第一篇:27.2.1 相似三角形的判定课时1教案
27.2 相似三角形 27.2.1 相似三角形的判定 第1课时平行线分线段成比例
1.理解相似三角形的概念.2.掌握平行线分线段成比例的基本事实及推论.3.掌握判定三角形相似的预备定理.阅读教材P29-31,自学“探究”与“思考”,弄懂相似三角形的概念,掌握平行线分线段成比例定理,理解相似三角形判定的预备定理.自学反馈学生独立完成后集体订正
①如果△ABC∽△A1B1C1的相似比为k,则△A1B1C1∽△ABC的相似比为.②如图,l1、l2分别被l3,l4,l5所截,且l3∥l4∥l5,则AB与对应,BC与对应,DF与对应;
AB=BC(()())AB()AB(,=,==.DE()DF)())(③如图所示,已知AB∥CD∥EF,那么下列结论正确的是()ADBCBCDF=
B.= DFCECEADCDBCCDADC.=
D.= EFBEEFAFA.④平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形.找准对应线段是关键.活动1 小组讨论
例1如图,直线l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则试求AE∶EC的值.解:∵l1∥l2,∴△AGF∽△BDF,△AGE∽△CDE.AGAF2==,BDFB32∴AG=BD.3BC2又∵=,BC+CD=BD,CD11∴CD=BD.3AEAG∴==2.即AE∶EC=2.ECCD∴可从AE∶EC出发,只需要证得他们所在的两个三角形相似及他们的相似比即可,而AF与FB所在的两个三角形相似,两个相似关系可以得到线段AG、CD与线段BD的数量关系,从而就可以得出AG与CD的比,即△AGE与△CDE的相似比.活动2 跟踪训练(独立完成后展示学习成果)1.如图,ED∥BC,EC、BD相交于点A,过A的直线交ED、BC分别于点M、N,则图中有相似三角形()
A.1对
B.2对
C.3对
D.4对
2.如图,DE∥BC,则下面比例式不成立的是()ADAEDEECADAE=
B.=
C.=
ABACBCACDBECBCACD.= DEAEA.3.如图,在ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.∠AEF=∠DEC
B.FA∶CD=AE∶BC
C.FA∶AB=FE∶EC
D.AB=DC
本题除运用相似三角形对应边的比相等外,还应根据图形对比例式进行适当的变形.活动3 课堂小结
学生试述:这节课你学到了些什么?
第二篇:相似三角形的判定(第一课时) 教案
〔教学目标〕1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。2.培养学生的观察﹑动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。〔教学重点与难点〕重点:判定两个三角形相似的预备定理难点:探究两个三角形相似的预备定理的过程
第三篇:相似三角形的判定1教案
27.2.1相似三角形的判定教案
第一课时平行线法
教学目标:1.了解相似三角形及相似比的概念。
2.掌握平行线分线段成比例定理和推论,相似三角形的判定定理(平行于三角形
一边的直线和其他两边相交,所构成的三角形与原三角形相似)。
重点:掌握相似三角形及相似比的概念,会运用所学的定理进行相关的计算和证明。教学过程
一.复习旧课,导入新课
1.什么是相似三角形?(由相似多边形引出相似三角形)2.相似三角形有哪些性质?(由相似多边形的性质引出)
3.如图两三角形,满足哪些条件可证相似,有没有简便的方法呢?
二.新授
1.第40页探究1.由学生自主探究活动归纳:(让学生画图,测量,计算,得出以下结论)
(1)平行线分线段成比例定理:三条平行线截两条直线,所得对应线段的比相等。
(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段的比相等。
(3)得出如下的比例线段
ABDEABDEBCEF, =, =,BCEFACDFACDF
BCEFACDFACDF=, =, = ABDEABDEBCEF
2.例一
已知:DE//BC, AB=15, AC=9, BD=4.求:AE=?
解: ∵
DE∥BC ABAC159∴=
即= BDCE4CE3612∴CE==
155122∴AE=AC+CE=9+=11
553.思考:如图,在△ABC中,DE//BC,DE分别交AB,AC于点D,E, △ADE与△ABC有什么关系? 先证明两个三角形的对应角相等。在△ADE与△ABC中, ∠A=∠A, ∵DE//BC, ∴∠ADE=∠B, ∠AED=∠C.再证两个三角形对应边的比相等 过E作EF∥AB,EF交BC于F点。 DE//BC,EF//AB,ADAEBFAE,ABACBCAC四边形DEFB是平行四边形,DEAEDE=BF
BCAC
ADAEDE
ABACBC
即:△ADE与△ABC中∠A=∠A,∠ADE=∠B,∠AED=∠C.ADAEDE== ABACBC从而得出三角形相似的判定定理
平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
数学符号:∵DE//BC ∴△ADE∽△ABC 4.应用:如图,已知DE//BC,AE=50cm,EC=30cm,BC=70cm, ∠BAC=45°, ∠ACB=40°。(1)求∠AED和∠ADE的大小;(2)求DE的长。解:(1) DE ∥ BC △ADE∽△ABC ∠AED=∠C=40 在△ADE中, ∠ADE=180-40-45=95(2)△ADE∽△ABC AEDE50DE,即.ACBC503070
5070所以,DE43.75(cm).5030三.练习。四.师生小结:
(1)先聆听学生的困惑和收获。
(2)总结平行线分线段成比例定理及其推论,三角形相似的判定定理 五.布置作业:
课本54页第4题和第5题。
第四篇:27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)
27.2.1 相似三角形的判定(第三课时)
主备人:王寿军 参与人:马晓瑞 上课时间:2014年1月2日
教学目标:(一)知识与技能
1、掌握三组对应边的比相等的两个三角形相似的判定定理;
2、掌握两组对应边的比相等且它们夹角相等的两个三角形相似的判定定理。(二)过程与方法
会运用“三组对应边的比相等的两个三角形相似”及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的方法进行简单推理。(三)情感态度与价值观
1、从认识上培养学生从特殊到一般的方法认识事物,从思维上培养学生用类比的方法展开思维;
2、通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。
教学重点:
掌握两个判定定理,会运用两个判定定理判定两个三角形相似 教学难点:
1、探究两个三角形相似的条件;
2、运用两个三角形相似的判定定理解决问题。教学过程 新课引入:
1、复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系:
如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)
2、回顾探究判定引例﹑判定方法1的过程探究两个三角形相似判定方法2的途径 提出问题:
利用刻度尺和量角器画∆ABC与∆A1B1C1,使∠A=∠A1,ABAC和都等于给定的值k,A1B1A1C1量出它们的第三组对应边BC和B1C1的长,它们的比等于k吗?另外两组对应角∠B与∠B1,∠C与∠C1是否相等?
(学生独立操作并判断)分析:学生通过度量,不难发现这两个三角形的第三组对应边BC和B1C1的比都等于k,另外两组对应角∠B=∠B1,∠C=∠C1。延伸问题:
改变∠A或k值的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。)探究方法: 探究2
改变∠A或k值的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生学习如何在动态变化中捕捉不变因素。)归纳:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(定理的证明由学生独立完成)
A1
B1
C1 B
C A ABAC==k,则∆ABC∽∆A1B1C1
A1B1A1C1ABAC辨析:对于∆ABC与∆A1B1C1,如果=,∠B=∠B1,A1B1A1C1符号语言:若∠A=∠A1,这两个三角形相似吗?试着画画看。(让学生先独立思考,再进行小组交流,寻找问题的所在,并集中展示反例。)应用新知:
例1:根据下列条件,判断 ∆ABC与∆A1B1C1是否相似,并说明理由:(1)∠A=120,AB=7cm,AC=14cm,∠A1=120,A1B1= 3cm,A1C1=6cm。(2)∠B=120,AB=2cm,AC=6cm,∠B1=120,A1B1= 8cm,A1C1=24cm。分析:(1)0000ABAC70 ==,∠A=∠A1=120A1B1A1C13 ∆ABC∽∆A1B1C1 2(2)ABAC10 ==,∠B=∠B1=120A1B1A1C14但∠B与∠B1不是AB ﹑AC﹑ A1B1 ﹑A1C1的夹角,所以∆ABC与∆A1B1C1不相似。运用提高:
1、P45练习题1。
2、P45练习题2。
课堂小结:说说你在本节课的收获。布置作业:
1、必做题:P54习题27·2题2(2),3(2)。
2、选做题:P55习题27·2题8。
3、备选题:
(1)已知零件的外径为25cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA:OC=OB:OD=3,CD=7cm。求此零件的厚度
(2)如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,求A、B两点的距离。
(3)如图,要使△ABC∽△AEF,应补充的条件是 或。
x。
第五篇:27.2.1 相似三角形的判定课时2教案
27.2 相似三角形 27.2.1 相似三角形的判定 第2课时相似三角形的判定定理1,2
掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2.自学反馈学生独立完成后集体订正
①如果两个三角形的三组边对应成比例,那么这两个三角形.②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似.HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论 例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3
解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC.DEAE=.BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm.运用相似三角形可以进行边的计算.活动2 跟踪训练(独立完成后展示学习成果)1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE相似,则BF长为多少?
在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形.2.如图所示,DE∥FG∥BC,图中共有相似三角形()
A.1对
B.2对
C.3对
D.4对
按照一定的顺序去寻找相似三角形.活动3 课堂小结
学生试述:这节课你学到了些什么?