相似教案

时间:2019-05-12 20:18:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《相似教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《相似教案》。

第一篇:相似教案

相似

1.成比例线段

用同一长度单位度量两条线段所得量数的比叫做这两条线段的比.

如果线段a和b的比等于线段c和d的比,那么线段a,b,c,d叫做成比例线段,记作ac或a∶b=c∶d,其中a,c叫做比的前项,b,d叫做比的后项,b,c叫做比例内bd若项,a,d叫做比例外项,d叫做a,b,c的

(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;

(5)相似三角形面积的比等于相似比的平方. 6.相似多边形的性质

(1)相似多边形的对应角相等;

(2)相似多边形对应边的比等于相似比;(3)相似多边形周长的比等于相似比;

(4)相似多边形面积的比等于相似比的平方. 7.直角三角形中的成比例线段

如图13-1,在Rt△ABC中,∠C=90°,CD⊥AB于D,则(1)△ADC∽△ACB∽△CDB(可拆成三对相似三角形);

图13-1(2)CD2=AD·DB;(注:用时要证明)(3)AC2=AD·AB,BC2=BD·BA;(注:用时要证明)(4)CD·AB=AC·BC.(注:用时要证明)8.位似

(1)如果两个多边形相似,而且对应顶点的连线相交于一点,那么这两个多边形叫做位似图形,这个点叫做位似中心.

(2)如果两图形F与F′是位似图形,它们的位似中心是点O,相似比为k,那么

①设A与A′是一对对应点,则直线AA′过位似中心O点,并且②设A与A′,B与B′是任意两对对应点,则

OAk.OA'ABk若直线AB,A′B′不通过位AB似中心O,则AB∥A′B′.

(3)利用位似,可以将一个图形放大或缩小.

(4)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k那么位似图形对应点的坐标的比等于k或-k. ....9.相似图形的应用

二、例题分析

1已知:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值.

图13-2

分析

由已知,∠ABP=∠CBF.欲使以点B,M,C为顶点的三角形与△ABP相似,只要使夹∠ABP及∠CBF的两边对应成比例.

如图13-3.

图13-3 ∵AB⊥BC,PB⊥BF,∴∠ABP=∠CBF.

BM14BM1BC,即,BM1=3时,△CBM1∽△ABP.相似比k=1. 3BPAB44BM2BCBM2416当即,BM2时,△CBM2∽△PBA.相似比k 4ABBP33316∴当BM=3或BM时,以点B,M,C为顶点的三角形与△ABP相似,相似比分

3当4别为1和

3说明

(1)对于探究三角形相似的条件这类问题,可从“角的关系在先、边的关系在后”的思维顺序入手,由于题目条件中只有一组对应角相等,因此就考虑这组对应角的四条线段何时对应成比例,由于点C可以与点A对应(此时点M与点P对应),点C也可以与点P对应(此时点M与点A对应),因此有两种情形.

(2)注意当相似比k=1时,两个相似图形全等,因此,全等图形是相似图形的特例. 例

2已知:如图13-4,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q

图13-4

(1)请写出图中各对相似三角形(相似比为1的除外);(2)求BP∶PQ∶QR的值.

(1)△BCP∽△BER,△PCQ∽△RDQ,△PCQ∽△PAB,△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,AC∥DE.

PBPR,PC1 RE2又∵PC∥DR,∴△PCQ∽△RDQ. ∵点R是DE中点,∴DR=RE.

PQPCPC1,∴QR=2PQ. QRDRRE2又∵BP=PR=PQ+QR=3PQ,

∴BP∶PQ∶QR=3∶1∶2. 说明

(1)如图13-5,“若DE∥BC,则△ADE∽△ABC”.这是用平行线截得三角形构成相似三角形,得到成比例线段常见的基本图形结构.

图13-5(2)对于例2,还可进一步思考研究其他问题,例如,在已知条件不变的前提下,若△PCQ的面积为S,你能用含S的代数式分别表示图13-4中其他各图形的面积吗?并说明你的理由.

(1)△BPC的面积=______.理由是__________________________________________;(2)△ABP的面积=______.理由是__________________________________________;(3)四边形PCER的面积=______.理由是____________________________________;(4)四边形APRD的面积=______.理由是____________________________________; „„

例3 如图13-6,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.

图13-6(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.

(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.

BCAD2,腰长AB=CD=2CF=4,这样原2问题转化为在底边BC上是否存在一点P,使得CE=1.5.(2)作DF⊥BC于F,由已知可得CF=假设存在P点,使CE=1.5,由△ABP∽△PCE,得

BPAB,可得BP·PC=AB·CECEPC=6.

设BP=x,∵BC=BP+PC=7,∴PC=7-x.

∴x(7-x)=6,即x2-7x+6=0. 解得x1=1,x2=6.

当BP=1或BP=6时,使得DE∶EC=5∶3.

例4 如图13-7,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.

图13-7(1)求证:Rt△ABM∽Rt△MCN;

(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;

(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值. 解

(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°. ∵AM⊥MN,∴∠AMN=90°.

∠CMN+∠AMB=90°.

在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN. ∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,ABBM4x,即

MCCN4xCNx24xCN

4yS梯形ABCN1x24x4(4)2411x22x8(x2)210.22当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM∽△AMN,只需由(1)知

AMAB MNBMAMAB MNMC∴BM=MC.

∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.

例5 如图13-8,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.

图13-8

(1)设DE=m(0<m<12),试用含m的代数式表示(2)在(1)的条件下,当

FH的值; HGFH1时,求BP的长. HG2解

(1)如图13-9,过点H作MN∥AB,分别交AD,BC于M,N点.在正方形ABCD中,图13-9

∵AD∥BC,∴△FMH∽△GNH.

FHMH HGHN∵FH垂直平分AF,∴在△ADE中,H是AE的中点. 又∵MH∥DE,∴M是AD的中点. 11DEx.22由已知,不难得出四边形ABNM是矩形. ∴MN=AB=AD=12. MHHN121x.21mFHMHm2,1HGHN24m12m2其中0<m<12.

FH1m1时,,解得m=8. HG224m2欲求BP的长,只要求AP的长.

在Rt△ADE中,∵AD=12,DE=8,2 AE413,AH213,sinEAD13(2)当∵FP⊥AE于点H,∠DAP=90°,∴∠P=∠EAD.

AH13, sinP∴BP=AP-AB=13-12=1.

说明

(1)在解

(2)在解

图13-12

∵∠FDE+∠4=90°,∴∠FDE=∠1.∴△DEF∽△HGM.

DEEF HGGM而EF=b-a,DE=a,HG=b-c,GM=c,即aba,得ac=(b-a)(b-c). bcc整理可知b(a+c)=b2,而b≠0,∴a+c=b.

例8(2008哈尔滨市)已知菱形ABCD的边长是6,点E在直线AD上,DE=3,连接BE,与对角线AC相交于点M,则解

MC的值是______. AM2 3提示

注意题中给出的“点E在直线AD上”这个条件,因此有两种情况.

MCBC2;(2)AMAEMCBC2 点E在AD的延长线上时,如图13-13(b),△CMB∽△AME,AMAE3(1)点E在线段AD上时,如图13-13(a),△CBM∽△AEM.

图13-13

四、课标考试达标题(一)选择题

1.如图13-14,AB∥CD,AE∥FD,AE,FD分别交BC于点G,H,则图中共有相似三角形().

图13-14 A.4对

B.5对 C.6对

D.7对

2.如图13-15所示,小刚身高AB为1.7m,测得他站立在阳光下的影子AC长为0.85m,紧接着他把手臂竖直举起,测得影子AD长为1.1m,那么小刚举起的手臂BE超出头顶

().

图13-15 A.0.5m B.0.55m C.0.6m D.2.2m 3.如图13-16,在△ABC中,AB>AC,过AC边上一点D作直线与AB相交,使得构成的新三角形与△ABC相似,这样的直线共有().

图13-16 A.1条

B.2条 C.3条

D.4条

4.如图13-17,王华同学晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,他继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于().

图13-17 A.4.5米

B.6米 C.7.2米

D.8米

5.如图13-18,在8×8正方形的网格上,若使△ABC∽△PBD,则点P应在().

图13-18 A.P1处

B.P2处 C.P3处

D.P4处

6.如图13-19,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=2,则此三角形移动的距离PP′是().

图13-19 A.1 2B.

C.1

D.21

(二)填空题

7.已知:如图13-20,在△ABC中,AD∶DB=1∶2,DE∥BC交AC于E,若△ABC的面积等于81,则四边形BCED的面积为______.

图13-20 8.如图13-21,在矩形ABCD中,E,F分别是AD,BC的中点,点G,H在DC边上,BC=12,GH1DC.若AB=10,则图中阴影部分的面积为______. 2

图13-21 9.如图13-22,△ABC与△A′B′C′的位似中心为点O,若AB=2,A′B′=5,则△ABC与△A′B′C′的面积比是______,AC与A′C′的比是______.

图13-22 10.如图13-23,如果以正方形ABCD的对角线AC为边作

11.如图13-24,在△ABC中,点D,E分别在边AB,AC上,连接DE并延长交BC的延长线于点F,连接DC,BE.若∠BDE+∠BCE=180°,写出图中三对相似三角形(注意:不得加字母和线);请在你所找出的相似三角形中选取一对,说明它们相似的理由.

图13-24

12.如图13-25,在□ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.

图13-25(1)求证:△ABF∽△EAD;

(2)若AB=4,∠BAE=30°,求AE的长;

(3)在(1)、(2)的条件下,若AD=3,求BF的长.(计算结果可含根号)

13.如图13-26,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.

图13-26(1)求梯形ABCD的面积;

(2)求四边形MEFN面积的最大值;

(3)试判断四边形MEFN能否为正方形,若能,写出正方形MEFN的面积.

参考答案

第二篇:相似三角形教案

相似三角形

【基础知识精讲】

1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系.

2.进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学习数学的兴趣和自信心.

【重点难点解析】

相似三角形的概念及相似三角形的基本定理.

【典型热点考题】

例1 如图4-21,□ABCD中,M是AD延长线上一点,BM交AC于点F,交DC于G,则下列结论中错误的是()

图4-21 A.△ABM∽△DGM B.△CGB∽△DGM C.△ABM∽△CGB D.△AMF∽△BAF

点悟:用本节概念和定理直接判断. 解:应选D.

例2 如图4-22,已知MN∥BC,且与△ABC的边CA、BA的延长线分别交于点M、N,点P、Q分别在边AB、AC上,且AP∶PB=AQ∶QC.

图4-22 求证:△APQ∽△ANM. 证明:∵ AP∶PB=AQ∶QC,∴ PQ∥BC,又MN∥BC,∴ MN∥PQ ∴ △APQ∽△ANM.

例3 写出下列各组相似三角形的对应边的比例式.

(1)如图4-23(1),已知:△ADE∽△ABC,且AD与AB是对应边.(2)如图4-23(2),已知:△ABC∽△AED,∠B=∠AED.

图4-23 点悟:要写出两个相似三角形的对应边的比例式,首先要确定两个相似三角形的对应边.因为相似三角形是全等三角形的推广,所以要确定两个相似三角形的各组的对应边,可以参照确定全等三角形对应边的方法,从确定这两个相似三角形对应的顶点出发.

解:(1)已知△ADE∽△ABC,且AD和AB是对应边,它们所对的顶点E和C为对应顶点,而A是两三角形的公共顶点,∠BAC为公共角,所以两三角形另两组对

ADDEBCEACA应边为DE和BC,EA和CA,得AB.

(2)已知△ABC∽△AED,且∠ABC=∠AED,A为公共顶点,另一对应顶点为D和C,三组对应边分别是AD和AC,AE和AB,DE和CB.

ADAEABDECB得AC.

本题两类相似三角形的图形是相似三角形的基本图形. 第一类为平行线型.

平行线型是由两条平行线和其他直线配合构成的两个相似三角形,它的对应元素比较明显,对应边,对应角,对应顶点有同样的顺序性,对应边平行或重合.基本图形有两种(图4-24):

图4-24 第二类是相交线型.

这一类型的对应元素不十分明显,对应顺序也不一致,对应边相交.它的基本图形,也有两种,一种是有一个公共角,另一种是一组对顶角(图4-25).

图4-25 其他类型的相似形多可以分解成这两种基本类型或转化为这两种基本类型. 例4 如图4-26,已知:△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于F.求证:AB·DF=BC·EF.

图4-26 点悟:如果我们把条件和结论涉及的线段AD,CE,AB,DF,BC,EF在图中都描成红线,可以发现一个完全由红线构成的三角形,即△DBE,还有一条线AC,是△DBE的截线,分别截△DBE的三边DB,BE,DE(或它们的延长线)于A,C,F.这类问题添辅助线的方法至少有三种,即过红线三角形任一顶点作对边的平行线,并与该三角形的截线或其延长线相交(如图4-27),在每一种图形中,虽然只有一对平行线,但与这对平行线有关的基本图形都能找到两对,根据每一个基本图形都可以写出包含辅助线段在内的一个比例式.

图4-27

ADDFBHEFCEBC以(2)为例,可以写出ABBHABDFAD,又可以写出BH.前两式均有BH,于是

BC可得,及

BHBCEF,所以,有

ABDFEF.又因为ADCEADCE=CE,于是有AB·DF=BC·EF.(证略)利用比例线段也可以证明两直线平行或两线段相等.

例5 如图4-28,已知:梯形ABCD中,AD∥BC,E,F分别是AD,BC的中点,AF与BE相交于G,CE和DF相交于H,求证:GH∥AD.

图4-28 点悟:条件中的AD∥BC,给出了两个基本图形,而AE=ED,BF=FC,又使从两

AGDHHF个基本图形中给出的比例式有一个公共的比值,从中可以得到GF.所以GH∥AD.

证明:∵ AD∥BC,AEAGGFEDDHHF∴ BF,FC.

∵ AE=ED,BF=FC,AGDHHF∴ GF,∴ GH∥AD.

例6 如图4-29,已知:AD平分∠BAC,DE∥AC,EF∥BC,AB=15cm,AF=4cm. 求:BE和DE的长.

图4-29 点悟:题设中的两对平行线起着不同的作用.由DE∥AC,AD平分∠BAC,可以得到AE=DE.这样已知及欲求的线段BE,AE,AB,AF都在AB和AC这两条边上,利用EF∥BC,就可以得到相应的比例线段.求得答案. 解:∵ DE∥AC,∴ ∠3=∠2,又AD平分∠BAC,∴ ∠1=∠2,∴ ∠1=∠3,∴ ED=AE. ∵ EF∥BC,ED∥CF,∴ EDCF为平行四边形,∴ ED=CF=AE.

设AE=x,则 CF=x,BE=15-x. ∵ EF∥BC,AEAFCFx4x∴ BE,即15x,2∴ x4x600

解得,x110(舍),x26. ∴ DE=6cm,BE=9cm.

例7 如图4-30,已知:在△ABC中,AD和BE相交于G,BD∶DC=3∶1,AG=GD. 求BG∶GE.

图4-30 点悟:按照例4的分析,过点G作GM∥AC,根据平行线截得比例线段定理,得BG∶GE=BM∶MC,于是只要求出BM∶MC的值即可. 解:作GM∥AC交BC于M,则 BG∶GE=BM∶MC. ∵ AG=GD,DMMC12DC∴ .

BD∵ DCBD131,61BD即2DC,MC61161.

71BDMCMCBM,即MC,∴ BG∶GE=7∶1.

点拨:以上四例中,我们复习了线段成比例和平行线分线段成比例的有关知识.

【易错例题分析】

例1 已知:在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点. 求证:△ADQ∽△QCP. 证明:在正方形ABCD中,∵ Q是CD的中点,AD2∴ QCBP,3BC4DQ∵ PC,∴ PC.又∵ BC=2DQ,∴ PCDQPC,∠C=∠D=90°,2.

AD在△ADQ和△QCP中,QC∴ △ADQ∽△QCP. 警示:证此类题应避免没有目标而乱推理的情况.

例2 一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如图4-31(1)、(2)所示,请你用学过的知识说明哪位同学的加工方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).

解:由AB=1.5米,SΔABC1.5平方米,得BC=2米.设甲加工的桌面边长为x米,∵DE∥AB,Rt△CDE∽Rt△CBA,CDDEAB672xx1.5∴ CB,即2.

解得 x,过点B作Rt△ABC斜边AC上的高BH,交DE于P,交AC于H.

由AB=1.5米,BC=2米,SΔABC1.5平方米得AC=2.5米,BH=1.2米. 设乙加工的桌面边长为y米,∵ DE∥AC,∴ Rt△BDE∽Rt△BAC.

BPDEAC1.2yy2.5∴ BHy,即1.2

3037303722即x>y,xy,解得,6因为7所以甲同学的加工方法符合要求. 警示:解此类要避免看不出相似直角三角形而无法解的情况,更要避免看不出对应线段造成的比值写错而形成的计算错误.

例3 如图4-32,AD是直角△ABC斜边上的高,DE⊥DF,且DE和DF分别交AB、AFBEBDAC于E、F.求证:AD.

图4-32(2002年,安徽)正解:∵ BA⊥AC,AD⊥BC,∴ ∠B+∠BAD=∠BAD+∠DAC=90°,∴ ∠B=∠DAC.又∵ ED⊥DF,∴ ∠BDE+∠EDA=∠EDA+∠ADF=90°,∴ ∠BDE=∠ADF,∴ △BDE∽△ADF.

BDBEAFAFBEBD∴ AD,即 AD.

警示:本例常见的错误是不证三角形相似,直接进行线段的比,这是规范的一种情况.

【同步达纲练习】

一、选择题

1.如图4-33,在△ABC中,AB=AC,AD是高,EF∥BC,则图中与△ADC相似的三角形共有()

A.1个 B.2个 C.3个 D.多于3个

2.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图4-34在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3…若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是()

A.24 B.25 C.26 D.27

图4-33 图4-34

二、填空题

3.如图4-35,△AED∽△ABC,其中∠1=∠B,则AD∶________=________∶BC=________∶AB.

图4-35 图4-36 4.如图4-36,D、E、F分别是△ABC的边AB、BC、CA的中点,则图中与△ABC相似的三角形共有________个,它们是_______________.

5.阳光通过窗口照到室内,在地面上留下2.7m宽的亮区,已知亮区到窗下的墙脚最远距离是8.7m,窗口高1.8m,那么窗口底边离地面的高等于________.

三、解答题

6.如图4-37,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2PEPF.

7.已知:如图4-38,等腰△ABC中,AB=AC,∠BAC=36°,AE是△ABC的外角平分线,BF是∠ABC的平分线,BF的延长线交AE于E.求证:(1)AF=BF=BC;(2)EF∶BF=BC∶FC.

图4-37 图4-38 8.四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于F,∠ECA=∠D.求证:AC·BE=AD·CE.

参考答案

【同步达纲练习】

1.C 2.C 3.AC,ED,AE 4.4,△ADF、△DBE、△FEC、△EFD

5.4m 6.连结PC,先证明△ABP≌△ACP,∴PB=PC,再证明△PCF∽△PEC,∴PC∶PE=PF∶PC.∴PC2PEPF,∴PB2PEPF

7.(1)由已知可求得∠ABF=∠BAC=36°,∠C=∠BFC=72°,∴BC=BF=AF

(2)∵△EAF、△BCF都是底角为72°的等腰三角形,∴△EAF∽△BCF,∴EF∶BF=AF∶CF,又AF=BC,∴EF∶BF=BC∶FC

8.∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∵∠ECA=∠D,∴∠ECA=∠B,又∵∠E=∠E,∴△ECA∽△EBC,∴AC∶BC=CE∶BE,∴AC∶AD=CE∶BE,∴AC·BE=AD·CE

第三篇:三角形相似教案

相似三角形的判定(1)教学设计

一、课题

相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时)

二、教材分析

1.内容要点

本节课让学生利用相似三角形的定义来进一步探索相似三角形的判定条件,从而让学生在学习新知里发展思维,加强与前面已学过的知识:图形的相似、相似多边形的主要特征(相似多边形对应的角相等,对应边的比相等),相似比甚至引导学生联系八年级上册所学的相等三角形的判定定理和平行从对比探索中增强学生的推理归纳和类比应用的能力。2.地位

本节课处于承上启下的位置,既增强了对图形的相似和相似多边形定义联系和运用,又为下一课时相似三角形的判定2以及以后的几何证明奠定了基础。3.作用

从初步认识相似三角形到探索如何利用平行线的特点判定两个三角形相似,从无到有的知识萌发,让学生由探究得到的平行线分线段成比例定理初步返回去严谨地认识两个图形的相似,在探索过程中掌握自主探究、类比、归纳以及转化的思想方法,增强推理能力,进而让学生感受到数学图形之美。经过对平行线分线段成比例定理以及相似三角形判定定理的探究学习,使学生的合情推理意识和主动探究的学习习惯得到发展。

三、学情分析 1.认知基础

学生在八年级上册中已经全面地认识了三角形,并且掌握了全等三角形的判定定理,加上平行线同位角等性质,并且在上一节课已学过了图形的相似以及相似多边形的主要特征,为本节课的学习相似三角形打下了基础。学生在观察、想象、合作探究、归纳概括等方面有了初步的体验,再加上学生会做辅助线,这为本课的学习奠定了一定的基础,但学生对转化思想,几何论证推理能力还在初步形成阶段,这使本节课的学习还有一定的困难。2.情意基础

学生是九年级的学生,对于新知识有一定的接受能力,且数形结合思想,转化思想都相对成熟,对探索学习饶有兴趣,但是思维容易固化,对问题看待不够全面。

四、教学目标

1.理解相似三角形不因位置改变而改变,书写三角形相似时对应角的字母顺序对应;

2.能运用平行线和三角形中线比例关系证明“A字型”三角形相似,能运用三角形全等的方法将“X字型”三角形转化为“A字型”三角形证明其相似;

3.理解相似三角形概念,能正确找出相似三角形的对应边和对应角; 4.能掌握并运用相似三角形判定的“预备定理”; 5.让学生参与探索,获取相似三角形判定条件,感受数学的魅力,体会到数学的充满探索与创造,在学习中发现数学的乐趣并在数学学习生活中形成自主,自信,健康的心理。

五、教学重难点

1.教学重点

相似三角形判定的“预备定理”的探索; 2.教学难点

探索过程中的各种三角形相似的有关证明;

六、教学方法和手段 1.教学方法 引导探究法 2.教学媒体 PPT

七、教学设计思想

探究式的教学方法是新课改的一个重要内容,布鲁纳主张学习的目的是以发现学习的方式使学科的基本结构转变为学生头脑中的认知结构,并且指出学生的知识学习是通过类别化信息的加工过程,积极主动地形成认知结构。利用学生的好奇心,设疑,解疑,组织互动,有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探究与合作交流中理解和掌握本节课的内容,增强直观效果,提高课堂效率。其次,数形结合思想,化归思想以及归纳法和分析法的应用,让学生对新知的认识更加透彻,对问题的探索思路更加明确,并从中让思维得到进一步的提升。

八、教学过程

(一)复习引入(5分钟)1.复习概念性质(3分钟)

T:同学们还记得相似图形的概念是什么吗? S:对应角相等,对应边成比例的两个图形相似。T:相似的两个图形会随它们位置的改变而改变吗? S:不会。

T:很好,大家先记着我们刚刚回忆的内容。下面我们来了解一下最简单的多边形----三角形的相似情况。

T:刚才我们回忆了相似图形的一些性质,那现在我手头上有根据相似图形性质画出来的两个相似三角形,不论它们之间的相对位置如何,乃至处于不同的平面,这两个三角形仍然是相似的。(老师拿出两个相似三角形并在同一平面变换两个三角形纸片的位置,然后让两纸片处于不同平面变换位置)(老师将两纸片贴在黑板上并标明字母)T:同学们我们要用字母表示这两个三角形相似,应该怎么写呢?我们一起来写,首先把两个三角形表示出来,分别是∆ABC∆DEF,同学在写的时候还要注意对应的顶点字母相对应,那中间用什么符号来表示两个三角形相似呢?有同学可以告诉我吗?

S:大写字母S横着写。

T:很好,这跟我们曾经学过的什么符号很像呢? SSS:全等符号。

T:那课后大家思考全等三角形与相似三角形之间有什么联系,下节课我再叫同学回答这个问题。2.创设情境(2分钟)

(老师利用这组相似三角形纸片,将两个三角形的一个对应顶点重叠,贴在黑板上)

T:同学们你们看,相似三角形∆ABC和∆DEF的∆ABC的顶点A与∆DEF的顶点D重合并且∠BAC与∠EDF重合,那边EF和边BC有什么关系吗?

S:平行。

T:为什么呢?

S:同位角相等两直线平行。

T:嗯,AEB三点共线,且∠AEF=∠ABC,所以EF和BC平行。

(二)探索新知(20分钟)

T:如果平行于∆ABCBC边的直线与其他两边AB、AC相交与点E、F,所构成的∆AEF是否与∆ABC相似呢?

S:相似(不相似)。

T:大部分同学都说相似,接下来我们该做些什么去证明这两个三角形相似呢?

T:首先我们从我们学过的类似的图形出发,假设这条平行线是三角形中位线,我们来证明看看。同学们自行思考,待会来分享思路。[PPT显示相应题目和图形](2min过去了,期间教师下台观察学生情况,选一名写完了的同学上台分享思路)

S1:(在黑板上画△ABC并取分别AB、AC中点D、E,连接DE)∵DE是△ABC的中位线∴DE=1/2BC(由三角形中位线定理)

∴AB/AD =AC/AE =BC/DE =1/2.又∵两直线平行同位角相等 ∴∠ADE=∠B,∠AED=∠C,∠A=∠A ∴△ADE∽△ABC.T:同学们觉得S1的解答对吗? S:对。

T:S1的解答充分运用了已学的三角形中位线的知识,找出来隐含在三角形ADE和三角形ABC中边的比例关系,依照定义证明出了这两个三角形相似,证明过程很完整,是对的,让我们给他一些掌声鼓励。(解析S1的做法,并给予肯定)

(老师和学生一起鼓掌)T:接下来加大难度咯,“如图过点D作DE∥BC交AC于点E,那么△ADE与△ABC相似吗?”,请同学们自行思考,待会请同学上来分享思路。[PPT显示相应题目和图形](4min过去了)

S2:由同位角相等可知三个角对应相等,只需证明对应边成比例.因为DE∥BC,所以AD/AB=AE/EC=k, 只需证明DE/BC=k.过点D作DF∥AC交BC于点F,则由两组对边分别平行,得四边形DFCE为平行四边形.所以DE/BC=FC/BC,∵DF∥AC ∴FC/BC=DA/BA,故DE/BC= DA/BA =k ∴△ADE∽△ABC.T:S2将问题转化为了求三角形的一边对应成比例,通过作辅助线DF,构造出了平行四边形,并灵活运用平行四边形和相似的性质,得到了三边对应相等,从而证明了两个三角形相似,做的很棒,让我们把掌声送给他!(和同学们一起鼓掌)T:以上都是平行线与边AB和边AC相交的情况,现在我们延长AB和AC,如图当DE与三角形两边延长线交于边BC下方时,所构成的三角形和原三角形是否相似呢? [PPT显示相应题目和图形] S:相似。

T:要怎样证明呢? S:和上一题一样。

T:对,没错。像这种平行线位于点A下方的,我们统称为“A字型”,凡是拥有这种形状的三角形和平行线,都隐藏着相似三角形。那如果DE与三角形两边延长线交于边点A上方时,所构成的三角形和原三角形是否相似呢?请同学们自行思考。[PPT显示相应题目和图形](T下台观察、指点。2min后)

T:老师刚刚发现,大部分同学都不再用定义进行繁琐的证明了,而是直接由“A字型”的结论出发,将新图形转换为“A字型”加以证明。有哪位同学愿意上台分享一下,你是怎样转化的呢?

S3:分别在边AB和边AC作点N’和M’,使AN=AN’,AM=AM’,由对顶角相等和SAS可得

△AMN≌△AM’N’,从而得到“A字型”,故新三角形和原三角形相似。T:S3分析的很好!让我们给他掌声鼓励!(和同学们一起鼓掌)我们称这种图形为“X字型”,通过“A字型”和“X字型”的相似三角形探究,我们现在可以总结得出我们一开始要证明的结论了,同学们还记得是什么吗?

S:逆命题(刚刚的猜想)。

T:没错,我们给这个刚刚证明的猜想一个名称“预备定理”,大家请看屏幕,一齐朗读一边[PPT显示预备定理] S:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

T:预备定理比定义要简便的多,它的几何语言也是相当简洁 ∵EF∥BC ∴△ADE∽△ABC.(三)知识迁移(7分钟)(备注:此环节题目让学生以同桌为单位交流完成,老师再请同学发言说明思路)

(四)总结反思(7分钟)

定义:„„。要求三边三角满足对应关系,非常严谨但证明过程过于繁琐且使用条件有限。

预备定理:„„。只要求有找到原三角形一边的平行线,构成“A字型”或“X字型”,极大简化了证明过程。

(备注:以上总结,老师说整体性语言,关键字引导学生说出)

(五)布置作业(1分钟)

1.常规作业(第几页第几题)

2.探索作业:请以本节课所学知识,“测量”教室天花板的高度,写一测量方案。

九、板书设计

十、反思

第四篇:相似复习教案

相似复习教案

教学目标:

知识与技能目标:

1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质; 2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.过程与方法目标:1.经历知识探究的过程,使学生将实际问题转化为相似三角形这一数学模型,达到熟练、灵活运用;在解决实际问题的过程中,提高学生建立数学模型的能力.2.经历对图形的观察、探究、交流、归纳的的过程,提高同学们的画图能力和对图形的感知意识.

情感态度与价值观:在教学活动中发展学生的转化意识和探究合作交流的习惯;更进一步地体会相似三角形的实际应用价值;让学生深刻地体会到数学来源于生活,又应用到生活中, 增加学生应用数学知识解决实际问题的经验和感受;提高学生对图形的感知水平,发展学生的审美意识. 教学重点:利用相似三角形性质和判定的知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形

教学难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.教学过程:

一、教师引入本节课课题,学生自主复习,然后小组内自主交流总结知识点。教师深入学生中查看完成的情况.记录下所出现的问题,以便集中处理.找学生展示学习成果.

教师给与点评和分析,同时就刚才检查过程中发现的问题处理好,就本单元所用知识一并总结.

根据学生的复习情况,师生共同总结本章重要知识点并多媒体展示。

二、衔接中考,强调重要知识点一,即对应角相等,对应边成比例。

知识点一:

并提出例题,及时强化。给予学生充分的思考时间。学生自主思考,完成练习。

练习:如图,四边形ABCD和EFGH相似,求∠ D、∠G的大小和EH的长度。

知识点二:相似三角形的性质和判定

多媒体出示重要知识点,给予学生充分地时间,把自己整理的知识点有遗漏的补充完整。对于5号6号学生给予时间对其进行强化记忆。

多媒体出示相似三角形性质和判定的中考题,学生自主思考,小组讨论,教师行间巡视,及时解决问题,及时了解学生的出错点和难点。

教师提出问题,学生开始解答. 对于问题6,学习小组可展开讨论,最后小组推举出代表叙述解答本题的思路.

教师听取后,及时地补充、完善、鼓励,最后给出题目的详细讲解.

教师出示,点拨解决思路,学生书写解题的过程,并总结解决此题所用到的知识点有哪些.知识点三:位似

1、两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的相似叫做位似,点O叫做位似中心.

2、利用位似的方法,可以把一个多边形放大或缩小 位似变换中对应点的坐标变化规律: 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.知识点出示后,及时出示中考题进行练习。

教师出示例题,学生尝试独立完成;教师展示个别同学的成果

三、课堂小结:这节课你学会了什么?你的收获是什么?

四、达标检测:

2.如图,矩形ABCD中,m为BC上一点.DE⊥Am于E,若AB=6,AD=20,Bm=8,求DE的长.

3.(2015德州)

如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.

(2)探究

如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用 请利用(1)(2)获得的经验解决问题:

如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间 为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.

当堂达标在课堂上要及时进行反馈,尤其第三题是2015德州中考题,很具有代表性,学生自主思考,小组合作后,学生如有困难,教师可给予思路的引导和适当的帮助,此题需要做出重点讲解。

五、作业布置 作业布置:

必做题:导训52页:

1、8题

53页14题

选做题:

57页16题

学生认真完成作业,进一步巩固知识.

第五篇:相似多边形的教案

4.3 相似多边形

学习目标:

1、会说出相似多边形的概念和性质.2、在简单情形下,能根据定义判断两个多边形相似.3、会用相似多边形的性质解决简单的几何问题.重点与难点:

1、本节教学的重点是相似多边形的定义和性质.2、要判断两个多边形是否相似,需要看它们的边是否对应成比例、对应角是否相等,情形要比三角形复杂,是本节教学的难点.教学方法:自主探究 教学用具:多媒体 教学过程

一、创设问题情境,导入新课 :

1.下面请同学 们观察下面两个多边形: 计算机显 示屏上的多边形ABCDEF和投射到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗? 学生回答后,教师: 这样的两个多边形叫做什么多边形? 2.引入课题:相似多边形

二、归纳定义及运用

(学生根据观察和体验的过程,归纳定义,提高语言表达能力)1.合作探究: 在图4-11中的两个多边形中,是否有对应相等的内角?设法验证你的猜测.在图4-11中的两个多边形中,夹相等内角的两边是否成比例?(同桌一人测角,一人测边,共同得出结论:这种形状相同的多边形各对应 角相等、各对应边成比例.然后尝试给相似多边形下一个定义.)2.获得新知:(自读课本,时间3分钟,然后回答老师提出的问题:①多边形相似需满足几个条件? ②相似多边形的记法有什么要求?③什么叫相似比?求相似比要注意什么?)3.议一议:(1)观察下面两组图形,图(1)中的两个图形相似吗?图(2)中的两个图形呢?为什么?你从中得到什么启发?与同桌交流.(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?

(通过对两个典型范例的分析,加深对相似多边形的本质特征的理解.让学生充分发表看法,然后老师总结。)4.巩固新知:(巩固相似多边形的定义这一最基本的判断方法。)例 下列每组图形是相似多边形吗?试说明理由。(1)正三角形ABC与正三角形D EF;(2)正方形ABCD与正方形EFGH.5.想一想——反过来会怎样?

如果两个多边形相似,那么它们的 对应角有什么关系?对应边呢?

(老师总结:相似多边形的定义既是最基本、最重要的判定方法,也是最本质、最重要的性质.)6.做一做 一块长3m、宽1.5m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?

(让学生独立作出判断,并说明理由.通过这个易出错的例子,使学生认识到直观有时是不可靠的,需要通过定义的两个条件进行判断.)

三、课堂小结

通过这节课的学习你有什么收获?

(学生自由回答,培养学生的语言表达力)学生归纳总结:相似多边形的概念既是性质又是判定,运用性质时对应顶点字母写在对应的位置上,同时知道相等角所对边是对应边,对应边所对角是对应角。相似比有顺序 要求

下载相似教案word格式文档
下载相似教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形教案(5篇范文)

    新课程网校[WWW.XKCWX.COM] 全力打造一流免费网校! §18.3 相似三角形 一、教学目标 1、使学生理解并掌握相似三角形的概念,理解相似比的概念。 2、使学生掌握预备定理,并了解......

    相似三角形复习教案

    相似三角形复习教案 教学目标: 本课为相似三角形专题复习课,是对本章基本内容复习基础上的深化,通过对一个题目的演变,紧紧围绕一线三直角这个基本模型展开,由浅入深对相似三角......

    相似三角形复习课教案大全

    《相似三角形》复习课教案 城区二中 章松岩 目的:使学生掌握相似三角形的判定和性质和应用,并能灵活运用。 重点:相似三角形的判定和性质和应用。 难点:相似三角形的灵活运用。......

    相似三角形教案(微型课)

    人教版九年级数学教案 相似三角形的判定教案 27.2.1相似三角形的判定教案 教学目标 1、理解相似三角形的定义、相似比,并掌握相似三角形的判定定理; 2、培养学生的观察﹑发现......

    相似三角形的性质 教案

    相似三角形的性质 教学目标 1、经历探索相似三角形性质的过程,并会运用相似三角形的性质解决有关的问题。 2、通过探索相似三角形性质的过程,渗透逻辑推理的方法,引导学生从......

    相似三角形复习教案[全文5篇]

    设计意图: 1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。 2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”; 使学......

    《相似三角形应用举例》教案

    《相似三角形应用举例》教案 一、教学目标 1. 进一步巩固相似三角形的知识.2. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题......

    相似证明

    1、△ABC中AF∶FC=1∶2,G是BF的中点,AG的延长线交BC于E,求BE:ECE2、□ABCD中,E是AB的中点,AF=CB E A3、等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线交BA延长线于E, 求证:DEDCEABDD......