九年级数学上册《相似三角形的应用》学案分析

时间:2019-05-12 22:26:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级数学上册《相似三角形的应用》学案分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级数学上册《相似三角形的应用》学案分析》。

第一篇:九年级数学上册《相似三角形的应用》学案分析

九年级数学上册《相似三角形的应用》

学案分析

【教材分析】

(一)教材的地位和作用

《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

(二)教学目标

、。知识与能力:)

进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:)通过利用相似形知识解决生活实际问题,使学生体验数学于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

【教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】

一、知识梳理、判断两三角形相似有哪些方法?)定义:

2)定理:

3)判定定理一:

4)判定定理二:

5)判定定理三:

2、相似三角形有什么性质?

对应角相等,对应边的比相等

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。

古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、例题讲解

例1(教材P49例3——测量金字塔高度问题)

《相似三角形的应用》教学设计

分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50练习­——测量河宽问题)

《相似三角形的应用》教学设计《相似三角形的应用》教学设计

分析:设河宽AB长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习

.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处c看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处c的距离是40米.求塔高?

五、回顾小结

一)相似三角形的应用主要有如下两个方面

测高

测距

二)测高的方法

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

三)测距的方法

测量不能到达两点间的距离,常构造相似三角形求解

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、拓展提高

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业

课本习题27.2

0题、11题。

【教学设计说明】

相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,最大限度地调动学生学习的积极性和主动性。

第二篇:九年级数学《相似三角形》说课稿

【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助!

相似三角形说课稿

今天,我的说课将分三大部分进行:

一、说教材;

二、说教学策略;

三、说教学程序。

一、说教材

从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

1、本课内容在教材中的地位

本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

2.学习目标

知识与技能方面:

探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

过程与方法方面:

培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

情感态度与价值观方面:

让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

3.教学重点、难点

立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。

教学重点:相似三角形、相似多边形的性质及其应用

教学难点:①相似三角形性质的应用;

②促进学生有条理的思考及有条理的表达。

4.学情分析

从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。

对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。

大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。

5.教学准备

教师:直尺、多媒体课件

学生:必要的学习用具

二、说教学策略

从设计的指导思想、教学方法、学习方法三方面阐述

新课程标准指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现学生主体教师主导的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。

采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

有一位教育家说过:教给学生良好的学习方法比直接教给学生知识更重要。本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由被动学会变成主动会学。

三、说教学程序

(一)类比研究,明确目标

师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?

生:已经研究了相似三角形的定义、判别条件。

师:那么我们今天该研究什么了?

生:相似三角形的性质。

设计意图:

从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。

(二)提出问题,感受价值,探究解决

师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。

生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?

设计意图:

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:

给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?

生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

情境一:如图,ABC∽DEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ABC的周长(学生只能用相似三角形对应边成比例求出ABC的三边长,然后求其周长)

(2)如果DEF的周长为20,则ABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

(3)如果ABC∽DEF,相似比为k:1,且DEF三边长分别用d、e、f表示,求ABC与DEF的周长之比。

结论:相似三角形的周长之比等于相似比。

情境二:

师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?

生:面积比问题。

师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到相似三角形的对应高之比等于相似比的结论。进而解决相似三角形的面积比等于相似比的平方的问题。体现教材整合。

(三)拓展研究,形成策略,回归生活

拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)

拓展研究二:由相似三角形研究拓展到相似多边形研究

师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。

说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略转化为三角形来研究。然后通过师生活动合作研究得结论。

拓展结论1:相似多边形的周长之比等于相似比;

相似多边形的面积之比等于相似比的平方。

(结合相似五边形研究过程)

拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;

相似多边形中对应对角线之比等于相似比;

进而拓展到:相似多边形中对应线段之比等于相似比等。回归生活一:

师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的相似形你还能解决吗?

回归生活二:(以师生聊天的方式进行)

其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?

生:相似比的立方。

设计意图:新课程标准指出数学教学活动要建立在学生已有生活经验的基础上---;教育心理学认为:源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果;于新华老师在一些教研活动中曾经说过:源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。

而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。

(四)操作应用,形成技能

课内检测:

1.已知两上三角形相似,请完成下面表格:

相似比 2

对应高之比 0.5

周长之比 3 k

面积之比 100

2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。

设计意图:落实双基,形成技能

(五)习题拓展,发展能力

已知,如图,ABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。

(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?

(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?

答: 最大值,最小值(填有或没有)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。

(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:

①当点P为AB中点时,矩形PMNQ的面积最大;

②当PM=PQ时,矩形PMNQ的面积最大。

你认为哪一个猜想较为合理?为什么?

(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。

设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

(六)作业(略)

另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

第三篇:中考数学二轮专题:相似三角形及其应用

2021中考数学

二轮专题汇编:相似三角形及其应用

一、选择题

1.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则

()

A.=

B.=

C.=

D.=

2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是

()

3.(2019•雅安)若,且,则的值是

A.4

B.2

C.20

D.14

4.如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为

()

A.B.C.D.5.(2020·永州)如图,在中,四边形的面积为21,则的面积是()

A.B.25

C.35

D.63

6.(2020·广西北部湾经济区)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()

A.15

B.20

C.25

D.30

7.(2020·重庆B卷)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()

A.1:2

B.1:3

C.1:4

D.1:5

8.(2019•贵港)如图,在中,点,分别在,边上,,若,则线段的长为

A.

B.

C.

D.5

二、填空题

9.在某一时刻,测得一根高为1.8

m的竹竿的影长为3

m,同时同地测得一栋楼的影长为90

m,则这栋楼的高度为    m.10.(2020·盐城)

如图,且,则的值为

11.(2019•郴州)若,则__________.

12.(2019•百色)如图,与是以坐标原点为位似中心的位似图形,若点,,则的面积为__________.

13.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是    步.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为_________.

15.(2019•泸州)如图,在等腰中,,点在边上,点在边上,垂足为,则长为__________.

16.(2020·苏州)如图,在平面直角坐标系中,点、的坐标分别为、,点在第一象限内,连接、.已知,则_________.三、解答题

17.(2020·杭州)如图,在中,点D,E,F分别在AB,BC,AC边上,.

(1)求证:.

(2)设,①若BC=12,求线段BE的长;

②若△EFC的面积是20,求△ABC的面积.

18.(2019•广东)如图,在中,点是边上的一点.

(1)请用尺规作图法,在内,求作,使,交于;(不要求写作法,保留作图痕迹)

(2)在(1)的条件下,若,求的值.

19.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E,H分别在AB,AC上,已知BC=40

cm,AD=30

cm.(1)求证:△AEH∽△ABC;

(2)求这个正方形的边长与面积.20.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;

(2)求证:AE2=EF·ED;

(3)求证:AD是⊙O的切线.

21.如图,☉O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与☉O相交于E,F两点,P是☉O外一点,且P在直线OD上,连接PA,PC,AF,满足∠PCA=∠ABC.(1)求证:PA是☉O的切线;

(2)证明:EF2=4OD·OP;

(3)若BC=8,tan∠AFP=,求DE的长.22.如图①,⊙O是△ABC的外接圆,AB是⊙O的直径,OD∥AC,OD交⊙O于点E,且∠CBD=∠COD.(1)求证:BD是⊙O的切线;

(2)若点E为线段OD的中点,求证:四边形OACE是菱形.

(3)如图②,作CF⊥AB于点F,连接AD交CF于点G,求的值.

23.已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;

(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;

(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.

24.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;

第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);

第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.

(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);

(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;

(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?

2021中考数学

二轮专题汇编:相似三角形及其应用-答案

一、选择题

1.【答案】C [解析]根据DE∥BC,可得△ADN∽△ABM,△ANE∽△AMC,再应用相似三角形的性质可得结论.∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选C.2.【答案】B [解析]根据勾股定理分别表示出已知三角形的各边长,同理利用勾股定理表示出四个选项中阴影三角形的各边长,利用三边长对应成比例的两个三角形相似可得结果,△A1B1C1各边长分别为1,选项A中阴影三角形三边长分别为:,3,三边不与已知三角形各边对应成比例,故两三角形不相似;选项B中阴影三角形三边长分别为:,2,三边与已知三角形的各边对应成比例,故两三角形相似;选项C中阴影三角形三边长分别为:1,2,三边不与已知三角形各边对应成比例,故两三角形不相似;选项D中阴影三角形三边长分别为:2,三边不与已知三角形各边对应成比例,故两三角形不相似,故选B.3.【答案】A

【解析】由a∶b=3∶4知,所以.

所以由得到:,解得.所以.

所以.故选A.

4.【答案】A [解析]如图所示.设DM=x,则CM=8-x,根据题意得:(8-x+8)×3×3=3×3×6,解得x=4,∴DM=4.∵∠D=90°.∴由勾股定理得:

BM===5.过点B作BH⊥水平桌面于H,∵∠HBA+∠ABM=∠ABM+∠DBM=90°,∴∠HBA=∠DBM,∵∠AHB=∠D=90°,∴△ABH∽△MBD,∴=,即=,解得BH=,即水面高度为.5.【答案】B

【详解】解:∵

故选:B.

6.【答案】

B

【解析】设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴,解得:x=40,∴AN=60﹣x=60﹣40=20.因此本题选B.

7.【答案】C

【解析】本题考查了相似三角形的性质,∵△ABC与△DEF位似,且,∴,因此本题选C.

8.【答案】C

【解析】设,∴,∵,∴,∴,∴,∴,∵,∴,∵,∴,∴,设,∴,∴,∴,∴,故选C.

二、填空题

9.【答案】54

10.【答案】2

【解析】∵BC∥DE,∴△ADE∽△ABC,∴,设DE=x,则AB=10-x∵AD=BC=4,∴,∴x1=8,x2=2(舍去),此本题答案为2

11.【答案】

【解析】∵,∴,故2y=x,则,故答案为:.

12.【答案】18

【解析】∵与是以坐标原点为位似中心的位似图形,若点,∴位似比为,∵,∴,∴的面积为:,故答案为:18.

13.【答案】 [解析]如图①,∵四边形CDEF是正方形,∴CD=ED=CF.设ED=x,则CD=x,AD=12-x.∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=.如图②,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,∵S△ABC=AC·BC=AB·CP,则12×5=13CP,∴CP=.设ED=y,同理得:△CDG∽△CAB,∴=,∴=,y=<,∴该直角三角形能容纳的正方形边长最大是步,故答案为:.14.【答案】

【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB=90°,AC=3,BC=4,由勾股定理,得AB=5.CD⊥AB,由三角形的面积,得CD==.易得△ABC∽△ACD∽△CBD,由相似三角形对应边成比例,得AD==,BD==.过点E作EG∥AB交CD于点G,由平行线分线段成比例,得DG=CD=,EG=,所以,即,所以DF=,故答案为.

15.【答案】

【解析】如图,过作于,则∠AHD=90°,∵在等腰中,,∴,∴∠ADH=90°–∠CAD=45°=∠CAD,∴,∴CH=AC–AH=15–DH,∵,∴,又∵∠ANH=∠DNF,∴,∴,∴,∵,CE+BE=BC=15,∴,∴,∴,∴,故答案为:.

16.【答案】或2.8

【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C作CD⊥y轴于点D,设AC交y轴于点E,∴CD∥x轴,∴∠CAO=∠ACD,△DEC∽△OEA,∵,∴∠BCD=∠ACD,∴BD=DE,设BD=DE=x,则OE=4-2x,∴=,即=,解得x=1.2.∴OE=4-2x=1.6,∴n=OD=DE+OE=1.2+1.6=2.8.三、解答题

17.【答案】

解:

(1)∵DE∥AC,∴∠BED=∠C.∵EF∥AB,∴∠B=∠FEC,∴△BDE∽△EFC.

(2)①∵EF∥AB,∴==.∵BC=12,∴=,∴BE=4.

②∵EF∥AB,∴△EFC△BAC,∴=.∵=,∴=.又∵△EFC的面积是20,∴=,∴S△ABC=45,即△ABC的面积是45.

18.【答案】

(1)如图所示:

(2)∵,∴.

∴.

19.【答案】

[解析](1)根据EH∥BC即可证明.(2)设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,利用△AEH∽△ABC,得=,列出方程即可解决问题.解:(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)如图,设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM.设正方形EFGH的边长为x

cm,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为

cm,面积为

cm2.20.【答案】

(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=(180°-36°)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=36°,∵AD∥BC,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;

(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴=,∴AE2=EF·ED;

(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC,∴AD⊥AG,∴AD是⊙O的切线.

解图

21.【答案】

解:(1)因为点D是AC中点,所以OD⊥AC,所以PA=PC,所以∠PCA=∠PAC,因为AB是☉O的直径,所以∠ACB=90°,所以∠ABC+∠BAC=90°,因为∠PCA=∠ABC,所以∠PAC=∠ABC,所以∠PAC+∠BAC=90°,所以PA⊥AB,所以PA是☉O的切线.(2)因为∠PAO=∠ADO=90°,∠AOD=∠POA,所以△PAO∽△ADO,所以=,所以AO2=OD·OP,所以EF2=AB2=(2AO)2=4AO2=4OD·OP.(3)因为tan∠AFP=,所以设AD=2x,则FD=3x,连接AE,易证△ADE∽△FDA,所以==,所以ED=AD=x,所以EF=x,EO=x,DO=x,在△ABC中,DO为中位线,所以DO=BC=4,所以x=4,x=,所以ED=x=.22.【答案】

(1)证明:∵AB是⊙O的直径,∴∠BCA=90°,∴∠ABC+∠BAC=90°,∵OD∥AC,∴∠ACO=∠COD.∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;

(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;

解图

(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴=,即FC=,又∵FG∥BD,∴△AFG∽△ABD,∴=,即FG=,∴==2,∴=.23.【答案】

(1)证明:∵△ABC为等边三角形,∴∠ABC=∠C=∠CAB=60°,AB=BC,在△ABE和△BCD中,∴△ABE≌△BCD(ASA);

(2)解:∵△ABC为等边三角形,∴∠ABC=∠CAB=60°,AB=BC,∴∠ABE=∠BCD=180°-60°=120°.∴在△ABE和△BCD中,∴△ABE≌△BCD(ASA),∴BE=CD.∵DH⊥AB,∴∠DHA=90°,∵∠CAB=60°,∴∠ADH=30°,∴AD=2AH,∴AC=AD-CD=2AH-BE;

(3)解:如解图,作DS⊥BC延长线于点S,作HM∥AC交BC于点M,解图

∵AC=6,BE=2,∴由(2)得AH=4,BH=2,与(1)同理可得BE=CD=2,CE=8,∵∠SCD=∠ACB=60°,∴∠CDS=30°,∴CS=1,SD=,BS=7,∵BD2=BS2+SD2=72+()2,∴BD=2,∵EK∥BD,∴△CBD∽△CEK,∴==,∴CK===,EK===.∵HM∥AC,∴∠HMB=∠ACB=60°,∴△HMB为等边三角形,BM=BH=HM=2,CM=CB-BM=4,又∵HM∥AC,∴△HMG∽△KCG,∴=,即=,∴MG=,BG=,EG=,∵EK∥BD,∴△GBP∽△GEK,∴=,∴BP=.24.【答案】

【思路分析】(1)因为点C是x轴上的一动点,且∠ACB=90°保持不变,所以由圆周角的性质得,点C必在以AB为直径的圆上,所以以AB为直径画圆,与x轴相交于两点,除点C的另一点就是所求;(2)因为∠ACB=90°,∠AOC=90°,所以过点B作BE⊥x轴,垂足为E,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m2-5m+2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A的横坐标与点B的横坐标的和的相反数;常数项是点A的纵坐标与点B的纵坐标的积,先把方程ax2+bx+c=0,化为

x2+x+=0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P、Q两点分别在AD、BD上,过P、Q分别作x轴垂线,垂足为M、N,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.

图①

图②

(1)解:如解图①,先作出AB的中点O1,以O1为圆心,AB为半径画圆.

x轴上另外一个交点即为D点;(4分)

(2)证明:如解图①,过点B作x轴的垂线交x轴于点E,∵∠ADB=90°,∴∠ADO+∠BDE=90°,∵∠OAD+∠ADO=90°,∴∠OAD=∠BDE,∵∠AOD=∠DEB=90°,∴△AOD∽△DEB,(6分)

∴=,即=,∴m2-5m+2=0,∴m是x2-5x+2=0的一个实根;(8分)

(3)解:(0,1),(,)或(0,),(-,c);(10分)

(4)解:在解图②中,P在AD上,Q在BD上,过P,Q分别作x轴的垂线交x轴于M,N.由(2)知△PMD∽△DNQ,∴=,(12分)

∴x2-(m1+m2)x+m1m2+n1n2=0与ax2+bx+c=0同解,∴-=m1+m2;=m1m2+n1n2.(14分)

【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB=90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m的等量关系,从而使问题得以解决.

第四篇:2017-2018学年华东师大版数学九年级上册3A23.3 相似三角形

23.3相似三角形

1.相似三角形

【知识与技能】

1.知道相似三角形的概念;

2.能够熟练地找出相似三角形的对应边和对应角;

3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长;

4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似.【过程与方法】

在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯.【情感态度】

培养学生严谨的数学思维习惯.【教学重点】

掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.【教学难点】

熟练找出对应元素,在此基础上根据定义求线段长或角的度数.一、情境导入,初步认识

复习:什么是相似形?识别两个多边形是否相似的标准是什么?

二、思考探究,获取新知 1.相似三角形的有关概念:

由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似.三角形是最简单的多边形.由此可以说什么样的两个三角形相似?

如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′,ABBCAC,那么△ABCABBCAC与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC相似于△A′B′C′”.由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以A与A′是对应顶点,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记

ABBCAC=k,那么这个比值k就表示这两ABBCAC个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为k,即指

ABAB=k,那么△A′B′C′与△ABC的相似比应是,就不ABABABBCAC=1,所ABBCAC是k了,应为多少呢?同学们想一想.如果△ABC∽△A′B′C′,相似比k=1,你会发现什么呢?以可得AB=A′B′,BC=B′C′,AC=A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等的两个三角形一定相似吗?②相似的两个三角形会全等吗?

2.△ABC中,D是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与△ABC是否相似?

【分析】判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑.能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?可根据平行线分线段成比例的基本事实,推得判断出△ADE与△ABC相似.AEDEDEAD,通过度量发现,所以可以ACBCBCAB

思考(1)你能否通过演绎推理证明你的猜想?

(2)若是DE∥BC,DE与BA、CA延长线交于E、D,那么△ADE与△ABC还会相似吗?试试看,如果相似写出它们对应边的比例式.【归纳结论】平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.例1 如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.解:∵DE∥BC, ∴△ADE∽△ABC,∴DEBC=ADAB=13,∴BC=3DE=15.三、运用新知,深化理解 1.如图所示,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.2.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G.(1)求证:GEAE;GBBC(2)若GE=2,BF=3,求线段EF的长.【答案】1.(1)DE∶BC=2∶5(2)AE=6,BC=35.2GEED.又∵ED=AE, GBBC2.(1)证明:∵AD∥BC,∴△GED∽△GBC,∴∴GEAE.GBBCGEAE, GBBC(2)设EF的长为x,则由(1)知又∵AEGEGEEF,∴,即 BCGBGBBF2x,解得x1=-6(舍去),x2=1, 2x33∴EF=1.【教学说明】第2题教师适当点拨,小组讨论后独立完成.四、师生互动,课堂小结

你这节课学到了哪些知识?还有哪些疑问?

五、教学反思

本节课通过复习相似多边形的性质与判定引入三角形相似的概念,表示方法及判定方法,通过思考探究、动手测量、猜想、演绎证明推导出相似三角形的判定的预备定理,即平行于三角形一边的直线与其他两边(或两边的延长线)相交所构成的三角形与原三角形相似,并通过例题练习运用新知,深化理解.2.相似三角形的判定

【知识与技能】

1.掌握相似三角形的判定定理2:有两边对应成比例,且夹角相等的两个三角形相似; 2.掌握相似三角形的判定定理

3:三条边对应成比例的两个三角形相似.3.能依据条件,灵活应用相似三角形的判定定理,正确判断两个三角形相似.【过程与方法】

在推理过程中学会灵活使用数学方法.【情感态度】

培养学生严谨的数学证明习惯和对数学的兴趣.【教学重点】

相似三角形的判定定理2、3的推导过程,掌握相似三角形的判定定理2、3并能灵活应用.【教学难点】

相似三角形的判定定理的推导及应用.一、情境导入,初步认识

复习:1.现在要判断两个三角形相似有哪几种方法?有两种方法:(1)根据定义;(2)有两个角对应相等的两个三角形相似.2.如图△ABC中,D、E是AB、AC上三等分点(即AD=ABC相似吗?你用的是哪一种方法?

11AB,AE=AC),那么△ADE与△33

由于没有两个角对应相等,同学们可以动手量一量,量什么后可以判断它们是否相似? 【教学说明】可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例,无论哪一种,都应肯定他们是正确的,要求同学说出是应用哪一种方法判断出的.二、思考探究,获取新知

同学们通过量角或量线段计算之后,得出:△ADE∽△ABC.从已知条件看,△ADE与△ABC有一对对应角相等,即∠A=∠A(是公共角),而一个条件是AD=

11AB,AE=AC,即是33AD1AE1ADAE,,因此.△ADE的两条边AD、AE与△ABC的两条边AB、AC会AB3AC3ABAC对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验.观察教材图23.3.10,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?

1,将点E由点A开始在AC上31ADAE移动,可以发现当AE=AC时,△ADE与△ABC相似,此时.3ABAC图中两个三角形的一组对应边AD与AB的长度的比值为猜想:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.你能否用演绎推理的方法证明你的猜想? 【教学说明】引导学生证明上述猜想.【归纳结论】 相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似.你能画出有两边对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)∠B=∠B′,ABAC.ABAC例1(课本中例4)判断图中△AEB与△FEC是否相似.例2 如图△ABC中,D、E是AB、AC上的点,AB=7.8,AD=3,AC=6,CE=2.1,试判断△ADE与△ABC是否会相似,小张同学的判断理由是这样的:

解:因为AC=AE+CE,而AC=6,CE=2.1,故AE=6-2.1=3.9.由于与△ABC不相似.你同意小张同学的判断吗?请你说说理由.解:小张同学的判断是错误的.ADAE,所以△ADEABAC

因为AD3AE3.91ADAE,,所以,而∠A是公共角,∠A=∠A,所以△ADEAC6AB7.82ACAB∽△ACB.请同学再做一次实验,看看如果两个三角形的三边都成比例,那么这两个三角形是否相似?

看课本69页“做一做”.通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单地说就是,三边成比例的两个三角形相似.例3 △ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,试判定它们是否相似,并说明理由.三、运用新知,深化理解

1.如图,△ADE与△ABC相似吗?请说明理由.2.如图,已知ABBCAC,∠BAD=20°,求∠CAE的大小.ADDEAE

【教学说明】引导学生自主完成,学生代表在黑板上展示,教师点评.四、师生互动,课堂小结

1.相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.2.相似三角形的判定定理3:三边成比例的两个三角形相似.3.根据题目的具体情况,选择适当的方法证明三角形相似.五、教学反思

本节课通过复习上节课学习的相似三角形的判定定理入手,提出新问题引入新课,再通过学生动手测量、猜想结论并证明等活动中的体验,完成对相似三角形的判定定理2、3的认识,加深对判定定理的理解.教学过程中,强调学生自主探究和合作交流,经历观察、实验、猜想、证明等思维过程,从中获得知识与技能,培养学生的综合能力.3.相似三角形的性质

【知识与技能】

会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【过程与方法】

培养学生演绎推理的能力.【情感态度】

感受数学来源于生活,来源于实践.【教学重点】

1.相似三角形中的对应线段比值的推导;

2.相似多边形的周长比、面积比与相似比关系的推导; 3.运用相似三角形的性质解决实际问题.【教学难点】

相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境导入,初步认识

复习:1.判定两个三角形相似的简便方法有哪些?

2.在△ABC与△A′B′C′中,AB=10cm,AC=6cm,BC=8cm,A′B′=5cm,A′C′=3cm,B′C′=4cm,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?

二、思考探究,获取新知

上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为AC=2.AC相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢?

一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学画出上述的两个三角形,作对应边BC和B′C′边上的高,用刻度尺量一量AD与A′D′的长,AD等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比AD

等于相似比.我们能否用说理的方法来说明这个结论呢?

△ABD和△A′B′D′都是直角三角形,且∠B=∠B′.∴△ABD∽△A′B′D′,∴

ADAB=k ADAB思考:相似三角形面积的比与相似比有什么关系? 【教学说明】引导学生通过演绎推理来证明.归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.例1 S△AOD.如梯形ABCD的对角线交于点O,DC2,已知S△DOC=4,求S△AOB、AB3

【分析】∵DC∥AB,∴△DOC∽△BOA,由相似三角形的性质可求出S△AOB、S△AOD.解:∵DC∥AB,∴△DOC∽△BOA,三、运用新知,深化理解

1.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(图形)的示意图.已知桌面的直径为1.2m,桌面距离地面为1m,若灯泡距离地面3m,则地面上阴影部分的面积为.【教学说明】运用相似三角形对应高的比等于相似比是解决本题的关键.2.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF∶EH=4∶3,求EF、EH的长.【答案】1.0.81πm 2.HG=9.6cm;EH=7.2cm 【教学说明】充分运用矩形边长的比来建立方程,可使问题得到解决.四、师生互动,课堂小结

1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.五、教学反思

本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜想出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.24.相似三角形的应用

【知识与技能】

会应用相似三角形的有关性质,测量简单的物体的高度或宽度.自己设计方案测量高度,体会相似三角形在解决实际问题中的广泛应用.【过程与方法】

通过利用相似解决实际问题,进一步提高学习应用数学知识的能力.【情感态度】

让学生体会数学来源于生活,应用于生活,体验数学的功用.【教学重点】

构建相似三角形解决实际问题.【教学难点】

把实际问题抽象为数学问题,利用相似三角形来解决.一、情境导入,初步认识 复习

1.相似三角形有哪些性质?

2.如图,B、C、E、F是在同一直线上,AB⊥BF,DE⊥BF,AC∥DF.(1)△DEF与△ABC相似吗?为什么?

(2)若DE=1,EF=2,BC=10,那么AB等于多少?((1)△DEF∽△ABC.(2)AB=5)

二、思考探究,获取新知

第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长.人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度.例1 古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较木棒的影长A′B′与金字塔的影长AB,即可近似算出

金字塔的高度OB,如果O′B′=1米,A′B′=2米,AB=274米,求金字塔的高度OB.【分析】因为太阳光是互相平行的,易得△A′O′B′∽△AOB,从而求得OB的长度.解:∵太阳光是平行光线即O′A′∥OA, ∴∠OAB=∠O′A′B′.又∵∠ABO=∠A′B′O′=90°, ∴△OAB∽△O′A′B′.答:金字塔的高度OB为137米.例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一这一边上选定点B和C,使AB⊥BC,然后选定点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD(两角分别相等的两个三角形相似),∴ABEC=BDCD,解得AB=

BDEC12050=100(米).CD60答:两岸间的大致距离为100米.这些例题向我们提供了一些利用相似三角形进行测量的方法.例3 如图,已知D、E是△ABC的边AB、AC上的点,且∠ADE=∠C.求证:AD·AB=AE·AC.【分析】把等积式化为比例式证明.ADAC,猜想△ADE与△ABC相似,从而找条件加以AEAB

证明:∵∠ADE=∠C,∠A=∠A, ∴△ADE∽△ACB(两角分别相等的两个三角形相似).∴ADAE, ACAB∴AD·AB=AE·AC.三、运用新知,深化理解

1.如图,一条河的两岸有一段是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m,在这岸离开岸边16m处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有一棵树,但对岸被遮住的两棵树之间有四棵树,这段河的河宽是多少米?

【教学说明】先由实际问题建立相似的数学模型,可先证得△ABE∽△ACD,再根据对应线段成比例可求出河宽,即线段BC的长.2.亮亮和颖颖住在同一幢住宅楼,两人用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰好在一条直线上时,两人分别标定自己的位置C、D,然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C、D、N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m,你能根据以上测量数据帮助他们求出住宅楼的高度吗?

【答案】1.24m 2.20.8m 【教学说明】过点A作MN的垂线段,构造相似三角形.四、师生互动,课堂小结

这节课你学习了哪些知识,有哪些收获?还有哪些疑问?

【教学说明】学生小组讨论,分小组陈述演示,教师归纳板书.五、教学反思

本节课以生活实例为情境,引导学生探究如何建立相似的数学模型,构造相似三角形,把实际问题转化为数学问题(相似)来解决,进一步提高学生应用数学知识的能力.

第五篇:九年级数学相似三角形知识精讲

新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

初三数学相似三角形知识精讲

(二)重要知识点介绍: 1.比例线段的有关概念: 在比例式abcd(a:bc:d)中,a、d叫外项,b、c叫内项,a、c叫前项,b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。

把线段AB分成两条线段AC和BC,使AC=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。

2.比例性质: ①基本性质:abcdadbc ②合比性质:ababcdcda±bbc±dd

③等比性质:…mn(bd…n≠0)ac…mbd…nab

3.平行线分线段成比例定理:

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。

则ABBCDEEF,ABACDEDF,BCACEFDF,…

②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

4.相似三角形的判定:

①两角对应相等,两个三角形相似

②两边对应成比例且夹角相等,两三角形相似

③三边对应成比例,两三角形相似

④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似

⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

5.相似三角形的性质

①相似三角形的对应角相等

②相似三角形的对应边成比例

③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比

④相似三角形周长的比等于相似比

⑤相似三角形面积的比等于相似比的平方

【典型例题】

例1.(1)在比例尺是1:8000000的《中国行政区》地图上,量得A、B两城市的距离是7.5厘米,那么A、B两城市的实际距离是__________千米。

(2)小芳的身高是1.6m,在某一时刻,她的影子长2m,此刻测得某建筑物的影长是18米,则此建筑物的高是_________米。

解:这是两道与比例有关的题目,都比较简单。

(1)应填600(2)应填14.4。

例2.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是:____________

A.C.ADABDEBCAEACADBDB.CECFEFABEAFB

DEBCADBD,D.CFCB 分析:由DE∥BC,EF∥AB可知,A、B、D都正确。而不能得到故应选C。利用平行线分线段成比例定理及推论求解时,一定要分清谁是截线、谁是被截

线,C中DEBC很显然是两平行线段的比,因此应是利用三角相似后对应边成比

DEBCADABAEAC例这一性质来写结论,即

例3.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP1,CD23,求△ABC的边长

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

解:∵△ABC是等边三角形

∴∠C=∠B=60°

又∵∠PDC=∠1+∠APD=∠1+60°

∠APB=∠1+∠C=∠1+60°

∴∠PDC=∠APB ∴△PDC∽△APB ∴PCABCDPB

设PC=x,则AB=BC=1+x 23,∴x2,1x1x ∴ ∴AB=1+x=3。

∴△ABC的边长为3。

例4.如图:四边形ABEG、GEFH、HFCD都是边长为a的正方形,(1)求证:△AEF∽△CEA(2)求证:∠AFB+∠ACB=45°

分析:因为△AEF、△CEA有公共角∠AEF 故要证明△AEF∽△CEA 只需证明两个三角形中,夹∠AEF、∠CEA的两边对应成比例即可。

证明:(1)∵四边形ABEG、GEFH、HFCD是正方形

∴AB=BE=EF=FC=a,∠ABE=90° ∴AEAEEFAEEF2a,EC2a

∴2aaECAE2,ECAE2a2a2

∴

又∵∠CEA=∠AEF ∴△CEA∽△AEF(2)∵△AEF∽△CEA ∴∠AFE=∠EAC ∵四边形ABEG是正方形

∴AD∥BC,AG=GE,AG⊥GE ∴∠ACB=∠CAD,∠EAG=45°

∴∠AFB+∠ACB=∠EAC+∠CAD=∠EAG ∴∠AFB+∠ACB=45°

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

例5.已知:如图,梯形ABCD中,AD∥BC,AC、BD交于点O,EF经过点O且和两底平行,交AB于E,交CD于F

求证:OE=OF 证明:∵AD∥EF∥BC ∴ ∴ ∴OEBCOEBC1BCAEABOEAD1,OEADAEAB1EBABEBAB

ABAB1

ADOE111 同理: BCADOF

∴1OE1OF

∴OE=OF 从本例的证明过程中,我们还可以得到以下重要的结论: ①AD∥EF∥BC1AD1BC1OE12

②AD∥EF∥BCOEOF ③AD∥EF∥BC 1AD1BCEF 1OE

112EF2OF

即1AD1BC2EF

这是梯形中的一个性质,由此可知,在AD、BC、EF中,已知任何两条线段的长度,都可以求出第三条线段的长度。

例6.已知:如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

求证:AEAFACAB

分析:观察AE、AF、AC、AB在图中的位置不宜直接通过两个三角形相似加以解决。因此可根据图中直角三角形多,因而相似三角形多的特点,可设法寻求中间量进行代

换,通过△ABD∽△ADE,可得:可得到AD2ABADADAE,于是得到AD2AE·AB,同理 ACABAF·AC,故可得:AE·ABAF·AC,即AEAF

证明:在△ABD和△ADE中,∵∠ADB=∠AED=90°

∠BAD=∠DAE ∴△ABD∽△ADE ∴ABADADAE

∴AD2=AE·AB 同理:△ACD∽△ADF 可得:AD2=AF·AC ∴AE·AB=AF·AC ∴AEAFACAB

例7.如图,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长。

分析:本题的图形是证明比例中项时经常使用的“公边共角”的基本图形,我们可以由基本图形中得到的相似三角形,从而得到对应边成比例,从而构造出关于所求线段的方程,使问题得以解决。

解:在△ADC和△BAC中

∵∠CAD=∠B,∠C=∠C ∴△ADC∽△BAC ∴ADABDCACDCACACBC

又∵AD=6,AD=8,BD=7 ∴AC7DC34

3DCAC4 即

AC347DC 解得:DC=9

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

例8.如图,在矩形ABCD中,E是CD的中点,BE⊥AC于F,过F作FG∥AB交AE于G,求证:AG=AF·FC 证明:在矩形ABCD中,AD=BC,∠ADC=∠BCE=90°

又∵E是CD的中点,∴DE=CE ∴Rt△ADE≌Rt△BCE ∴AE=BE ∵FG∥AB ∴AEBEAGBF2

∴AG=BF 在Rt△ABC中,BF⊥AC于F ∴Rt△BFC≌Rt△AFB ∴AFBFFBFC

∴BF2=AF·FC ∴AG2=AF·FC

例9.如图,在梯形ABCD中,AD∥BC,若∠BCD的平分线CH⊥AB于点H,BH=3AH,且四边形AHCD的面积为21,求△HBC的面积。

分析:因为问题涉及四边形AHCD,所以可构造相似三角形。把问题转化为相似三角形的面积比而加以解决。

解:延长BA、CD交于点P ∵CH⊥AB,CD平分∠BCD ∴CB=CP,且BH=PH ∵BH=3AH ∴PA:AB=1:2 ∴PA:PB=1:3 ∵AD∥BC ∴△PAD∽△PBC

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

∴S△PAD:S△PBC1:9 ∵S△PCH12S△PBC

∴S△PADS四边形AHCD2:7

∵S四边形AHCD

21∴S△PAD6

∴S△PBC54 ∴S△HBC

一、填空题: 1.已知a2b2ab9512S△PBC27,则a:b__________ 2.若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm 3.如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。

4.已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。

5.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________ 6.已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________ 7.如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________

8.如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

二、选择题:

1.如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________ A.9:16 C.3:4 __________米 A.10mab42 B.3:2 D.3:7 2.在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是

B.10mab

42C.abm104

D.abm1042

3.已知,如图,DE∥BC,EF∥AB,则下列结论:

① ③AEECEFABBEFCDEBC

②④

ADBFCECFABBCEABF

其中正确的比例式的个数是__________ A.4个

B.3个

C.2个

D.1个

4.如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________

A.16 B.14

C.16或14

D.16或9 5.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________

A.△AED∽△ACB C.△BAE∽△ACE

三、解答题:

新课标第一网----免费课件、教案、试题下载

B.△AEB∽△ACD D.△AEC∽△DAC 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

1.如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。

2.如图,△ABC中,D是AB上一点,且AB=3AD,∠B=75°,∠CDB=60°,求证:△ABC∽△CBD。

3.如图,BE为△ABC的外接圆O的直径,CD为△ABC的高,求证:AC·BC=BE·CD 4.如图,Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE·AD=16,AB45,(1)求证:CE=EF(2)求EG的长

新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

[参考答案]

一、填空题: 1.19:13 4.6

2.24 5.12

3.3;1:4 6.只要是使得其中两个数的比值等于另外两个数的比值即可,如:

22、22等。

7.14.4

8.166

二、选择题: 1.C 2.D

3.B

4.D

5.C

三、解答题:

1.解:∵AD∥EG∥BC ∴在△ABC中,有EGBCABEFBE 在△ABD中,有 ADABAE

∵AE:AB=2:3 ∴BE:AB=1:3 ∴EG23BC,EF13AD

∵BC=9,AD=6 ∴EG=6,EF=2 ∴GF=EG-EF=4 2.解:过点B作BE⊥CD于点E,∵∠CDB=60°,∠CBD=75°

∴∠DBE=30°,∠CBE=∠CBD-∠DBE=75°-30°=45°

∴△CBE是等腰直角三角形。

∵AB=3AD,设AD=k,则AB=3k,BD=2k ∴DE=k,BE ∴BCBDBC3k

6k

2k6k6k3k2323 ∴,BCAB

∴BDBCBCAB

∴△ABC∽△CBD 3.连结EC,新课标第一网----免费课件、教案、试题下载 新课标第一网(www.xiexiebang.com)--中小学教学资源共享平台

 ∵BCBC

∴∠E=∠A 又∵BE是⊙O的直径

∴∠BCE=90°

又∵CD⊥AB ∴∠ADC=90°

∴△ADC∽△ECB ∴ACEBCDBC

即AC·BC=BE·CD 4.(1)∵AD平分∠CAB ∴∠CAE=∠FAE 又∵AE⊥CF ∴∠CEA=∠FEA=90°

又∵AE=AE ∴△ACE≌△AFE(ASA)

∴CE=EF(2)∵∠ACB=90°,CE⊥AD,∠CAE=∠DAC ∴△CAE∽△DAC ∴ACADAEAC

∴AC2AE·AD16

在Rt△ACB中

BC2AB2AC2(45)2166

4∴BC8

又∵CE=EF,EG∥BC ∴FG=GB ∴EG是△FBC的中位线

∴EG

12BC4

新课标第一网----免费课件、教案、试题下载

下载九年级数学上册《相似三角形的应用》学案分析word格式文档
下载九年级数学上册《相似三角形的应用》学案分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形性质学案设计

    8.5(4)怎样判定三角形相似学案设计 学习目标: 1、探索并掌握相似三角形对应高的比等于对应边的比,面积的比等于对应边的比的平方的性质,能应用相似三角形的性质解决简单的实际问......

    相似三角形性质(学案)(5篇材料)

    戴氏精品堂教育 数学精品讲义王老师 相似三角形的性质 ●学习指导 1.学习了相似三角形的性质后,对于涉及到相似三角形对应角平分线、对应中线、对应高、周长的问题,应立即联......

    相似三角形教学案 Word 文档

    九年级成功教学案 ——用思维锻炼能力,用勤奋铸造成功 课题相似三角形的判定(2) 一、 自学 1. 自学内容:P44—P47 2. 自学目标: (1)理解“两边对应成比例夹角相等的两三角形相似”......

    《相似三角形应用举例》教案

    《相似三角形应用举例》教案 一、教学目标 1. 进一步巩固相似三角形的知识.2. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题......

    九年级数学《相似三角形复习》评课稿(大全5篇)

    九年级数学《相似三角形复习》评课稿 九年级数学《相似三角形复习》评课稿听了吴**老师的《相似三角形复习》这节课,被他精湛的教学艺术所深深吸引。吴老师教学设计非常清晰,......

    九年级数学《相似三角形的判定》教学反思[范文模版]

    这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三......

    2015年秋九年级数学上册 23.3.1 相似三角形教案 (新版)华东师大版(★)

    相似三角形 1.相似三角形 【知识与技能】 1.知道相似三角形的概念; 2.能够熟练地找出相似三角形的对应边和对应角; 3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,......

    九年级数学下册法制渗透教案27.2.2 相似三角形的应用举例

    九年级数学下册法制渗透教案 27.2.2 相似三角形的应用举例 教学目标 知识和能力: 1、进一步巩固相似三角形的知识. 2、能够运用三角形相似的知识,解决不能直接测量物体的长度和......