相似三角形教案(5篇范文)

时间:2019-05-13 22:12:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《相似三角形教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《相似三角形教案》。

第一篇:相似三角形教案

新课程网校[www.xiexiebang.com] 全力打造一流免费网校!

§18.3 相似三角形

一、教学目标

1、使学生理解并掌握相似三角形的概念,理解相似比的概念。

2、使学生掌握预备定理,并了解它的承上启下的地位和作用。

3、通过预备定理的条件所构成的图形的三种情况,教学生对一致性问题的思想方法。

二、教学重难点

教学重点:相似三角形的概念及预备定理。教学难点:由相似三角形写对应边的比例式。

三、教学过程设计 1.复习回顾,概括概念

(一)相似图形的特征是什么?

(学生回顾相关知识,为相似三角形的研究做好准备。)

(二)在相似多边形中,最为简单的就是相似三角形(similar triangle).

什么是相似三角形呢?前面我们学过形状相同的图形说成是相似的图形,而相似三角形的本质特征就是“具有相同的形状”,它们的大小不一定相等。

(为加深学生对相似三角形的概念的本质的认识,教学时预先准备几对相似三角形,让学生观察或测量对应元素的关系。)

定义:对应边相等、对应角成比例的三角形是相似三角形。(注意:定义中要求有两个条件,缺一不可)

(1)表示:相似用符号“∽”来表示,读作“相似于”.如图18.3.1所示的两个三角形中,∠A=∠A′,∠B=∠B′,∠C=∠C′,即△ABC与△A′B′C′相似,记作

△ ABC∽△A′B′C′,读作“△ABC相似于△A′B′C′”.

北京今日学易科技有限公司

网校客服电话:010-87029231 传真:010-89313603 新课程网校[www.xiexiebang.com] 全力打造一流免费网校!

(强调:用“∽”表示两个三角形相似时,表示对应顶点的字母一定要写在对应的位置上,这样可准确地找出相似三角形的对应角和对应边)

(2)相似比:如果记角形的相似比.

=k,那么这个比值k就表示这两个相似三注:两个相似三角形的相似比具有顺序性。即:若 △ABC 与 △DEF 的相似比 k,则△DEF 与△ABC 的相似比为1:k 2.巩固应用,拓展研究

思考:△ABC ∽△DEF,AB=7,DE=21,(1)求△ABC 与 △DEF 的相似比是多少?(2)若AC=6,求DE的长;

(3)若AC=6,EF=24,求△ABC 与 △DEF 的周长分别是多少?△ABC 与 △DEF 的周长比是多少?它与相似比有什么关系?

(4)△DEF 的周长与△ABC的周长为40,分别求△ABC 与 △DEF 的周长各是多少? 通过此题的练习,使学生掌握以下几点:

练习(1)、(2)对相似三角形的概念、表示及特征的分析,理解相似比;

练习(3)的操作后,使学生明白相似三角形的周长比等于其相似比;此题的方法不唯一,可以先分别算出△ABC 的各边长与 △DEF 的各边长,然后再分别求出其周长;也可以直接考虑周长:由=k可知,A B=k• A′B′,B C= k•B′C′,C A=k• C′A′,所以

练习(4)是上面几题的应用,可通过周长比等于相似比及周长差为40两个条件组成一个二元一次方程组的思想。

(通过几个问题的设置,使学生掌握相关的知识概念,加深对新知识理解与应用。)3.练习巩固,促进迁移

做一做 如图18.3.2,△ABC中,D为边AB上任一点,作DE∥BC,交边AC于E,用刻度尺和量角器量一量,判断△ADE与△ABC是否相似.北京今日学易科技有限公司

网校客服电话:010-87029231 传真:010-89313603 新课程网校[www.xiexiebang.com] 全力打造一流免费网校!

我们知道,根据两直线平行同位角相等,则 ∠ADE=∠ABC,∠AED=∠ACB,而∠A=∠A.

通过度量,还可以发现它们的对应边成比例,所以△ADE∽△ABC.类似的,在图中当 ED∥BC时,△ADE ∽ △ABC。因此我们得到下面的定理:

预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

如果取点D为边AB的中点,那么上题中△ADE和△ABC的相似比就为k =.当k=1时,这两个三角形不仅形状相同,而且大小也相同,这样的三角形

我们就称为全等三角形(congruent triangles).全等三角形是相似三角形的特例.4.应用巩固,课内深化

(1)判断下面两个三角形是否相似,简单说明理由:

(2)如果一个三角形的三边长分别是5、12和13,与其相似的三角形的最长边长是39,那么较大三角形的周长是多少?较小三角形与较大三角形周长的比是多少?

(3)已知一个三角形的三边之比为3:5:7,和它相似的另一个三角形的最大边长为14cm,求它的最小边长为多少?

(此题改编自励耘精品系列丛书《课时导航》华师大版八年级(下)P36 新课程网校[www.xiexiebang.com] 全力打造一流免费网校!

高度无影响)

(此题改编自励耘精品系列丛书《课时导航》华师大版八年级(下)P37

第二篇:相似三角形教案

相似三角形

【基础知识精讲】

1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系.

2.进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学习数学的兴趣和自信心.

【重点难点解析】

相似三角形的概念及相似三角形的基本定理.

【典型热点考题】

例1 如图4-21,□ABCD中,M是AD延长线上一点,BM交AC于点F,交DC于G,则下列结论中错误的是()

图4-21 A.△ABM∽△DGM B.△CGB∽△DGM C.△ABM∽△CGB D.△AMF∽△BAF

点悟:用本节概念和定理直接判断. 解:应选D.

例2 如图4-22,已知MN∥BC,且与△ABC的边CA、BA的延长线分别交于点M、N,点P、Q分别在边AB、AC上,且AP∶PB=AQ∶QC.

图4-22 求证:△APQ∽△ANM. 证明:∵ AP∶PB=AQ∶QC,∴ PQ∥BC,又MN∥BC,∴ MN∥PQ ∴ △APQ∽△ANM.

例3 写出下列各组相似三角形的对应边的比例式.

(1)如图4-23(1),已知:△ADE∽△ABC,且AD与AB是对应边.(2)如图4-23(2),已知:△ABC∽△AED,∠B=∠AED.

图4-23 点悟:要写出两个相似三角形的对应边的比例式,首先要确定两个相似三角形的对应边.因为相似三角形是全等三角形的推广,所以要确定两个相似三角形的各组的对应边,可以参照确定全等三角形对应边的方法,从确定这两个相似三角形对应的顶点出发.

解:(1)已知△ADE∽△ABC,且AD和AB是对应边,它们所对的顶点E和C为对应顶点,而A是两三角形的公共顶点,∠BAC为公共角,所以两三角形另两组对

ADDEBCEACA应边为DE和BC,EA和CA,得AB.

(2)已知△ABC∽△AED,且∠ABC=∠AED,A为公共顶点,另一对应顶点为D和C,三组对应边分别是AD和AC,AE和AB,DE和CB.

ADAEABDECB得AC.

本题两类相似三角形的图形是相似三角形的基本图形. 第一类为平行线型.

平行线型是由两条平行线和其他直线配合构成的两个相似三角形,它的对应元素比较明显,对应边,对应角,对应顶点有同样的顺序性,对应边平行或重合.基本图形有两种(图4-24):

图4-24 第二类是相交线型.

这一类型的对应元素不十分明显,对应顺序也不一致,对应边相交.它的基本图形,也有两种,一种是有一个公共角,另一种是一组对顶角(图4-25).

图4-25 其他类型的相似形多可以分解成这两种基本类型或转化为这两种基本类型. 例4 如图4-26,已知:△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于F.求证:AB·DF=BC·EF.

图4-26 点悟:如果我们把条件和结论涉及的线段AD,CE,AB,DF,BC,EF在图中都描成红线,可以发现一个完全由红线构成的三角形,即△DBE,还有一条线AC,是△DBE的截线,分别截△DBE的三边DB,BE,DE(或它们的延长线)于A,C,F.这类问题添辅助线的方法至少有三种,即过红线三角形任一顶点作对边的平行线,并与该三角形的截线或其延长线相交(如图4-27),在每一种图形中,虽然只有一对平行线,但与这对平行线有关的基本图形都能找到两对,根据每一个基本图形都可以写出包含辅助线段在内的一个比例式.

图4-27

ADDFBHEFCEBC以(2)为例,可以写出ABBHABDFAD,又可以写出BH.前两式均有BH,于是

BC可得,及

BHBCEF,所以,有

ABDFEF.又因为ADCEADCE=CE,于是有AB·DF=BC·EF.(证略)利用比例线段也可以证明两直线平行或两线段相等.

例5 如图4-28,已知:梯形ABCD中,AD∥BC,E,F分别是AD,BC的中点,AF与BE相交于G,CE和DF相交于H,求证:GH∥AD.

图4-28 点悟:条件中的AD∥BC,给出了两个基本图形,而AE=ED,BF=FC,又使从两

AGDHHF个基本图形中给出的比例式有一个公共的比值,从中可以得到GF.所以GH∥AD.

证明:∵ AD∥BC,AEAGGFEDDHHF∴ BF,FC.

∵ AE=ED,BF=FC,AGDHHF∴ GF,∴ GH∥AD.

例6 如图4-29,已知:AD平分∠BAC,DE∥AC,EF∥BC,AB=15cm,AF=4cm. 求:BE和DE的长.

图4-29 点悟:题设中的两对平行线起着不同的作用.由DE∥AC,AD平分∠BAC,可以得到AE=DE.这样已知及欲求的线段BE,AE,AB,AF都在AB和AC这两条边上,利用EF∥BC,就可以得到相应的比例线段.求得答案. 解:∵ DE∥AC,∴ ∠3=∠2,又AD平分∠BAC,∴ ∠1=∠2,∴ ∠1=∠3,∴ ED=AE. ∵ EF∥BC,ED∥CF,∴ EDCF为平行四边形,∴ ED=CF=AE.

设AE=x,则 CF=x,BE=15-x. ∵ EF∥BC,AEAFCFx4x∴ BE,即15x,2∴ x4x600

解得,x110(舍),x26. ∴ DE=6cm,BE=9cm.

例7 如图4-30,已知:在△ABC中,AD和BE相交于G,BD∶DC=3∶1,AG=GD. 求BG∶GE.

图4-30 点悟:按照例4的分析,过点G作GM∥AC,根据平行线截得比例线段定理,得BG∶GE=BM∶MC,于是只要求出BM∶MC的值即可. 解:作GM∥AC交BC于M,则 BG∶GE=BM∶MC. ∵ AG=GD,DMMC12DC∴ .

BD∵ DCBD131,61BD即2DC,MC61161.

71BDMCMCBM,即MC,∴ BG∶GE=7∶1.

点拨:以上四例中,我们复习了线段成比例和平行线分线段成比例的有关知识.

【易错例题分析】

例1 已知:在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点. 求证:△ADQ∽△QCP. 证明:在正方形ABCD中,∵ Q是CD的中点,AD2∴ QCBP,3BC4DQ∵ PC,∴ PC.又∵ BC=2DQ,∴ PCDQPC,∠C=∠D=90°,2.

AD在△ADQ和△QCP中,QC∴ △ADQ∽△QCP. 警示:证此类题应避免没有目标而乱推理的情况.

例2 一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如图4-31(1)、(2)所示,请你用学过的知识说明哪位同学的加工方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).

解:由AB=1.5米,SΔABC1.5平方米,得BC=2米.设甲加工的桌面边长为x米,∵DE∥AB,Rt△CDE∽Rt△CBA,CDDEAB672xx1.5∴ CB,即2.

解得 x,过点B作Rt△ABC斜边AC上的高BH,交DE于P,交AC于H.

由AB=1.5米,BC=2米,SΔABC1.5平方米得AC=2.5米,BH=1.2米. 设乙加工的桌面边长为y米,∵ DE∥AC,∴ Rt△BDE∽Rt△BAC.

BPDEAC1.2yy2.5∴ BHy,即1.2

3037303722即x>y,xy,解得,6因为7所以甲同学的加工方法符合要求. 警示:解此类要避免看不出相似直角三角形而无法解的情况,更要避免看不出对应线段造成的比值写错而形成的计算错误.

例3 如图4-32,AD是直角△ABC斜边上的高,DE⊥DF,且DE和DF分别交AB、AFBEBDAC于E、F.求证:AD.

图4-32(2002年,安徽)正解:∵ BA⊥AC,AD⊥BC,∴ ∠B+∠BAD=∠BAD+∠DAC=90°,∴ ∠B=∠DAC.又∵ ED⊥DF,∴ ∠BDE+∠EDA=∠EDA+∠ADF=90°,∴ ∠BDE=∠ADF,∴ △BDE∽△ADF.

BDBEAFAFBEBD∴ AD,即 AD.

警示:本例常见的错误是不证三角形相似,直接进行线段的比,这是规范的一种情况.

【同步达纲练习】

一、选择题

1.如图4-33,在△ABC中,AB=AC,AD是高,EF∥BC,则图中与△ADC相似的三角形共有()

A.1个 B.2个 C.3个 D.多于3个

2.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图4-34在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3…若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是()

A.24 B.25 C.26 D.27

图4-33 图4-34

二、填空题

3.如图4-35,△AED∽△ABC,其中∠1=∠B,则AD∶________=________∶BC=________∶AB.

图4-35 图4-36 4.如图4-36,D、E、F分别是△ABC的边AB、BC、CA的中点,则图中与△ABC相似的三角形共有________个,它们是_______________.

5.阳光通过窗口照到室内,在地面上留下2.7m宽的亮区,已知亮区到窗下的墙脚最远距离是8.7m,窗口高1.8m,那么窗口底边离地面的高等于________.

三、解答题

6.如图4-37,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2PEPF.

7.已知:如图4-38,等腰△ABC中,AB=AC,∠BAC=36°,AE是△ABC的外角平分线,BF是∠ABC的平分线,BF的延长线交AE于E.求证:(1)AF=BF=BC;(2)EF∶BF=BC∶FC.

图4-37 图4-38 8.四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于F,∠ECA=∠D.求证:AC·BE=AD·CE.

参考答案

【同步达纲练习】

1.C 2.C 3.AC,ED,AE 4.4,△ADF、△DBE、△FEC、△EFD

5.4m 6.连结PC,先证明△ABP≌△ACP,∴PB=PC,再证明△PCF∽△PEC,∴PC∶PE=PF∶PC.∴PC2PEPF,∴PB2PEPF

7.(1)由已知可求得∠ABF=∠BAC=36°,∠C=∠BFC=72°,∴BC=BF=AF

(2)∵△EAF、△BCF都是底角为72°的等腰三角形,∴△EAF∽△BCF,∴EF∶BF=AF∶CF,又AF=BC,∴EF∶BF=BC∶FC

8.∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∵∠ECA=∠D,∴∠ECA=∠B,又∵∠E=∠E,∴△ECA∽△EBC,∴AC∶BC=CE∶BE,∴AC∶AD=CE∶BE,∴AC·BE=AD·CE

第三篇:三角形相似教案

相似三角形的判定(1)教学设计

一、课题

相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时)

二、教材分析

1.内容要点

本节课让学生利用相似三角形的定义来进一步探索相似三角形的判定条件,从而让学生在学习新知里发展思维,加强与前面已学过的知识:图形的相似、相似多边形的主要特征(相似多边形对应的角相等,对应边的比相等),相似比甚至引导学生联系八年级上册所学的相等三角形的判定定理和平行从对比探索中增强学生的推理归纳和类比应用的能力。2.地位

本节课处于承上启下的位置,既增强了对图形的相似和相似多边形定义联系和运用,又为下一课时相似三角形的判定2以及以后的几何证明奠定了基础。3.作用

从初步认识相似三角形到探索如何利用平行线的特点判定两个三角形相似,从无到有的知识萌发,让学生由探究得到的平行线分线段成比例定理初步返回去严谨地认识两个图形的相似,在探索过程中掌握自主探究、类比、归纳以及转化的思想方法,增强推理能力,进而让学生感受到数学图形之美。经过对平行线分线段成比例定理以及相似三角形判定定理的探究学习,使学生的合情推理意识和主动探究的学习习惯得到发展。

三、学情分析 1.认知基础

学生在八年级上册中已经全面地认识了三角形,并且掌握了全等三角形的判定定理,加上平行线同位角等性质,并且在上一节课已学过了图形的相似以及相似多边形的主要特征,为本节课的学习相似三角形打下了基础。学生在观察、想象、合作探究、归纳概括等方面有了初步的体验,再加上学生会做辅助线,这为本课的学习奠定了一定的基础,但学生对转化思想,几何论证推理能力还在初步形成阶段,这使本节课的学习还有一定的困难。2.情意基础

学生是九年级的学生,对于新知识有一定的接受能力,且数形结合思想,转化思想都相对成熟,对探索学习饶有兴趣,但是思维容易固化,对问题看待不够全面。

四、教学目标

1.理解相似三角形不因位置改变而改变,书写三角形相似时对应角的字母顺序对应;

2.能运用平行线和三角形中线比例关系证明“A字型”三角形相似,能运用三角形全等的方法将“X字型”三角形转化为“A字型”三角形证明其相似;

3.理解相似三角形概念,能正确找出相似三角形的对应边和对应角; 4.能掌握并运用相似三角形判定的“预备定理”; 5.让学生参与探索,获取相似三角形判定条件,感受数学的魅力,体会到数学的充满探索与创造,在学习中发现数学的乐趣并在数学学习生活中形成自主,自信,健康的心理。

五、教学重难点

1.教学重点

相似三角形判定的“预备定理”的探索; 2.教学难点

探索过程中的各种三角形相似的有关证明;

六、教学方法和手段 1.教学方法 引导探究法 2.教学媒体 PPT

七、教学设计思想

探究式的教学方法是新课改的一个重要内容,布鲁纳主张学习的目的是以发现学习的方式使学科的基本结构转变为学生头脑中的认知结构,并且指出学生的知识学习是通过类别化信息的加工过程,积极主动地形成认知结构。利用学生的好奇心,设疑,解疑,组织互动,有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探究与合作交流中理解和掌握本节课的内容,增强直观效果,提高课堂效率。其次,数形结合思想,化归思想以及归纳法和分析法的应用,让学生对新知的认识更加透彻,对问题的探索思路更加明确,并从中让思维得到进一步的提升。

八、教学过程

(一)复习引入(5分钟)1.复习概念性质(3分钟)

T:同学们还记得相似图形的概念是什么吗? S:对应角相等,对应边成比例的两个图形相似。T:相似的两个图形会随它们位置的改变而改变吗? S:不会。

T:很好,大家先记着我们刚刚回忆的内容。下面我们来了解一下最简单的多边形----三角形的相似情况。

T:刚才我们回忆了相似图形的一些性质,那现在我手头上有根据相似图形性质画出来的两个相似三角形,不论它们之间的相对位置如何,乃至处于不同的平面,这两个三角形仍然是相似的。(老师拿出两个相似三角形并在同一平面变换两个三角形纸片的位置,然后让两纸片处于不同平面变换位置)(老师将两纸片贴在黑板上并标明字母)T:同学们我们要用字母表示这两个三角形相似,应该怎么写呢?我们一起来写,首先把两个三角形表示出来,分别是∆ABC∆DEF,同学在写的时候还要注意对应的顶点字母相对应,那中间用什么符号来表示两个三角形相似呢?有同学可以告诉我吗?

S:大写字母S横着写。

T:很好,这跟我们曾经学过的什么符号很像呢? SSS:全等符号。

T:那课后大家思考全等三角形与相似三角形之间有什么联系,下节课我再叫同学回答这个问题。2.创设情境(2分钟)

(老师利用这组相似三角形纸片,将两个三角形的一个对应顶点重叠,贴在黑板上)

T:同学们你们看,相似三角形∆ABC和∆DEF的∆ABC的顶点A与∆DEF的顶点D重合并且∠BAC与∠EDF重合,那边EF和边BC有什么关系吗?

S:平行。

T:为什么呢?

S:同位角相等两直线平行。

T:嗯,AEB三点共线,且∠AEF=∠ABC,所以EF和BC平行。

(二)探索新知(20分钟)

T:如果平行于∆ABCBC边的直线与其他两边AB、AC相交与点E、F,所构成的∆AEF是否与∆ABC相似呢?

S:相似(不相似)。

T:大部分同学都说相似,接下来我们该做些什么去证明这两个三角形相似呢?

T:首先我们从我们学过的类似的图形出发,假设这条平行线是三角形中位线,我们来证明看看。同学们自行思考,待会来分享思路。[PPT显示相应题目和图形](2min过去了,期间教师下台观察学生情况,选一名写完了的同学上台分享思路)

S1:(在黑板上画△ABC并取分别AB、AC中点D、E,连接DE)∵DE是△ABC的中位线∴DE=1/2BC(由三角形中位线定理)

∴AB/AD =AC/AE =BC/DE =1/2.又∵两直线平行同位角相等 ∴∠ADE=∠B,∠AED=∠C,∠A=∠A ∴△ADE∽△ABC.T:同学们觉得S1的解答对吗? S:对。

T:S1的解答充分运用了已学的三角形中位线的知识,找出来隐含在三角形ADE和三角形ABC中边的比例关系,依照定义证明出了这两个三角形相似,证明过程很完整,是对的,让我们给他一些掌声鼓励。(解析S1的做法,并给予肯定)

(老师和学生一起鼓掌)T:接下来加大难度咯,“如图过点D作DE∥BC交AC于点E,那么△ADE与△ABC相似吗?”,请同学们自行思考,待会请同学上来分享思路。[PPT显示相应题目和图形](4min过去了)

S2:由同位角相等可知三个角对应相等,只需证明对应边成比例.因为DE∥BC,所以AD/AB=AE/EC=k, 只需证明DE/BC=k.过点D作DF∥AC交BC于点F,则由两组对边分别平行,得四边形DFCE为平行四边形.所以DE/BC=FC/BC,∵DF∥AC ∴FC/BC=DA/BA,故DE/BC= DA/BA =k ∴△ADE∽△ABC.T:S2将问题转化为了求三角形的一边对应成比例,通过作辅助线DF,构造出了平行四边形,并灵活运用平行四边形和相似的性质,得到了三边对应相等,从而证明了两个三角形相似,做的很棒,让我们把掌声送给他!(和同学们一起鼓掌)T:以上都是平行线与边AB和边AC相交的情况,现在我们延长AB和AC,如图当DE与三角形两边延长线交于边BC下方时,所构成的三角形和原三角形是否相似呢? [PPT显示相应题目和图形] S:相似。

T:要怎样证明呢? S:和上一题一样。

T:对,没错。像这种平行线位于点A下方的,我们统称为“A字型”,凡是拥有这种形状的三角形和平行线,都隐藏着相似三角形。那如果DE与三角形两边延长线交于边点A上方时,所构成的三角形和原三角形是否相似呢?请同学们自行思考。[PPT显示相应题目和图形](T下台观察、指点。2min后)

T:老师刚刚发现,大部分同学都不再用定义进行繁琐的证明了,而是直接由“A字型”的结论出发,将新图形转换为“A字型”加以证明。有哪位同学愿意上台分享一下,你是怎样转化的呢?

S3:分别在边AB和边AC作点N’和M’,使AN=AN’,AM=AM’,由对顶角相等和SAS可得

△AMN≌△AM’N’,从而得到“A字型”,故新三角形和原三角形相似。T:S3分析的很好!让我们给他掌声鼓励!(和同学们一起鼓掌)我们称这种图形为“X字型”,通过“A字型”和“X字型”的相似三角形探究,我们现在可以总结得出我们一开始要证明的结论了,同学们还记得是什么吗?

S:逆命题(刚刚的猜想)。

T:没错,我们给这个刚刚证明的猜想一个名称“预备定理”,大家请看屏幕,一齐朗读一边[PPT显示预备定理] S:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

T:预备定理比定义要简便的多,它的几何语言也是相当简洁 ∵EF∥BC ∴△ADE∽△ABC.(三)知识迁移(7分钟)(备注:此环节题目让学生以同桌为单位交流完成,老师再请同学发言说明思路)

(四)总结反思(7分钟)

定义:„„。要求三边三角满足对应关系,非常严谨但证明过程过于繁琐且使用条件有限。

预备定理:„„。只要求有找到原三角形一边的平行线,构成“A字型”或“X字型”,极大简化了证明过程。

(备注:以上总结,老师说整体性语言,关键字引导学生说出)

(五)布置作业(1分钟)

1.常规作业(第几页第几题)

2.探索作业:请以本节课所学知识,“测量”教室天花板的高度,写一测量方案。

九、板书设计

十、反思

第四篇:相似三角形复习教案

相似三角形复习教案

教学目标: 本课为相似三角形专题复习课,是对本章基本内容复习基础上的深化,通过对一个题目的演变,紧紧围绕一线三直角这个基本模型展开,由浅入深对相似三角形进行,同时结合数学中的方程思想,分类思想,模型思想,数形结合思想等拓展深化.教学重点:相似三角形的一些基本图形特别是一线三直(等)角的复习.教学难点: 一线三直(等)角模型的拓展深化.教学过程: 练习:1.如图,AB>AC,过D点作一直线与AB相交于 点E,使所得到的新三角形与原△ABC相似.2.如图,直角梯形ABCD中,E是BC上的一动点,使△ABE与△ECD相似,则AB、BE、CE、CD之间满足的关系为____________.得到相似中最基本的几种图形,即:

A型 斜A型 一线三直角反射型

在得到上述基本图形后,通过找相似三角形,让学生体会基本图形的应用。并通过对这个题目的演变,将本课内容提要呈现出来.例1:在平面直角坐标系中,两个全等Rt△OAB与Rt △A’OC’如图放置,点A、C’在y轴上,点A’在x轴上,BO 与A’ C’相交于D.你能找出与Rt△OAB相似的三角形吗? 请简要说明理由 在上述条件下,设点B、C’ 的坐标分别为(1,3),(0,1),将△ A’OC’绕点O逆时针旋转90°至△ AOC,如图所示:

(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;

(2)设抛物线的对称轴交x轴与点M,P为对称轴上的一动点,求当∠APC=90°时的点P坐标.本题主要是应用一线三直角这个基本图形,从而利用相似三角形的对应边关系求解,在教学过程中对P点的位置应作说明,可借助于几何画板演示.【变一变】线段BM上是否存在点P,使△ABP和△PMC相似?如存在,求出点P坐标,如不存在,请说明理由.本例让学生进一步应用基本图形,同时体会到数学思想——分类思想的应用.【拓展一】若点N是第一象限内抛物线上的一动点,当

∠NAA’=90°时,求N点坐标.通过添加一条辅助线构造一线三直角来提升对学生的要求。另外利用本题比较特殊的情况,即△AOA为等腰直三角形的 条件,采用一题多解的方法,帮助学生提高解题的能力.【拓展二】点N是抛物线的顶点,点Q是x轴正半轴上一点,将抛物线绕Q点旋转180°后得到新抛物线的顶点为M,与x轴相交于E、F两点(点E在点F的左边),当以点M、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

/本例难度较大,通过引导让学生知道本题仍然可通过构造一线三直角的模型来解决,因为要添加较多辅助线,教师可将第一种情况和辅助线添加出来,从而让学生类比得到第二种方法的辅助线.课堂小节:对本节课复习模型的整理;相似应用的技巧梳理;学生疑惑的交流.

第五篇:相似三角形复习课教案

《相似三角形》复习课教案

城区二中 章松岩

目的:使学生掌握相似三角形的判定和性质和应用,并能灵活运用。重点:相似三角形的判定和性质和应用。难点:相似三角形的灵活运用。教法:三疑三探。教具:多媒体。过程:

课前热身:时间为3分钟

1、根据下列条件能否判定△ABC与△A′B′C′相似?为什么?

(1)∠A=120°,AB=7,AC=14

∠A′=120°,A′B′=3,A′C′=6(2)AB=4,BC=6,AC=8 A′B′=12,B′C′=18,A′C′=21

(3)∠A=70°,∠B=48°, ∠A′=70°, ∠C′=62°

2、已知△ABC∽△ A′B′C′,其相似比为,则△ABC 与△A′B′C′的周长比为__对应高的比为__对应中线的比为__对应角平分线的比为__面积比为__。提问学生后教师简单总结,并让学生说说本单元的复习任务是什么? 相似三角形的判定

(1)两边对应成比例且夹角相等,两个三角形相似。(2)三边对应成比例,两个三角形相似。(3)两角对应相等,两个三角形相似。相似三角形的性质

(1)相似三角形对应边成比例,对应角相等。(2)相似三角形的周长比等于相似比。

(3)相似三角形的面积比等于相似比的平方。

(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。要求学生读几遍。介绍相似三角形的应用: 相似三角形的应用:

1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等;

3、利用三角形相似,可以解决一些不能直接测量的物体的长度。如求河的宽度、求建筑物的高度等。课堂抢答:

1、D是△ABC的边AB上的点, 请你添加一个条件,使△ACD与△ABC相似, 这个条件是()

2、如果一个三角形三边长分别为5、12、13,与其相似的三角形最大边长是39,则该三角形最短的边长为()

3、如图,在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F,BE:AB=2:3,则△BEF与△CDF的周长比为();若△BEF的面积为8平方厘米,则△CDF的面积为()

4、如图,铁道口的栏杆的短臂长1米,长臂长16米,当短臂端点下降0.8米时,长臂端点升高()(杆的宽度忽略不计)

5、如图,身高为1.6m的某同学想测量一棵大树的高度,她沿树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树高为()

A、4.8m

B、6.4m

C、8m

D、10m 竞赛角

如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F。求证:BD·CF=CD·DF 证明:∵CD⊥AB,E为AC的中点

∴ DE=AE

∴∠EDA=∠A

∵ ∠EDA=∠FDB

∴∠A=∠FDB

∵∠ACB= Rt ∠

∴ ∠A=∠FCD

∴ ∠FDB=∠FCD

∵ △FDB∽△FCD

∴ BD:CD=DF:CF

∴ BD·CF=CD·DF 中考链接:

在∆ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB边向B点以2cm/秒的速度移动,点Q从点B开始沿BC向点C以4cm/秒的速度移动,如果P、Q分别从A、B同时出发,经几秒钟∆BPQ与∆BAC相似?

大胆质疑:

通过本节课的学习同学们还有什么疑问或新的发现请大胆提出来? 教师预设:

某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图)他们想在△AMD和△BMC地带种植单价为10元 /米2的太阳花,当△AMD地带种满花后,已经花了500元,请你算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由。

小结:

通这一节的复习之后你有哪些收获?

(1)掌握相似三角形的判定方法及性质;

(2)能灵活运用相似三角形的判定方法及性质进行计算或证明;(3)利用相似解决一些实际问题

(4)分类讨论思想: 遇到没有明确指明对应关系的三角形相似时,要注意考虑对位相似和错位相似两种情况,采取分类讨论的方法解决问题.作业:

1、必做题:学习指导第82页2,3,5题。

2、选做题: 板书设计: 教后记:

相似三角形复习课教案

城区二中

章松岩

2013年1月8日

教后反思

结合上课时的感受及课后评课,我对这节课作出如下反思: 成功地方:

1.能科学运用三疑三探模式上课。

2.能有效开展小组活动。充分发挥小组协作功能。

3.注重学生动口动手能力的培养,教师只起辅助引导作用。不足地方:

1.课前可创设问题情境,结合日常生活实际设计一个问题。2.课前热身习题可设计成学案的形式。3.学生评价素质有待于进一步提高。

4.部分习题处理过快影响了中差生的学习。5.中招链接题因为时间关系为处理。6.竟赛角题目设计过难。7.教师未使用普通话。整改措施:

1.复习期间认真备好复习课。2.注重发挥教研组集体协作功能。

3.注重数学思想方法的教学,注重讲题的效果,注重总结归纳解题方法。4.精选习题,不搞题海战术。5.注重批改,反馈,考后总结。6.注意培优补差,努力降低过差率。

下载相似三角形教案(5篇范文)word格式文档
下载相似三角形教案(5篇范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形教案(微型课)

    人教版九年级数学教案 相似三角形的判定教案 27.2.1相似三角形的判定教案 教学目标 1、理解相似三角形的定义、相似比,并掌握相似三角形的判定定理; 2、培养学生的观察﹑发现......

    相似三角形的性质 教案

    相似三角形的性质 教学目标 1、经历探索相似三角形性质的过程,并会运用相似三角形的性质解决有关的问题。 2、通过探索相似三角形性质的过程,渗透逻辑推理的方法,引导学生从......

    相似三角形复习教案[全文5篇]

    设计意图: 1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。 2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”; 使学......

    《相似三角形应用举例》教案

    《相似三角形应用举例》教案 一、教学目标 1. 进一步巩固相似三角形的知识.2. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题......

    三角形相似说课稿

    相似三角形说课稿 一、说教材 从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述 1、本课内容在教材中的地位 本节教学内容是本章的重要内容之一。本节内......

    《相似三角形》说课稿

    《相似三角形》说课稿范文1 各位领导老师大家好:今天我说课的课题是华师版初中三年级数学 “相似三角形的性质”。下面,我分以下几个部分来汇报我对这节课的教学设计,“教材分......

    三角形相似说课稿

    相似三角形说课稿 今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。 一、说教材 从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐......

    2018中考专题相似三角形

    相似形1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;2.如图,直角△ABC......