1的相似图形.(2)相似比具有顺序性,例如两个相似多边形,前一个多边形与后一个多边形的相似比为k,那么后一个多边形与前一个多边形的相似比为1/k(3)相似多边形的定义既可以作为相似多边形的性质,也可以作为相似多边形的判定依据.八、布置作业
教材P90〜91习题4.5
第二篇:相似多边形的教案
4.3 相似多边形
学习目标:
1、会说出相似多边形的概念和性质.2、在简单情形下,能根据定义判断两个多边形相似.3、会用相似多边形的性质解决简单的几何问题.重点与难点:
1、本节教学的重点是相似多边形的定义和性质.2、要判断两个多边形是否相似,需要看它们的边是否对应成比例、对应角是否相等,情形要比三角形复杂,是本节教学的难点.教学方法:自主探究 教学用具:多媒体 教学过程
一、创设问题情境,导入新课 :
1.下面请同学 们观察下面两个多边形: 计算机显 示屏上的多边形ABCDEF和投射到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗? 学生回答后,教师: 这样的两个多边形叫做什么多边形? 2.引入课题:相似多边形
二、归纳定义及运用
(学生根据观察和体验的过程,归纳定义,提高语言表达能力)1.合作探究: 在图4-11中的两个多边形中,是否有对应相等的内角?设法验证你的猜测.在图4-11中的两个多边形中,夹相等内角的两边是否成比例?(同桌一人测角,一人测边,共同得出结论:这种形状相同的多边形各对应 角相等、各对应边成比例.然后尝试给相似多边形下一个定义.)2.获得新知:(自读课本,时间3分钟,然后回答老师提出的问题:①多边形相似需满足几个条件? ②相似多边形的记法有什么要求?③什么叫相似比?求相似比要注意什么?)3.议一议:(1)观察下面两组图形,图(1)中的两个图形相似吗?图(2)中的两个图形呢?为什么?你从中得到什么启发?与同桌交流.(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
(通过对两个典型范例的分析,加深对相似多边形的本质特征的理解.让学生充分发表看法,然后老师总结。)4.巩固新知:(巩固相似多边形的定义这一最基本的判断方法。)例 下列每组图形是相似多边形吗?试说明理由。(1)正三角形ABC与正三角形D EF;(2)正方形ABCD与正方形EFGH.5.想一想——反过来会怎样?
如果两个多边形相似,那么它们的 对应角有什么关系?对应边呢?
(老师总结:相似多边形的定义既是最基本、最重要的判定方法,也是最本质、最重要的性质.)6.做一做 一块长3m、宽1.5m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?
(让学生独立作出判断,并说明理由.通过这个易出错的例子,使学生认识到直观有时是不可靠的,需要通过定义的两个条件进行判断.)
三、课堂小结
通过这节课的学习你有什么收获?
(学生自由回答,培养学生的语言表达力)学生归纳总结:相似多边形的概念既是性质又是判定,运用性质时对应顶点字母写在对应的位置上,同时知道相等角所对边是对应边,对应边所对角是对应角。相似比有顺序 要求
第三篇:相似多边形教学反思
反思一:相似多边形教学反思
在初二·一班上完《相似多边形》之后,淡淡的喜悦伴随着淡淡的遗憾萦绕心间,下午看了自己的课堂实录,将自己的在以下几个方面的感受整理如下:
一、反思学案设计
本节课在学案设计的过程中结合了教材提供的内容和我班学生的实际水平,对教材提供的内容进行了整合,更符合我班学生的水平。有以下几点比较满意;
1、问题情景的设计。先给学生利用课件展示一组图片,让生通过观察找出形状相同的图片。本题形象直观,学生都能通过观察得出结论。趁势教师出示如下题目:
一块黑板,长3米,宽1.5米,加一7.5厘米的边框,边框外围与边框里边的矩形形状相同吗?
学生往往会不假思索地认为相同。教师告诉学生其实不相同,本节课的内容就是告诉你为什么不相同,顺势导入课题。
2、操作题的设计。本节课教材提供的引例,我把它改成操作题放在了学完相似多边形定义之后,用来巩固相似多边形的判定。此题为开放式操作题,学生自选工具,自己设计操作方法,组内成员自己分工,合作探讨两个六边形是否相似,结论不唯一。
3、思想教育见缝插针。在学完本节课所有知识之后,我让学生利用本节课所学知识在对问题情境中的黑板问题做出判断,并结合此题进行思想教育:在生活中经常需要我们做出判断,我们在做出判断时不能太相信直观,有用事实说话,用数据说话。凡事三思后行。
二、反思课堂生成
看完录像后,我比较满意的一点是我的学生融进了我的课堂中,合作探讨交流落到实处,而不是一种形式,突出表现为本节课有两个课堂生成的学习片段很精彩,我个人的处理也比较到位。
教师生成的课堂资料
课本上安排了一个例题:探讨任意两个正三角形、正四边形的角、边的关系。学生经过自主探讨后很轻松的得出了结论:他们的对应角相等,对应边成比例。学生处理这个问题比较轻松,出乎我的预料之外。于是我临时追加了一个问题:所有的正多边形都具备这个特点吗?同学们围绕这个问题在小组内合作探讨,众人拾柴火焰高,竟然解决的很好。
学生生成的学习片段
在处理操作题是出现了两种不同的结论; 孙卓一组的结论:两个六边形对应角相等,对应边的比值相等,因此相似。
王敏一组:对应角相等,对应边不成比例,她对自己组内得出的结论显然不太自信,不敢说。我一再鼓励他实事求是的说出自己小组内得出的结论。最后终于说出:两个六边形不相似。我首先让同学为他们实事求是大胆发言的精神鼓掌,然后引导学生:同一个问题为什么出现两种结果?到底谁的结论正确?最后引导学生说出两种结果都对,因为在测量时存在误差。这个片段非常精彩,是本节可我最满意的一个教学片断。
三、反思遗憾
任何一节课都不是完美无缺的,一节课没有最好只有更好。正因为课堂教学存在遗憾,自己的业务才有提升的空间。
遗憾一:
学生展示自己的热情不够,表现拘谨,放不开。针对这一点,我在课后专门与学生进了沟通,学生反映听课教师多,害怕出错,还担心自己错了让我难堪。学生的回答让我非常感动,我的学生非常善良,能够站在我的立场上思考问题。我耐心的告诉他们,他们才是课堂的唯一主角,无论什么时候,也不管有没有人听课,老师都以自己的学生大胆展示、勇敢表现为荣。我们相约:我在数学课上尽量给他们表现的机会,而他们也要抓住机会大胆展示。
遗憾二:
本节课在操作题上,花的时间比预计的多,因此导致拖堂。
四、反思疑惑
操作题、开放式问题引入课堂,学生在探讨的过程中往往会生成一些教学片段,因此时间不好把握,导致拖堂或完不成教学任务,到底如何看待这种现象?我在课堂上(或其他教师的课上)常常碰到因为探究而不能完成预设教学内容的情况,感到预设与生成之间的矛盾不知如何解决,盼各位老师给予指导。
反思二:相似多边形教学反思
1、在新课程教学法的指导下,精心设计了《相似多边形》这节课的教学设计并进行了教学。总思想是面向每一位学生,激发每一个学生的学习欲望和学习热情,2、培养学生的主体意识,尊重学生的主体地位,让学生拿出自已准备的相似图形的图片仔细观察、自主思考。根据自己的理解,猜测、推断出结论,培养学生主动学习、自主探究的意识,真正成为课堂学习的主人。
3、根据学生的个体差异,注意因材施教、分层教学,在教学中结合课本想一想、议一议、做一做等教学环节调动学生的潜能,为每一位学生创设施展才能的空间,让学生学得轻松、愉快,培养学生的成就感,使每一位学生都能获得不同程度的成功。同时把学生的活动贯穿于教学的整体过程中,提供学生学习合作、交流、探索、归纳的机会,使学生最大限度的动手、动口、动脑、同伴互助,让学生通过实际感悟相似多边形的概念,找出相似多边形的性质。通过读一读,让学生感受到数学的实际应用价值。
4、不足之处:对学生自主探索的问题拓展不足,应给学生充分时间和空间去自主学习,更加关心和爱护每一名学生,对需要指导的学生给予适当的指导。在教学方法和教学语言的选择上,尽可能注意知识的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感. 对实现人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展做得还不够。
反思三:相似多边形教学反思
本节课主要是相似多边形的定义,这节课主要是让学生自学,将定义和相似比等概念进行理解记忆,通过与相似三角形的定义的对比,得到要理解相似多边形的概念,要从以下几方面入手:(1)两个多边形相似,必须具备两个条件:①各角对应相等;②各边对应成比例,这两个条件缺一不可;(2)在相似多边形中,对应相等的角是对应角,对应成比例的边是对应边;(3)两多边形相似用∽表示,读作:相似于;(4)形状相同的多边形相似。
在这里,初学者因为有相似三角形的基础,往往在判定两个多边形相似时出现只说明满足一个条件便下结论是相似多边形的错误。另外在符号表示两个多边形相似时,要把表示对应角的顶点写在对应位置上,这样可以一目了然地知道它们的对应角和对应边。
对于第一个容易出现的错误,通过两个例子说明了这个问题,一个命题是各角对应相等的多边形是相似多边形,举出的反例是:一般的长方形和正方形,另一个命题是各边对应成比例的多边形是相似多边形,举出的反例是:一般的菱形与正方形。这样既说明理解了概念,又强调了判定两多边形相似时两个条件不可或缺,必须同时成立。然后又对课本上的做一做进行了处理,黑板外边镶边的问题,咋一看,内外两个矩形是形状相同的,所以几乎所有的学生都认为这两个矩形是相似的,然后通过计算,发现这两个矩形的长宽之比并不相同,所以两个矩形并不相似,在学生的惊讶之中完成了证明。给学生总结:数学是说理的学科,是培养逻辑思维能力的学科,思维要严密,不能看着像就是,而要用数据来说明你的结论是正确的。
课本例1的处理是让学生自己看课本,然后仿照课本例题仿写学案上的例4和基础训练上的第2题,因为学生的初级阶段是模仿,模仿也是很好的学习方式,特别是自学时用处最大。学生通过模仿例题,都能迅速的做对这两道题。任务达成。
然后是课外知识的延伸纸张的大小,让学生自学课本的读一读了解纸张的国际标准,拓展知识面,通过了解这个知识,试着做学案上的一题:一张纸,每次对折后,所得的长方形均和原长方形相似,问纸张的长和宽应当满足什么条件?这就需要用到多边形的相似,通过计算得到长宽之比是,这才真正体会到学数学,用数学的乐趣。
本节课基本上将课本上的内容,学案上的内容以及基础训练上的内容处理完毕了,感觉效果不错。实用是硬道理!
反思四:相似多边形教学反思
上完《相似多边形》之后,经过反思,下面将自己的在以下几个方面的感受整理如下:
一、学生融入了课堂中,合作探讨交流落到实处,而不是一种形式,例如:课本上安排了一个例题:探讨任意两个正三角形、正四边形的角、边的关系。学生经过自主探讨后很轻松的得出了结论:
第四篇:九年级数学《相似三角形》说课稿
【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助!
相似三角形说课稿
今天,我的说课将分三大部分进行:
一、说教材;
二、说教学策略;
三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现学生主体教师主导的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:教给学生良好的学习方法比直接教给学生知识更重要。本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由被动学会变成主动会学。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ABC∽DEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ABC的周长(学生只能用相似三角形对应边成比例求出ABC的三边长,然后求其周长)
(2)如果DEF的周长为20,则ABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ABC∽DEF,相似比为k:1,且DEF三边长分别用d、e、f表示,求ABC与DEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到相似三角形的对应高之比等于相似比的结论。进而解决相似三角形的面积比等于相似比的平方的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略转化为三角形来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的相似形你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出数学教学活动要建立在学生已有生活经验的基础上---;教育心理学认为:源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果;于新华老师在一些教研活动中曾经说过:源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比 2
对应高之比 0.5
周长之比 3 k
面积之比 100
2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答: 最大值,最小值(填有或没有)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
第五篇:九年级数学图形的相似
实中数理化教案
图形的相似
一、教学目标
1. 理解并掌握两个图形相似的概念. 2. 了解成比例线段的概念,会确定线段的比.
二、重点、难点
1. 重点:相似图形的概念与成比例线段的概念. 2. 难点:成比例线段概念. 3. 难点的突破方法
(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:
①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作 或a:b=c:d;⑤若四条线段满足,则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,则有,或其它七种表达形式).
三、课堂引入
1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P36引入.
(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.
2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少? 归纳:两条线段的比,就是两条线段长度的比.
3.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
教师:刘梦雅
学生:
时间:
咨询热线:***
***
实中数理化教案
【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作 或a:b=c:d;(4)若四条线段满足,则有ad=bc.
四、例题讲解
例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75cm,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少? 解:略.()
小结:上面分别采用m、cm、mm三种不同的长度单位,求得的 的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.
例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?
分析:根据比例尺=,可求出北京到上海的实际距离. 解: 略
答:北京到上海的实际距离大约是1120 km.
五、课堂练习
1.下列说法正确的是()
A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm,宽是_______cm;(大)长是_______cm,宽是_______cm;(2)(小);(大).(3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)
3.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?
4.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?
教师:刘梦雅
学生:
时间:
咨询热线:***
***