【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一

时间:2019-05-12 16:41:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一》。

第一篇:【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一

百度文库

教学设计

23.3 相似三角形

23.3.2 相似三角形的判定(1)

教学目标:

1.会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似.2.会用这种方法判断两个三角形是否相似.教学过程:

一、复习

1.两个矩形一定会相似吗?为什么? 2.如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例.3.如图△ABC与△A′B′C′会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法.二、新课讲解

同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样.这些三角形是相似的,我们就从平常所用的三角尺入手探索.(1)是45°角的三角尺,是等腰直角三角形会相似.(2)是30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢? 这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”.是这样吗?请同学们动手试一试:

1.画两个三角形,使它们的三个角分别相等.画△ABC与△DEF,使∠A=∠D,∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么? 实际画图中,只画∠A=∠D,∠B=∠E,则第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的.教学资料

应有尽有

百度文库

教学设计

2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果.3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似.4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?

这是由于三角形具有它特殊的性质.三角形有稳定性,而四边形有不稳定性.于是我们得到识别两个三角形相似的一个较为简便的方法:

如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似.同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢? 例题:

1.如图,两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似.2.在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗? 3.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.三、练习

1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形.2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由.和你的同伴交流作法是否一样?

教学资料

应有尽有

百度文库

教学设计

四、小结

本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两个三角形相似.五、作业 P67练习1,2

教学资料

应有尽有

第二篇:2017-2018学年华东师大版数学九年级上册3A23.3 相似三角形

23.3相似三角形

1.相似三角形

【知识与技能】

1.知道相似三角形的概念;

2.能够熟练地找出相似三角形的对应边和对应角;

3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长;

4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似.【过程与方法】

在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯.【情感态度】

培养学生严谨的数学思维习惯.【教学重点】

掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.【教学难点】

熟练找出对应元素,在此基础上根据定义求线段长或角的度数.一、情境导入,初步认识

复习:什么是相似形?识别两个多边形是否相似的标准是什么?

二、思考探究,获取新知 1.相似三角形的有关概念:

由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似.三角形是最简单的多边形.由此可以说什么样的两个三角形相似?

如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′,ABBCAC,那么△ABCABBCAC与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC相似于△A′B′C′”.由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以A与A′是对应顶点,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记

ABBCAC=k,那么这个比值k就表示这两ABBCAC个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为k,即指

ABAB=k,那么△A′B′C′与△ABC的相似比应是,就不ABABABBCAC=1,所ABBCAC是k了,应为多少呢?同学们想一想.如果△ABC∽△A′B′C′,相似比k=1,你会发现什么呢?以可得AB=A′B′,BC=B′C′,AC=A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等的两个三角形一定相似吗?②相似的两个三角形会全等吗?

2.△ABC中,D是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与△ABC是否相似?

【分析】判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑.能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?可根据平行线分线段成比例的基本事实,推得判断出△ADE与△ABC相似.AEDEDEAD,通过度量发现,所以可以ACBCBCAB

思考(1)你能否通过演绎推理证明你的猜想?

(2)若是DE∥BC,DE与BA、CA延长线交于E、D,那么△ADE与△ABC还会相似吗?试试看,如果相似写出它们对应边的比例式.【归纳结论】平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.例1 如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.解:∵DE∥BC, ∴△ADE∽△ABC,∴DEBC=ADAB=13,∴BC=3DE=15.三、运用新知,深化理解 1.如图所示,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.2.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G.(1)求证:GEAE;GBBC(2)若GE=2,BF=3,求线段EF的长.【答案】1.(1)DE∶BC=2∶5(2)AE=6,BC=35.2GEED.又∵ED=AE, GBBC2.(1)证明:∵AD∥BC,∴△GED∽△GBC,∴∴GEAE.GBBCGEAE, GBBC(2)设EF的长为x,则由(1)知又∵AEGEGEEF,∴,即 BCGBGBBF2x,解得x1=-6(舍去),x2=1, 2x33∴EF=1.【教学说明】第2题教师适当点拨,小组讨论后独立完成.四、师生互动,课堂小结

你这节课学到了哪些知识?还有哪些疑问?

五、教学反思

本节课通过复习相似多边形的性质与判定引入三角形相似的概念,表示方法及判定方法,通过思考探究、动手测量、猜想、演绎证明推导出相似三角形的判定的预备定理,即平行于三角形一边的直线与其他两边(或两边的延长线)相交所构成的三角形与原三角形相似,并通过例题练习运用新知,深化理解.2.相似三角形的判定

【知识与技能】

1.掌握相似三角形的判定定理2:有两边对应成比例,且夹角相等的两个三角形相似; 2.掌握相似三角形的判定定理

3:三条边对应成比例的两个三角形相似.3.能依据条件,灵活应用相似三角形的判定定理,正确判断两个三角形相似.【过程与方法】

在推理过程中学会灵活使用数学方法.【情感态度】

培养学生严谨的数学证明习惯和对数学的兴趣.【教学重点】

相似三角形的判定定理2、3的推导过程,掌握相似三角形的判定定理2、3并能灵活应用.【教学难点】

相似三角形的判定定理的推导及应用.一、情境导入,初步认识

复习:1.现在要判断两个三角形相似有哪几种方法?有两种方法:(1)根据定义;(2)有两个角对应相等的两个三角形相似.2.如图△ABC中,D、E是AB、AC上三等分点(即AD=ABC相似吗?你用的是哪一种方法?

11AB,AE=AC),那么△ADE与△33

由于没有两个角对应相等,同学们可以动手量一量,量什么后可以判断它们是否相似? 【教学说明】可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例,无论哪一种,都应肯定他们是正确的,要求同学说出是应用哪一种方法判断出的.二、思考探究,获取新知

同学们通过量角或量线段计算之后,得出:△ADE∽△ABC.从已知条件看,△ADE与△ABC有一对对应角相等,即∠A=∠A(是公共角),而一个条件是AD=

11AB,AE=AC,即是33AD1AE1ADAE,,因此.△ADE的两条边AD、AE与△ABC的两条边AB、AC会AB3AC3ABAC对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验.观察教材图23.3.10,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?

1,将点E由点A开始在AC上31ADAE移动,可以发现当AE=AC时,△ADE与△ABC相似,此时.3ABAC图中两个三角形的一组对应边AD与AB的长度的比值为猜想:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.你能否用演绎推理的方法证明你的猜想? 【教学说明】引导学生证明上述猜想.【归纳结论】 相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似.你能画出有两边对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)∠B=∠B′,ABAC.ABAC例1(课本中例4)判断图中△AEB与△FEC是否相似.例2 如图△ABC中,D、E是AB、AC上的点,AB=7.8,AD=3,AC=6,CE=2.1,试判断△ADE与△ABC是否会相似,小张同学的判断理由是这样的:

解:因为AC=AE+CE,而AC=6,CE=2.1,故AE=6-2.1=3.9.由于与△ABC不相似.你同意小张同学的判断吗?请你说说理由.解:小张同学的判断是错误的.ADAE,所以△ADEABAC

因为AD3AE3.91ADAE,,所以,而∠A是公共角,∠A=∠A,所以△ADEAC6AB7.82ACAB∽△ACB.请同学再做一次实验,看看如果两个三角形的三边都成比例,那么这两个三角形是否相似?

看课本69页“做一做”.通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单地说就是,三边成比例的两个三角形相似.例3 △ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,试判定它们是否相似,并说明理由.三、运用新知,深化理解

1.如图,△ADE与△ABC相似吗?请说明理由.2.如图,已知ABBCAC,∠BAD=20°,求∠CAE的大小.ADDEAE

【教学说明】引导学生自主完成,学生代表在黑板上展示,教师点评.四、师生互动,课堂小结

1.相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.2.相似三角形的判定定理3:三边成比例的两个三角形相似.3.根据题目的具体情况,选择适当的方法证明三角形相似.五、教学反思

本节课通过复习上节课学习的相似三角形的判定定理入手,提出新问题引入新课,再通过学生动手测量、猜想结论并证明等活动中的体验,完成对相似三角形的判定定理2、3的认识,加深对判定定理的理解.教学过程中,强调学生自主探究和合作交流,经历观察、实验、猜想、证明等思维过程,从中获得知识与技能,培养学生的综合能力.3.相似三角形的性质

【知识与技能】

会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【过程与方法】

培养学生演绎推理的能力.【情感态度】

感受数学来源于生活,来源于实践.【教学重点】

1.相似三角形中的对应线段比值的推导;

2.相似多边形的周长比、面积比与相似比关系的推导; 3.运用相似三角形的性质解决实际问题.【教学难点】

相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境导入,初步认识

复习:1.判定两个三角形相似的简便方法有哪些?

2.在△ABC与△A′B′C′中,AB=10cm,AC=6cm,BC=8cm,A′B′=5cm,A′C′=3cm,B′C′=4cm,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?

二、思考探究,获取新知

上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为AC=2.AC相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢?

一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学画出上述的两个三角形,作对应边BC和B′C′边上的高,用刻度尺量一量AD与A′D′的长,AD等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比AD

等于相似比.我们能否用说理的方法来说明这个结论呢?

△ABD和△A′B′D′都是直角三角形,且∠B=∠B′.∴△ABD∽△A′B′D′,∴

ADAB=k ADAB思考:相似三角形面积的比与相似比有什么关系? 【教学说明】引导学生通过演绎推理来证明.归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.例1 S△AOD.如梯形ABCD的对角线交于点O,DC2,已知S△DOC=4,求S△AOB、AB3

【分析】∵DC∥AB,∴△DOC∽△BOA,由相似三角形的性质可求出S△AOB、S△AOD.解:∵DC∥AB,∴△DOC∽△BOA,三、运用新知,深化理解

1.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(图形)的示意图.已知桌面的直径为1.2m,桌面距离地面为1m,若灯泡距离地面3m,则地面上阴影部分的面积为.【教学说明】运用相似三角形对应高的比等于相似比是解决本题的关键.2.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF∶EH=4∶3,求EF、EH的长.【答案】1.0.81πm 2.HG=9.6cm;EH=7.2cm 【教学说明】充分运用矩形边长的比来建立方程,可使问题得到解决.四、师生互动,课堂小结

1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.五、教学反思

本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜想出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.24.相似三角形的应用

【知识与技能】

会应用相似三角形的有关性质,测量简单的物体的高度或宽度.自己设计方案测量高度,体会相似三角形在解决实际问题中的广泛应用.【过程与方法】

通过利用相似解决实际问题,进一步提高学习应用数学知识的能力.【情感态度】

让学生体会数学来源于生活,应用于生活,体验数学的功用.【教学重点】

构建相似三角形解决实际问题.【教学难点】

把实际问题抽象为数学问题,利用相似三角形来解决.一、情境导入,初步认识 复习

1.相似三角形有哪些性质?

2.如图,B、C、E、F是在同一直线上,AB⊥BF,DE⊥BF,AC∥DF.(1)△DEF与△ABC相似吗?为什么?

(2)若DE=1,EF=2,BC=10,那么AB等于多少?((1)△DEF∽△ABC.(2)AB=5)

二、思考探究,获取新知

第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长.人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度.例1 古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较木棒的影长A′B′与金字塔的影长AB,即可近似算出

金字塔的高度OB,如果O′B′=1米,A′B′=2米,AB=274米,求金字塔的高度OB.【分析】因为太阳光是互相平行的,易得△A′O′B′∽△AOB,从而求得OB的长度.解:∵太阳光是平行光线即O′A′∥OA, ∴∠OAB=∠O′A′B′.又∵∠ABO=∠A′B′O′=90°, ∴△OAB∽△O′A′B′.答:金字塔的高度OB为137米.例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一这一边上选定点B和C,使AB⊥BC,然后选定点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD(两角分别相等的两个三角形相似),∴ABEC=BDCD,解得AB=

BDEC12050=100(米).CD60答:两岸间的大致距离为100米.这些例题向我们提供了一些利用相似三角形进行测量的方法.例3 如图,已知D、E是△ABC的边AB、AC上的点,且∠ADE=∠C.求证:AD·AB=AE·AC.【分析】把等积式化为比例式证明.ADAC,猜想△ADE与△ABC相似,从而找条件加以AEAB

证明:∵∠ADE=∠C,∠A=∠A, ∴△ADE∽△ACB(两角分别相等的两个三角形相似).∴ADAE, ACAB∴AD·AB=AE·AC.三、运用新知,深化理解

1.如图,一条河的两岸有一段是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m,在这岸离开岸边16m处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有一棵树,但对岸被遮住的两棵树之间有四棵树,这段河的河宽是多少米?

【教学说明】先由实际问题建立相似的数学模型,可先证得△ABE∽△ACD,再根据对应线段成比例可求出河宽,即线段BC的长.2.亮亮和颖颖住在同一幢住宅楼,两人用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰好在一条直线上时,两人分别标定自己的位置C、D,然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C、D、N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m,你能根据以上测量数据帮助他们求出住宅楼的高度吗?

【答案】1.24m 2.20.8m 【教学说明】过点A作MN的垂线段,构造相似三角形.四、师生互动,课堂小结

这节课你学习了哪些知识,有哪些收获?还有哪些疑问?

【教学说明】学生小组讨论,分小组陈述演示,教师归纳板书.五、教学反思

本节课以生活实例为情境,引导学生探究如何建立相似的数学模型,构造相似三角形,把实际问题转化为数学问题(相似)来解决,进一步提高学生应用数学知识的能力.

第三篇:2015年秋九年级数学上册 23.3.1 相似三角形教案 (新版)华东师大版

相似三角形

1.相似三角形

【知识与技能】

1.知道相似三角形的概念;

2.能够熟练地找出相似三角形的对应边和对应角;

3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长;

4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似.【过程与方法】

在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯.【情感态度】

培养学生严谨的数学思维习惯.【教学重点】

掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.【教学难点】

熟练找出对应元素,在此基础上根据定义求线段长或角的度数.一、情境导入,初步认识

复习:什么是相似形?识别两个多边形是否相似的标准是什么?

二、思考探究,获取新知 1.相似三角形的有关概念:

由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似.三角形是最简单的多边形.由此可以说什么样的两个三角形相似?

如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′,ABBCAC,那么△ABCABBCAC1

与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC相似于△A′B′C′”.由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以A与A′是对应顶点,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记

ABBCAC=k,那么这个比值k就表示这两ABBCAC个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为k,即指

ABAB=k,那么△A′B′C′与△ABC的相似比应是,就不ABABABBCAC=1,所ABBCAC是k了,应为多少呢?同学们想一想.如果△ABC∽△A′B′C′,相似比k=1,你会发现什么呢?以可得AB=A′B′,BC=B′C′,AC=A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等的两个三角形一定相似吗?②相似的两个三角形会全等吗?

2.△ABC中,D是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与△ABC是否相似?

【分析】判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑.能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?可根据平行线分线段成比例的基本事实,推得判断出△ADE与△ABC相似.AEDEDEAD,通过度量发现,所以可以ACBCBCAB

思考(1)你能否通过演绎推理证明你的猜想?

(2)若是DE∥BC,DE与BA、CA延长线交于E、D,那么△ADE与△ABC还会相似吗?试试看,如果相似写出它们对应边的比例式.2

【归纳结论】平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.例1 如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.解:∵DE∥BC, ∴△ADE∽△ABC,∴DEBC=ADAB=13,∴BC=3DE=15.三、运用新知,深化理解 1.如图所示,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.2.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G.(1)求证:GEAE;GBBC(2)若GE=2,BF=3,求线段EF的长.3

【答案】1.(1)DE∶BC=2∶5(2)AE=6,BC=35.2GEED.又∵ED=AE, GBBC2.(1)证明:∵AD∥BC,∴△GED∽△GBC,∴∴GEAE.GBBCGEAE, GBBC(2)设EF的长为x,则由(1)知又∵AEGEGEEF,∴,即 BCGBGBBF2x,解得x1=-6(舍去),x2=1, 2x33∴EF=1.【教学说明】第2题教师适当点拨,小组讨论后独立完成.四、师生互动,课堂小结

你这节课学到了哪些知识?还有哪些疑问?

1.布置作业:从教材相应练习和“习题23.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习相似多边形的性质与判定引入三角形相似的概念,表示方法及判定方法,通过思考探究、动手测量、猜想、演绎证明推导出相似三角形的判定的预备定理,即平行于三角形一边的直线与其他两边(或两边的延长线)相交所构成的三角形与原三角形相似,并通过例题练习运用新知,深化理解.

第四篇:九年级数学《相似三角形的判定》教学反思[范文模版]

这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,因此对定理的运用也带来的障碍。

通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促进他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。因此,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。

在教学后,我觉得有很多需要改进的地方。

1.教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。

2.教学内容还有待于进一步改进。

3.备课时没有考虑学生的实际情况,犯了备课只备教材不备学生的大忌,因此,在今后的教学中要引以为戒。

第五篇:【华东师大版】九年级数学上册教案23.2相似图形

百度文库

教学设计

相似图形

教学目标:

1.理解相似形的概念,了解相似形是两个图形之间的关系.由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力.2.理解并掌握相似图形的性质:对应边成比例,对应角相等.3.知道判别两个多边形相似的方法.教学重点:

相似图形的性质:对应边成比例,对应角相等.教学难点:

1、如何判别两个多边形相似

2、借助相似图形的性质进行有关的计算 导学过程:

一、导入新课

挂上大小不一样的中国地图两张及两张大小不同的花朵图片,供同学观察,并看课本第57

教学资料

应有尽有

百度文库

教学设计

页的图,提出问题:这几组图片有什么相同的地方呢? 这些图片大小虽然不一样,但形状是相同的.两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?【点题】

二、讲解新课

由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同的.同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢? 大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片.对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情.在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形.在数学上,我们把具有相同形状的图形称为相似形.同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星.画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等.如图所示的是一些相似的图形.想一想:放大镜下的图形和原来的图形相似吗?

你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗? 还有一些图形,看起来有点相像,但它们不是相似的图形.为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这节要探索的内容.三、做一做

教学资料

应有尽有

百度文库

教学设计

AA'CBC'B'

1.我们先从这两张相似的地图上研究.在地图上找出北京、上海、福州的位置.如果我们用A、B、C分别表示大地图上的北京、上海、福州的位置,用A′、B′、C′、分别表示小地图上的北京、上海、福州的位置.请用刻度尺在大地图上量一量北京到上海的直线距离,即线段AB=__cm,上海到福州的直线距离,即线段BC=__cm,在小地图上也量一量A′B′=__cm,B′C′=__cm.思考:线段AB、A′B′、BC、B′C′之间什么关系呢? 结论:线段AB、A′B′、BC、B′C′是成比例线段,即 =.实际上,上面两张相似的地图中的对应线段都是成比例的.这样的结论对一般的相似多边形是否成立呢?

2.动动手,下图中两个四边形是相似形,仔细算一算它们的边长,量一量它们的对应角,看看它们的对应边之间是否有以上的关系呢?对应角之间呢?

ADA'D'B CB'C'

3.再看看下图中的两个相似的五边形,是否也具有同样的结果呢?

教学资料

应有尽有

百度文库

教学设计

AEA'BDB'C'C

E'D'结论: 经过观察、计算、度量、比较,我们得出对应边,对应角,【两个相似多边形的性质:对应边成比例,对应角相等】

实际上这两个特征,也是我们识别两个多边形是否相似的方法.即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似.识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等).四、练一练:

例 如图所示的相似四边形中,求未知边x的长度和角度α的大小.

1877°x82°12α117°77°18

分析

利用相似多边形的性质和多边形的内角和公式就可以得到所需结果,但利用相似多边形的性质时,必须分清对应边和对应角.

解:∵两个四边形相似,∴18x,1218∴x=27.

∴α=360°-(77°+82°+117°)=84°.

五、想一想:

1.两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?-2.所有的菱形都相似吗?所有矩形呢?正方形呢? 【提示:实际上,两个相似多边形的性质: 对应边成比例,对应角相等.也是我们判定两个多边形是否相似的方法,即如果_________________,那么这两个多边形相似.】

教学资料

应有尽有

百度文库

教学设计

六、谈一谈:

谈出你的感悟与困惑.七、比一比

1.矩形ABCD与矩形A′B′C′D′中,AB=1.5cm,BC=4.5cm,A′B′=0.8cm,B′C′=2.4cm,这两个矩形相似吗?为什么? 2.矩形ABCD与矩形A′B′C′D′中,已知AB=16cm,AD=10cm,A′D′=6cm,矩形A′B′ C′D′的面积为57cm,这两个矩形相似吗?为什么?

3.如图,四边形ABCD与四边形A′B′C′D′是相似的,且C′D′⊥B′C′,根据图中的条件,求出未知的边x,y及角.八、小结

形状相同而大小不一定相同的图形称为相似形,相似形在日常生活中经常碰到.九、自我反思

备用资料:

1.在比例尺为1:400000地图上,量得甲、乙两地的距离为15厘米,求甲、乙两地的实际距离.2

教学资料

应有尽有

下载【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一word格式文档
下载【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    九年级数学《相似三角形》说课稿

    【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助! 相似三角形说课稿 今天,我的说课将分三大部分进行:一、说教材;二、说......

    相似三角形的判定1教案五篇范文

    27.2.1相似三角形的判定教案 第一课时平行线法 教学目标:1.了解相似三角形及相似比的概念。 2.掌握平行线分线段成比例定理和推论,相似三角形的判定定理(平行于三角形一边的直......

    相似三角形的判定(第一课时) 教案

    〔教学目标〕1. 了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。2. 培养学生的观察﹑动......

    wnl-公开课《相似三角形的判定(一)》说课稿

    《24.2相似三角形的判定(一)》 说课稿 一、说教材1、教材地位和作用 本节内容是上科版《新时代数学》九上第24章《相似形》第二节《相似三角形判定》的第一节课.是在学习了第一......

    全等三角形判定一教案

    《全等三角形判定一》教案设计 教学目标 一、知识目标 1、熟记边角边公理的内容 2、能用边角边公理证明两个三角形全等 二、能力目标 1、通过边角边公理的运用,提高学生的逻......

    九年级数学上册《相似三角形的应用》学案分析

    九年级数学上册《相似三角形的应用》学案分析 【教材分析】 (一)教材的地位和作用 《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二......

    27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)

    27.2.1 相似三角形的判定(第三课时) 主备人:王寿军 参与人:马晓瑞 上课时间:2014年1月2日 教学目标: (一)知识与技能 1、 掌握三组对应边的比相等的两个三角形相似的判定定理; 2、......

    27.2.1 相似三角形的判定课时2教案

    27.2 相似三角形 27.2.1 相似三角形的判定 第2课时相似三角形的判定定理1,2 掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相......