27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)

时间:2019-05-12 18:04:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)》。

第一篇:27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)

27.2.1 相似三角形的判定(第三课时)

主备人:王寿军 参与人:马晓瑞 上课时间:2014年1月2日

教学目标:(一)知识与技能

1、掌握三组对应边的比相等的两个三角形相似的判定定理;

2、掌握两组对应边的比相等且它们夹角相等的两个三角形相似的判定定理。(二)过程与方法

会运用“三组对应边的比相等的两个三角形相似”及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的方法进行简单推理。(三)情感态度与价值观

1、从认识上培养学生从特殊到一般的方法认识事物,从思维上培养学生用类比的方法展开思维;

2、通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。

教学重点:

掌握两个判定定理,会运用两个判定定理判定两个三角形相似 教学难点:

1、探究两个三角形相似的条件;

2、运用两个三角形相似的判定定理解决问题。教学过程 新课引入:

1、复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系:

如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)

2、回顾探究判定引例﹑判定方法1的过程探究两个三角形相似判定方法2的途径 提出问题:

利用刻度尺和量角器画∆ABC与∆A1B1C1,使∠A=∠A1,ABAC和都等于给定的值k,A1B1A1C1量出它们的第三组对应边BC和B1C1的长,它们的比等于k吗?另外两组对应角∠B与∠B1,∠C与∠C1是否相等?

(学生独立操作并判断)分析:学生通过度量,不难发现这两个三角形的第三组对应边BC和B1C1的比都等于k,另外两组对应角∠B=∠B1,∠C=∠C1。延伸问题:

改变∠A或k值的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。)探究方法: 探究2

改变∠A或k值的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生学习如何在动态变化中捕捉不变因素。)归纳:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(定理的证明由学生独立完成)

A1

B1

C1 B

C A ABAC==k,则∆ABC∽∆A1B1C1

A1B1A1C1ABAC辨析:对于∆ABC与∆A1B1C1,如果=,∠B=∠B1,A1B1A1C1符号语言:若∠A=∠A1,这两个三角形相似吗?试着画画看。(让学生先独立思考,再进行小组交流,寻找问题的所在,并集中展示反例。)应用新知:

例1:根据下列条件,判断 ∆ABC与∆A1B1C1是否相似,并说明理由:(1)∠A=120,AB=7cm,AC=14cm,∠A1=120,A1B1= 3cm,A1C1=6cm。(2)∠B=120,AB=2cm,AC=6cm,∠B1=120,A1B1= 8cm,A1C1=24cm。分析:(1)0000ABAC70 ==,∠A=∠A1=120A1B1A1C13 ∆ABC∽∆A1B1C1 2(2)ABAC10 ==,∠B=∠B1=120A1B1A1C14但∠B与∠B1不是AB ﹑AC﹑ A1B1 ﹑A1C1的夹角,所以∆ABC与∆A1B1C1不相似。运用提高:

1、P45练习题1。

2、P45练习题2。

课堂小结:说说你在本节课的收获。布置作业:

1、必做题:P54习题27·2题2(2),3(2)。

2、选做题:P55习题27·2题8。

3、备选题:

(1)已知零件的外径为25cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA:OC=OB:OD=3,CD=7cm。求此零件的厚度

(2)如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,求A、B两点的距离。

(3)如图,要使△ABC∽△AEF,应补充的条件是 或。

x。

第二篇:相似三角形的判定(第一课时) 教案

〔教学目标〕1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。2.培养学生的观察﹑动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。〔教学重点与难点〕重点:判定两个三角形相似的预备定理难点:探究两个三角形相似的预备定理的过程

第三篇:27.2.1 相似三角形的判定课时2教案

27.2 相似三角形 27.2.1 相似三角形的判定 第2课时相似三角形的判定定理1,2

掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2.自学反馈学生独立完成后集体订正

①如果两个三角形的三组边对应成比例,那么这两个三角形.②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似.HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论 例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3

解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC.DEAE=.BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm.运用相似三角形可以进行边的计算.活动2 跟踪训练(独立完成后展示学习成果)1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE相似,则BF长为多少?

在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形.2.如图所示,DE∥FG∥BC,图中共有相似三角形()

A.1对

B.2对

C.3对

D.4对

按照一定的顺序去寻找相似三角形.活动3 课堂小结

学生试述:这节课你学到了些什么?

第四篇:27.2.1 相似三角形的判定课时1教案

27.2 相似三角形 27.2.1 相似三角形的判定 第1课时平行线分线段成比例

1.理解相似三角形的概念.2.掌握平行线分线段成比例的基本事实及推论.3.掌握判定三角形相似的预备定理.阅读教材P29-31,自学“探究”与“思考”,弄懂相似三角形的概念,掌握平行线分线段成比例定理,理解相似三角形判定的预备定理.自学反馈学生独立完成后集体订正

①如果△ABC∽△A1B1C1的相似比为k,则△A1B1C1∽△ABC的相似比为.②如图,l1、l2分别被l3,l4,l5所截,且l3∥l4∥l5,则AB与对应,BC与对应,DF与对应;

AB=BC(()())AB()AB(,=,==.DE()DF)())(③如图所示,已知AB∥CD∥EF,那么下列结论正确的是()ADBCBCDF=

B.= DFCECEADCDBCCDADC.=

D.= EFBEEFAFA.④平行于三角形一边的直线与其他两边(或延长线)相交所构成的三角形与原三角形.找准对应线段是关键.活动1 小组讨论

例1如图,直线l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则试求AE∶EC的值.解:∵l1∥l2,∴△AGF∽△BDF,△AGE∽△CDE.AGAF2==,BDFB32∴AG=BD.3BC2又∵=,BC+CD=BD,CD11∴CD=BD.3AEAG∴==2.即AE∶EC=2.ECCD∴可从AE∶EC出发,只需要证得他们所在的两个三角形相似及他们的相似比即可,而AF与FB所在的两个三角形相似,两个相似关系可以得到线段AG、CD与线段BD的数量关系,从而就可以得出AG与CD的比,即△AGE与△CDE的相似比.活动2 跟踪训练(独立完成后展示学习成果)1.如图,ED∥BC,EC、BD相交于点A,过A的直线交ED、BC分别于点M、N,则图中有相似三角形()

A.1对

B.2对

C.3对

D.4对

2.如图,DE∥BC,则下面比例式不成立的是()ADAEDEECADAE=

B.=

C.=

ABACBCACDBECBCACD.= DEAEA.3.如图,在ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.∠AEF=∠DEC

B.FA∶CD=AE∶BC

C.FA∶AB=FE∶EC

D.AB=DC

本题除运用相似三角形对应边的比相等外,还应根据图形对比例式进行适当的变形.活动3 课堂小结

学生试述:这节课你学到了些什么?

第五篇:《相似三角形的判定》说课稿

《相似三角形的判定》说课稿

一、说教材

《相似三角形的判定》是华东师大版九年级上册中继学生学习了相似图形相似图形的性质判定、相似三角形之后的一个学习内容。它为后面测量和研究三角函数做了铺垫,在学习习近平面几何中起着承上启下的作用。因此必须熟练掌握三角形相似的判定,并能灵活运用。教材从三对角、两对角、一对角对应相等的顺序展开探究,符合学生认知规律。

二、说学情:

学生通过前面的学习已认识了相似图形的性质和判定,认识了相似三角形,这为探究三角形相似的判定做好了知识上的准备。九年级学生动手操作能力逐渐成熟,能主动参与本节课的操作、探究,充分体验获得知识的快乐。

三、说教法与学法指导:

本节课我将采用三学两测的模式进行教学,即学案引领自主探索、同伴合作,交流归纳、教师点拨,启发引导在生生互动,师生互动中借助多媒体开展教学。并进行基础知识测试综合能力测试来反馈课堂效果。

在学法指导上,激励学生积极参与、观察、发现,充分引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,体会数学内容之间的联系,在解决问题的过程中,培养学生学习的主动性和积极性,让学生在愉悦的气氛中感受到数学学习的无穷乐趣。

四、说教学目标:

知识目标:

(1)探索判定两个三角形相似的条件,经历利用操作、归纳获得数学结论的过程。

(2)掌握如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似,并应用其解决相关问题。

能力目标:通过观察、归纳、测量、实验、推理等手段,让学生充分体验得出结论的过程,感受发现的乐趣。让学生在观察中学会分析,在操作中学会感知,培养学生的合情推理能力、有条理的表达能力。

情感目标:培养学生的合作交流意识,培养学生主动探索,敢于实践,勇于发现的科学精神。

五、说重点与难点:

重点:探究两个三角形相似的判定方法

难点:想方设法验证猜想

六、说教学过程的设计

新课程的理想课堂应该蕴含以下理论:生活性,发展性,主体性。应遵循以下原则:与学生生活实际联系紧,直观性强,动手要多,使学生兴趣要高,自信心要强,即用经验动手操作,观察,思考,释疑,归纳。所以本节课,我从学生的实际经验出发,引导学生观察,猜测,想像,验证,在动手实践中让学生自主地获取知识,理解知识,应用知识。利用多媒体展示学生的思维过程。利用实物投影展示学生动手过程,从而突破难点。并用课件设置了大量的不同梯度,不同类型的习题,扩大了课堂容量。

具体程序如下:

(一)复习旧知,导入新课

1、我们在判定两个三角形全等时,需要几个条件?

2、我们现在判定两个三角形是否相似需要哪些条件?是否存在判定两个三角形相似的简便方法呢?你认为判定两个三角形相似至少需要几个条件?

(设计意图:在学生原有的知识基础上探究,让学生有信心。采用类比的方法思考,降低知识难度。鼓励学生大胆猜想,为后续学习铺垫)

(二)小组合作,探究新知

1、观察猜想:

学生观察自己与老师的30与60直角三角尺 问

1、学生与老师的三角尺看起来是否相似?

(设计意图:用同学们身边熟悉的两块同样角度的三角板的相似让同学们观察,对一个三角形分别与另一个三角形的三个角对应相等时,这两个三角形相似有一个具体的感知,为后面解决一般情况下的两个任意三角形的相似奠定了直观认识,体现数学中的从特殊到一般的思想渗透。)

2、从直观来看,这两个三角形的相似是因为哪些元素的关系而相似的?(三个角对应相等)

3、任意两个三角形的三个角对应相等,它们相似吗?

(设计意图:一个问题串引导学生思考,猜想,给出探究问题,指明研究方向)

2、合作探究:

在课前准备的方格纸上任意画两个三角形,使其三对角分别对应相等。用刻度尺量一量两个三角形的对应边,看看两个三角形的对应边是否成比例,你能得出什么结论?(设计意图:在学生提出猜想后,通过用学生的实际操作来验证猜想,获取直观结论后,再用三组边对应成比例,三组角对应相等的两个三角形相似判定所画的三角形相似)

3、交流发现:

它们的对应边成比例,这两个三角形相似。即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形相似。

4、小组讨论,形成结论:

根据三角形的内角和等于180,我们能不能得到判定两个三角形相似的简便方法?

我们知道如果两个三角形有两对角分别对应相等,那么第三对角也一定对应相等。所以如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。

(设计意图:学生以前有过这样的经历,放手让学生尝试寻找简便方法,给学生思考的空间。)

5、深入思考,强化理解

思考问题:(投影)

1、如果两个三角形仅有一对角对应相等的,那么它们是否一定相似?

2、有一个锐角对应相等的两个直角三角形是否一定相似?

3、顶角相等的两个等腰三角形是否一定相似?

4、有一个角相等的两个等腰三角形相似。

(设计意图:思考题的目的是为了让学生深入地理解相似三角形的判定方法中两个三角形必须满足两个角对应相等的条件,为更好地应用做准备,同时发展学生的说理能力。)

(三)例题精讲,规范解答:

例1 已知如图在△ABC中,已知ACB=90,CDAB于D,请找出图中的相似三角形,并说明理由。解:△CBD ∽△ABC ∽△ACD

∵ B CDB=ACB=90

△CBD ∽△ABC

同理△ABC ∽△ACD

△CBD ∽△ABC ∽△ACD

例2已知如图在△ABC中,DE∥BC,EF∥AB,证明:△ADE∽△EFC。

证明:∵DE∥BC,EF∥AB

ADE=EFC,AED=C,△ADE∽△EFC(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似)(设计意图:在分析两个例题的过程中教会学生审题的方法,一方面从条件出发,通过思维的发散,得出一些结论;另一方面根据解决问题的需要明确要寻找的条件,做的有的放矢,提高学生合情推理的能力。两道例题的解题过程的书写是为了加强对推理过程的理解,并能运用自己的方式有条理的表达推理过程。)

(四)基础知识检测:

如图,□ABCD,过点A的直线交BD、BC、DC的延长线于点E、F、G.(1)与△ABD相似的三角形有____________________;

(2)与△AED相似的三角形有____________________;

(3)与△AEB相似的三角形有____________________;

(4)与△GFC相似的三角形有____________________;

(5)图中共有__________对相似三角形。(设计意图:为了进一步巩固相似三角形的判定方法,并熟悉由平行线构造的另一类相似的基本图形X型。)

(五)综合能力检测:

1、在△ABC与△DEF中, A=70B=42D=70E=68,这两个三角形相似吗?为什么?

2、已知:Rt△ABC中,ACB=90,点E是AC边所在直线上一点,且EDAB交AB(或AB延长线)于点D。思考:当点E在直线AC上运动时观察图中出现的相似三角形。

(设计意图:习题是让学生在探究过程中体验到在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等,培养学生养成认真观察,注意寻找图形中的隐含信息的意识,设置开放性练习,拓展学生思维空间)

(六)课堂总结: 本节课你有什么收获?

(让学生从各个角度谈自己的收获)

1.、相似三角形的判定方法:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.2、在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等。

3、掌握由平行线构造的两类相似图形:一类是A字型,另一类是X型。

4、常用的找对应角的方法:①已知角相等;②已知角度计算得出相等的对应角;③公共角;④对顶角;⑤同角的余(补)角相等。

(七)布置作业,巩固知识:课后习题。

(八)教学反思:

新课程改革的核心是促进学生学习方式的变革。新课程的基本理念之一是注重科学探究的过程,提倡学习方式的多样化。本课通过探究性学习、合作性学习、体验性学习等,实现学习方式的多样化。从判定方法的寻找到所有的例题和习题都由学生主动探究并独立完成书写,老师只是在必要时作适当启发,使学生在老师设置的教学情境中,掌握学习的主动权,一直处于一种自主探索知识的状态,产生一种满足、快乐、自豪的积极情绪体验,从而增强学习的信心,提高学习兴趣,产生自我激励、自我要求上进的心理,使其成为进一步学习的内部.

下载27.2.1_相似三角形的判定(第三课时)》教案(本站推荐)word格式文档
下载27.2.1_相似三角形的判定(第三课时)》教案(本站推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形的判定说课稿

    说课稿 尊敬的领导、各位老师,大家好: 我是,今天我说课的内容是人教版初中数学九年级下册《相似三角形的判定》第二课时的内容。我将从教材分析、教法分析、学法指导、教学程序......

    相似三角形的判定和判定方法

    相似三角形的判定和判定方法 相似三角形的判定 1.两个三角形的两个角对应相等 2.两边对应成比例,且夹角相等 3.三边对应成比例 4.平行于三角形一边的直线和其他两边或两......

    相似三角形的判定1教案五篇范文

    27.2.1相似三角形的判定教案 第一课时平行线法 教学目标:1.了解相似三角形及相似比的概念。 2.掌握平行线分线段成比例定理和推论,相似三角形的判定定理(平行于三角形一边的直......

    相似三角形教案

    相似三角形 【基础知识精讲】 1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系. 2.进一步体会数学内容之间的内在联系,初步认识特殊......

    三角形相似教案

    相似三角形的判定(1)教学设计 一、课题 相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时) 二、教材分析 1.内容要点 本节课让学生利用相似三角形的定义来进一步......

    相似三角形的判定(第2课时)教学反思

    相似三角形的判定(第2课时)教学反思 天元中学九年级数学组 魏快飞 《相似三角形的判定1》是湘教版义务教育课程标准教科书九年级数学第三章《图形的相似》第四节《相似三角......

    27.2.1相似三角形的判定1

    27.2.1 相似三角形的判定(1) 一、教学目标 1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力. 2.掌握两个三角形相似的判定条件(三......

    《相似三角形的判定》教学设计

    《相似三角形的判定》教学设计 一.教学目标 1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解它的证明方法,初步会运用相似三角形的三个判定......