【华东师大版】九年级数学上册教案23.2相似图形范文大全

时间:2019-05-12 16:46:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【华东师大版】九年级数学上册教案23.2相似图形》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【华东师大版】九年级数学上册教案23.2相似图形》。

第一篇:【华东师大版】九年级数学上册教案23.2相似图形

百度文库

教学设计

相似图形

教学目标:

1.理解相似形的概念,了解相似形是两个图形之间的关系.由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力.2.理解并掌握相似图形的性质:对应边成比例,对应角相等.3.知道判别两个多边形相似的方法.教学重点:

相似图形的性质:对应边成比例,对应角相等.教学难点:

1、如何判别两个多边形相似

2、借助相似图形的性质进行有关的计算 导学过程:

一、导入新课

挂上大小不一样的中国地图两张及两张大小不同的花朵图片,供同学观察,并看课本第57

教学资料

应有尽有

百度文库

教学设计

页的图,提出问题:这几组图片有什么相同的地方呢? 这些图片大小虽然不一样,但形状是相同的.两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?【点题】

二、讲解新课

由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同的.同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢? 大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片.对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情.在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形.在数学上,我们把具有相同形状的图形称为相似形.同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星.画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等.如图所示的是一些相似的图形.想一想:放大镜下的图形和原来的图形相似吗?

你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗? 还有一些图形,看起来有点相像,但它们不是相似的图形.为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这节要探索的内容.三、做一做

教学资料

应有尽有

百度文库

教学设计

AA'CBC'B'

1.我们先从这两张相似的地图上研究.在地图上找出北京、上海、福州的位置.如果我们用A、B、C分别表示大地图上的北京、上海、福州的位置,用A′、B′、C′、分别表示小地图上的北京、上海、福州的位置.请用刻度尺在大地图上量一量北京到上海的直线距离,即线段AB=__cm,上海到福州的直线距离,即线段BC=__cm,在小地图上也量一量A′B′=__cm,B′C′=__cm.思考:线段AB、A′B′、BC、B′C′之间什么关系呢? 结论:线段AB、A′B′、BC、B′C′是成比例线段,即 =.实际上,上面两张相似的地图中的对应线段都是成比例的.这样的结论对一般的相似多边形是否成立呢?

2.动动手,下图中两个四边形是相似形,仔细算一算它们的边长,量一量它们的对应角,看看它们的对应边之间是否有以上的关系呢?对应角之间呢?

ADA'D'B CB'C'

3.再看看下图中的两个相似的五边形,是否也具有同样的结果呢?

教学资料

应有尽有

百度文库

教学设计

AEA'BDB'C'C

E'D'结论: 经过观察、计算、度量、比较,我们得出对应边,对应角,【两个相似多边形的性质:对应边成比例,对应角相等】

实际上这两个特征,也是我们识别两个多边形是否相似的方法.即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似.识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等).四、练一练:

例 如图所示的相似四边形中,求未知边x的长度和角度α的大小.

1877°x82°12α117°77°18

分析

利用相似多边形的性质和多边形的内角和公式就可以得到所需结果,但利用相似多边形的性质时,必须分清对应边和对应角.

解:∵两个四边形相似,∴18x,1218∴x=27.

∴α=360°-(77°+82°+117°)=84°.

五、想一想:

1.两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?-2.所有的菱形都相似吗?所有矩形呢?正方形呢? 【提示:实际上,两个相似多边形的性质: 对应边成比例,对应角相等.也是我们判定两个多边形是否相似的方法,即如果_________________,那么这两个多边形相似.】

教学资料

应有尽有

百度文库

教学设计

六、谈一谈:

谈出你的感悟与困惑.七、比一比

1.矩形ABCD与矩形A′B′C′D′中,AB=1.5cm,BC=4.5cm,A′B′=0.8cm,B′C′=2.4cm,这两个矩形相似吗?为什么? 2.矩形ABCD与矩形A′B′C′D′中,已知AB=16cm,AD=10cm,A′D′=6cm,矩形A′B′ C′D′的面积为57cm,这两个矩形相似吗?为什么?

3.如图,四边形ABCD与四边形A′B′C′D′是相似的,且C′D′⊥B′C′,根据图中的条件,求出未知的边x,y及角.八、小结

形状相同而大小不一定相同的图形称为相似形,相似形在日常生活中经常碰到.九、自我反思

备用资料:

1.在比例尺为1:400000地图上,量得甲、乙两地的距离为15厘米,求甲、乙两地的实际距离.2

教学资料

应有尽有

第二篇:九年级数学知识点归纳:相似图形

九年级数学知识点归纳:相似图形

常见考法

(1)判断某两个图形是不是相似;

(2)判断一组数据是不是成比例线段;

(3)已知图上距离和比例尺大小求实际距离;

(4)利用比例的性质求值。

误区提醒

(1)在判断四条线段是否成比例问题时忽略单位统一;(2)在用图上距离求实际距离时忽略了单位换算问题。

【典型例题】(XX江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4,则A,B两地间的实际距离为.

【解析】4×200=9000=9

相似三角形

一、平行线分线段成比例定理及其推论:

定理:三条平行线截两条直线,所得的对应线段成比例。

2推论:平行于三角形一边的直线截其他两边所得的对应线段成比例。

3推论的逆定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。四、三角形相似的证题思路:

五、利用相似三角形证明线段成比例的一般步骤:

一“定”:先确定四条线段在哪两个可能相似的三角形中;

二“找”:再找出两个三角形相似所需的条;

三“证”:根据分析,写出证明过程。

如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。

六、相似与全等:

全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:

共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。

2判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。

常见考法

(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。

误区提醒

(1)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;(2)在定理的实际应用中,常常忽视“夹角相等”这个重条,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。

第三篇:九年级数学图形的相似

实中数理化教案

图形的相似

一、教学目标

1. 理解并掌握两个图形相似的概念. 2. 了解成比例线段的概念,会确定线段的比.

二、重点、难点

1. 重点:相似图形的概念与成比例线段的概念. 2. 难点:成比例线段概念. 3. 难点的突破方法

(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:

①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作 或a:b=c:d;⑤若四条线段满足,则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,则有,或其它七种表达形式).

三、课堂引入

1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P36引入.

(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.

2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少? 归纳:两条线段的比,就是两条线段长度的比.

3.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.

教师:刘梦雅

学生:

时间:

咨询热线:***

***

实中数理化教案

【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作 或a:b=c:d;(4)若四条线段满足,则有ad=bc.

四、例题讲解

例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75cm,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少? 解:略.()

小结:上面分别采用m、cm、mm三种不同的长度单位,求得的 的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.

例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?

分析:根据比例尺=,可求出北京到上海的实际距离. 解: 略

答:北京到上海的实际距离大约是1120 km.

五、课堂练习

1.下列说法正确的是()

A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm,宽是_______cm;(大)长是_______cm,宽是_______cm;(2)(小);(大).(3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)

3.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?

4.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?

教师:刘梦雅

学生:

时间:

咨询热线:***

***

第四篇:2017-2018学年华东师大版数学九年级上册3A23.3 相似三角形

23.3相似三角形

1.相似三角形

【知识与技能】

1.知道相似三角形的概念;

2.能够熟练地找出相似三角形的对应边和对应角;

3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长;

4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似.【过程与方法】

在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯.【情感态度】

培养学生严谨的数学思维习惯.【教学重点】

掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.【教学难点】

熟练找出对应元素,在此基础上根据定义求线段长或角的度数.一、情境导入,初步认识

复习:什么是相似形?识别两个多边形是否相似的标准是什么?

二、思考探究,获取新知 1.相似三角形的有关概念:

由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似.三角形是最简单的多边形.由此可以说什么样的两个三角形相似?

如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′,ABBCAC,那么△ABCABBCAC与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC相似于△A′B′C′”.由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以A与A′是对应顶点,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记

ABBCAC=k,那么这个比值k就表示这两ABBCAC个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为k,即指

ABAB=k,那么△A′B′C′与△ABC的相似比应是,就不ABABABBCAC=1,所ABBCAC是k了,应为多少呢?同学们想一想.如果△ABC∽△A′B′C′,相似比k=1,你会发现什么呢?以可得AB=A′B′,BC=B′C′,AC=A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等的两个三角形一定相似吗?②相似的两个三角形会全等吗?

2.△ABC中,D是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与△ABC是否相似?

【分析】判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑.能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?可根据平行线分线段成比例的基本事实,推得判断出△ADE与△ABC相似.AEDEDEAD,通过度量发现,所以可以ACBCBCAB

思考(1)你能否通过演绎推理证明你的猜想?

(2)若是DE∥BC,DE与BA、CA延长线交于E、D,那么△ADE与△ABC还会相似吗?试试看,如果相似写出它们对应边的比例式.【归纳结论】平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.例1 如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.解:∵DE∥BC, ∴△ADE∽△ABC,∴DEBC=ADAB=13,∴BC=3DE=15.三、运用新知,深化理解 1.如图所示,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.2.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G.(1)求证:GEAE;GBBC(2)若GE=2,BF=3,求线段EF的长.【答案】1.(1)DE∶BC=2∶5(2)AE=6,BC=35.2GEED.又∵ED=AE, GBBC2.(1)证明:∵AD∥BC,∴△GED∽△GBC,∴∴GEAE.GBBCGEAE, GBBC(2)设EF的长为x,则由(1)知又∵AEGEGEEF,∴,即 BCGBGBBF2x,解得x1=-6(舍去),x2=1, 2x33∴EF=1.【教学说明】第2题教师适当点拨,小组讨论后独立完成.四、师生互动,课堂小结

你这节课学到了哪些知识?还有哪些疑问?

五、教学反思

本节课通过复习相似多边形的性质与判定引入三角形相似的概念,表示方法及判定方法,通过思考探究、动手测量、猜想、演绎证明推导出相似三角形的判定的预备定理,即平行于三角形一边的直线与其他两边(或两边的延长线)相交所构成的三角形与原三角形相似,并通过例题练习运用新知,深化理解.2.相似三角形的判定

【知识与技能】

1.掌握相似三角形的判定定理2:有两边对应成比例,且夹角相等的两个三角形相似; 2.掌握相似三角形的判定定理

3:三条边对应成比例的两个三角形相似.3.能依据条件,灵活应用相似三角形的判定定理,正确判断两个三角形相似.【过程与方法】

在推理过程中学会灵活使用数学方法.【情感态度】

培养学生严谨的数学证明习惯和对数学的兴趣.【教学重点】

相似三角形的判定定理2、3的推导过程,掌握相似三角形的判定定理2、3并能灵活应用.【教学难点】

相似三角形的判定定理的推导及应用.一、情境导入,初步认识

复习:1.现在要判断两个三角形相似有哪几种方法?有两种方法:(1)根据定义;(2)有两个角对应相等的两个三角形相似.2.如图△ABC中,D、E是AB、AC上三等分点(即AD=ABC相似吗?你用的是哪一种方法?

11AB,AE=AC),那么△ADE与△33

由于没有两个角对应相等,同学们可以动手量一量,量什么后可以判断它们是否相似? 【教学说明】可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例,无论哪一种,都应肯定他们是正确的,要求同学说出是应用哪一种方法判断出的.二、思考探究,获取新知

同学们通过量角或量线段计算之后,得出:△ADE∽△ABC.从已知条件看,△ADE与△ABC有一对对应角相等,即∠A=∠A(是公共角),而一个条件是AD=

11AB,AE=AC,即是33AD1AE1ADAE,,因此.△ADE的两条边AD、AE与△ABC的两条边AB、AC会AB3AC3ABAC对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验.观察教材图23.3.10,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?

1,将点E由点A开始在AC上31ADAE移动,可以发现当AE=AC时,△ADE与△ABC相似,此时.3ABAC图中两个三角形的一组对应边AD与AB的长度的比值为猜想:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.你能否用演绎推理的方法证明你的猜想? 【教学说明】引导学生证明上述猜想.【归纳结论】 相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似.你能画出有两边对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)∠B=∠B′,ABAC.ABAC例1(课本中例4)判断图中△AEB与△FEC是否相似.例2 如图△ABC中,D、E是AB、AC上的点,AB=7.8,AD=3,AC=6,CE=2.1,试判断△ADE与△ABC是否会相似,小张同学的判断理由是这样的:

解:因为AC=AE+CE,而AC=6,CE=2.1,故AE=6-2.1=3.9.由于与△ABC不相似.你同意小张同学的判断吗?请你说说理由.解:小张同学的判断是错误的.ADAE,所以△ADEABAC

因为AD3AE3.91ADAE,,所以,而∠A是公共角,∠A=∠A,所以△ADEAC6AB7.82ACAB∽△ACB.请同学再做一次实验,看看如果两个三角形的三边都成比例,那么这两个三角形是否相似?

看课本69页“做一做”.通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单地说就是,三边成比例的两个三角形相似.例3 △ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,试判定它们是否相似,并说明理由.三、运用新知,深化理解

1.如图,△ADE与△ABC相似吗?请说明理由.2.如图,已知ABBCAC,∠BAD=20°,求∠CAE的大小.ADDEAE

【教学说明】引导学生自主完成,学生代表在黑板上展示,教师点评.四、师生互动,课堂小结

1.相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.2.相似三角形的判定定理3:三边成比例的两个三角形相似.3.根据题目的具体情况,选择适当的方法证明三角形相似.五、教学反思

本节课通过复习上节课学习的相似三角形的判定定理入手,提出新问题引入新课,再通过学生动手测量、猜想结论并证明等活动中的体验,完成对相似三角形的判定定理2、3的认识,加深对判定定理的理解.教学过程中,强调学生自主探究和合作交流,经历观察、实验、猜想、证明等思维过程,从中获得知识与技能,培养学生的综合能力.3.相似三角形的性质

【知识与技能】

会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【过程与方法】

培养学生演绎推理的能力.【情感态度】

感受数学来源于生活,来源于实践.【教学重点】

1.相似三角形中的对应线段比值的推导;

2.相似多边形的周长比、面积比与相似比关系的推导; 3.运用相似三角形的性质解决实际问题.【教学难点】

相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境导入,初步认识

复习:1.判定两个三角形相似的简便方法有哪些?

2.在△ABC与△A′B′C′中,AB=10cm,AC=6cm,BC=8cm,A′B′=5cm,A′C′=3cm,B′C′=4cm,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?

二、思考探究,获取新知

上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为AC=2.AC相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢?

一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学画出上述的两个三角形,作对应边BC和B′C′边上的高,用刻度尺量一量AD与A′D′的长,AD等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比AD

等于相似比.我们能否用说理的方法来说明这个结论呢?

△ABD和△A′B′D′都是直角三角形,且∠B=∠B′.∴△ABD∽△A′B′D′,∴

ADAB=k ADAB思考:相似三角形面积的比与相似比有什么关系? 【教学说明】引导学生通过演绎推理来证明.归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.例1 S△AOD.如梯形ABCD的对角线交于点O,DC2,已知S△DOC=4,求S△AOB、AB3

【分析】∵DC∥AB,∴△DOC∽△BOA,由相似三角形的性质可求出S△AOB、S△AOD.解:∵DC∥AB,∴△DOC∽△BOA,三、运用新知,深化理解

1.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(图形)的示意图.已知桌面的直径为1.2m,桌面距离地面为1m,若灯泡距离地面3m,则地面上阴影部分的面积为.【教学说明】运用相似三角形对应高的比等于相似比是解决本题的关键.2.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF∶EH=4∶3,求EF、EH的长.【答案】1.0.81πm 2.HG=9.6cm;EH=7.2cm 【教学说明】充分运用矩形边长的比来建立方程,可使问题得到解决.四、师生互动,课堂小结

1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.五、教学反思

本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜想出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.24.相似三角形的应用

【知识与技能】

会应用相似三角形的有关性质,测量简单的物体的高度或宽度.自己设计方案测量高度,体会相似三角形在解决实际问题中的广泛应用.【过程与方法】

通过利用相似解决实际问题,进一步提高学习应用数学知识的能力.【情感态度】

让学生体会数学来源于生活,应用于生活,体验数学的功用.【教学重点】

构建相似三角形解决实际问题.【教学难点】

把实际问题抽象为数学问题,利用相似三角形来解决.一、情境导入,初步认识 复习

1.相似三角形有哪些性质?

2.如图,B、C、E、F是在同一直线上,AB⊥BF,DE⊥BF,AC∥DF.(1)△DEF与△ABC相似吗?为什么?

(2)若DE=1,EF=2,BC=10,那么AB等于多少?((1)△DEF∽△ABC.(2)AB=5)

二、思考探究,获取新知

第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长.人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度.例1 古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较木棒的影长A′B′与金字塔的影长AB,即可近似算出

金字塔的高度OB,如果O′B′=1米,A′B′=2米,AB=274米,求金字塔的高度OB.【分析】因为太阳光是互相平行的,易得△A′O′B′∽△AOB,从而求得OB的长度.解:∵太阳光是平行光线即O′A′∥OA, ∴∠OAB=∠O′A′B′.又∵∠ABO=∠A′B′O′=90°, ∴△OAB∽△O′A′B′.答:金字塔的高度OB为137米.例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一这一边上选定点B和C,使AB⊥BC,然后选定点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD(两角分别相等的两个三角形相似),∴ABEC=BDCD,解得AB=

BDEC12050=100(米).CD60答:两岸间的大致距离为100米.这些例题向我们提供了一些利用相似三角形进行测量的方法.例3 如图,已知D、E是△ABC的边AB、AC上的点,且∠ADE=∠C.求证:AD·AB=AE·AC.【分析】把等积式化为比例式证明.ADAC,猜想△ADE与△ABC相似,从而找条件加以AEAB

证明:∵∠ADE=∠C,∠A=∠A, ∴△ADE∽△ACB(两角分别相等的两个三角形相似).∴ADAE, ACAB∴AD·AB=AE·AC.三、运用新知,深化理解

1.如图,一条河的两岸有一段是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m,在这岸离开岸边16m处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有一棵树,但对岸被遮住的两棵树之间有四棵树,这段河的河宽是多少米?

【教学说明】先由实际问题建立相似的数学模型,可先证得△ABE∽△ACD,再根据对应线段成比例可求出河宽,即线段BC的长.2.亮亮和颖颖住在同一幢住宅楼,两人用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰好在一条直线上时,两人分别标定自己的位置C、D,然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C、D、N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m,你能根据以上测量数据帮助他们求出住宅楼的高度吗?

【答案】1.24m 2.20.8m 【教学说明】过点A作MN的垂线段,构造相似三角形.四、师生互动,课堂小结

这节课你学习了哪些知识,有哪些收获?还有哪些疑问?

【教学说明】学生小组讨论,分小组陈述演示,教师归纳板书.五、教学反思

本节课以生活实例为情境,引导学生探究如何建立相似的数学模型,构造相似三角形,把实际问题转化为数学问题(相似)来解决,进一步提高学生应用数学知识的能力.

第五篇:2015年秋九年级数学上册 23.3.1 相似三角形教案 (新版)华东师大版

相似三角形

1.相似三角形

【知识与技能】

1.知道相似三角形的概念;

2.能够熟练地找出相似三角形的对应边和对应角;

3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长;

4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似.【过程与方法】

在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯.【情感态度】

培养学生严谨的数学思维习惯.【教学重点】

掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.【教学难点】

熟练找出对应元素,在此基础上根据定义求线段长或角的度数.一、情境导入,初步认识

复习:什么是相似形?识别两个多边形是否相似的标准是什么?

二、思考探究,获取新知 1.相似三角形的有关概念:

由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似.三角形是最简单的多边形.由此可以说什么样的两个三角形相似?

如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′,ABBCAC,那么△ABCABBCAC1

与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC相似于△A′B′C′”.由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以A与A′是对应顶点,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记

ABBCAC=k,那么这个比值k就表示这两ABBCAC个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为k,即指

ABAB=k,那么△A′B′C′与△ABC的相似比应是,就不ABABABBCAC=1,所ABBCAC是k了,应为多少呢?同学们想一想.如果△ABC∽△A′B′C′,相似比k=1,你会发现什么呢?以可得AB=A′B′,BC=B′C′,AC=A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等的两个三角形一定相似吗?②相似的两个三角形会全等吗?

2.△ABC中,D是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与△ABC是否相似?

【分析】判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑.能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?可根据平行线分线段成比例的基本事实,推得判断出△ADE与△ABC相似.AEDEDEAD,通过度量发现,所以可以ACBCBCAB

思考(1)你能否通过演绎推理证明你的猜想?

(2)若是DE∥BC,DE与BA、CA延长线交于E、D,那么△ADE与△ABC还会相似吗?试试看,如果相似写出它们对应边的比例式.2

【归纳结论】平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.例1 如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.解:∵DE∥BC, ∴△ADE∽△ABC,∴DEBC=ADAB=13,∴BC=3DE=15.三、运用新知,深化理解 1.如图所示,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.2.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G.(1)求证:GEAE;GBBC(2)若GE=2,BF=3,求线段EF的长.3

【答案】1.(1)DE∶BC=2∶5(2)AE=6,BC=35.2GEED.又∵ED=AE, GBBC2.(1)证明:∵AD∥BC,∴△GED∽△GBC,∴∴GEAE.GBBCGEAE, GBBC(2)设EF的长为x,则由(1)知又∵AEGEGEEF,∴,即 BCGBGBBF2x,解得x1=-6(舍去),x2=1, 2x33∴EF=1.【教学说明】第2题教师适当点拨,小组讨论后独立完成.四、师生互动,课堂小结

你这节课学到了哪些知识?还有哪些疑问?

1.布置作业:从教材相应练习和“习题23.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习相似多边形的性质与判定引入三角形相似的概念,表示方法及判定方法,通过思考探究、动手测量、猜想、演绎证明推导出相似三角形的判定的预备定理,即平行于三角形一边的直线与其他两边(或两边的延长线)相交所构成的三角形与原三角形相似,并通过例题练习运用新知,深化理解.

下载【华东师大版】九年级数学上册教案23.2相似图形范文大全word格式文档
下载【华东师大版】九年级数学上册教案23.2相似图形范文大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    【华东师大版】九年级数学上册教案23.3.2相似三角形的判定一

    教学设计 23.3 相似三角形 23.3.2 相似三角形的判定(1) 教学目标: 1.会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似. 2.会用这种方法判断两个三角形......

    九年级下册数学《图形的相似》教学计划大全

    九年级下册数学《图形的相似》教学计划 学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。小编精心为大家整理了这篇第1节《图形的相似》九年级下......

    华东师大课标版八年级数学下册教案画相似图形

    典型例题 例1 画一个三角形,使它与已知 相似,且原三角形与所画三角形的相似比为2:1. 解法一 如图(位似图形法) 任取一点O;连结OA、OB、OC;取OA、OB、OC的中点 ,连结 得 , 即为所求. 解......

    华东师大版九年级数学上册24.1《测量》教案

    解直角三角形 24.1 测量 【知识与技能】 利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系. 【过程与方法】 使学生经历测量旗杆......

    九年级数学上册《图形的旋转》教案2 新人教版

    山西省汾阳市三泉中学九年级数学上册《图形的旋转》教案2 新人教版 教学内容 1.对应点到旋转中心的距离相等. 2.对应点与旋转中心所连线段的夹角等于旋转角. 3.旋转前后的图......

    九年级数学4.3 相似多边形教案

    4.3 相似多边形 【教学目标】 经历相似多边形概念的形成过程,了解相似多边形的含义. 【教学重难点】 重点:探索相似多边形的定义过程,以及用定义判断两个多边形是否相似. 难点......

    华东师大版九年级数学上册23.4《中位线》教案

    中位线 【知识与技能】 1.经历三角形中位线的性质定理形成过程. 2.掌握三角形中位线的性质定理,并能利用它解决简单的问题. 3.通过命题的教学了解常用的辅助线的作法,并能灵活......

    华东师大版九年级上册数学教学工作计划(范文)

    华东师大版九年级上册数学教学工作计划 赵泽生 一.教学思想:教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步......