4.1多边形教案

时间:2019-05-13 21:19:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《4.1多边形教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《4.1多边形教案》。

第一篇:4.1多边形教案

§

4、1 多边形(1)

执教者:卢漫

一、教学目标

◆知识与技能:认识四边形,理解四边形内角和定理的证明,会用四边形内角和定理解决简单的图形问题。

◆过程与方法:经历四边形内角和定理的发现过程,体验把四边形问题转化为三角形问题来解决的化归思想。◆情感与价值观:在生活中体验数学中的几何图形,又将图形的知识运用于生活,体验数学来源于生活,又运用于生活。

二、教学重点、难点:

◆教学重点:四边形内角和定理。

◆教学难点:四边形内角和定理的证明思路。

三、教学方法:

引导式,探究式教学法

四、教学过程:

(一)、创设情景,认识概念

1、多媒体展示生活中的一些图形,观察图形,回答下列问题: 由上述这些图形,你能抽象出什么几何图形? 三角形、四边形、六边形、八边形……

2、通过与三角形的概念作对比,引出四边形的概念及表示方法。

由不在同一条直线上的四条线段首尾顺次相接形成的图形,叫做四边形(quadrilateral).

3、多边形的定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的图形叫做多边形

4、适当解释空间四边形和凸四边形与凹四边形(结合下图)的概念和区别:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的图形叫做多边形

凸四边形:四边形的各条边都在任意一条边所在直线的同一侧。凹四边形:四边形的各条边不都在任意一条边所在直线的同一侧。

4、认识构成四边形的各个元素

顶点、边、内角、外角、对角线等。四边形的记法:

从任一顶点开始按顺时针或逆时针顺序记。如四边形ABCD或四边形BCDA等

5、试一试:

(1)下图的四边形表示为:________________(2)四边形的边:________(3)四边形的内角和:______

(二)、合作探究,发现新知

1、让学生在一张纸上任意画一个四边形,剪下它的四个角,把它们拼在一起(四个角的顶点重合)。或让学生利用拼图的方法(如图),通过实验、观察、猜想得到:四0 边形的内角和为360。

拼一拼,画一画

2、你能利用手中的一副三角板拼出四边形吗?

(1)这两块三角板拼成的四边形的内角和等于多少度?为什么呢?(2)任意四边形EFGH的内角和难道也是360 °吗?请说明理由。猜测结论:四边形的内角和是360°。

3、让学生根据猜想得到的命题,画图、写出已知、求证。已知:四边形ABCD;求证:∠A+∠B+∠C+∠D=360°。证明:连结BD ∵∠A+∠ABD+∠ADB=180°,∠C+∠CBD+∠CDB=180°()∴∠A+∠ABD+∠ADB+∠C+∠CBD+∠CDB=180°+180° 即:∠A+∠ABC+∠C+∠CDA=360°

4、你还有其他添辅助线方法来证明吗? 学生讨论,教师小结

由于学生有前面的铺垫,添辅助线对于学生来说并不难,因此本题在解决中要注意采用多种思维的思考,及题后的小结,当然对这个命题的证明,也可作如下启发或小结:

①我们已经知道哪一种图形的内角和?内角和为多少?②能否把问题化归为三角形来解决?这样可以使学生对证明思路的转化更有体会。

(3)学生小组合作探讨出其他至少两种方法: 要求有恰当的图形,并简单地叙述解答的思路。

(以上的8种方法均为学生探讨所得(预设),教师只做适当补充)

(三)例题分析,体验新知

1、如图,四边形风筝的四个内角∠A,∠B,∠C,∠D的度数之比为1:1:0。6:1。求它的四个内角的度数。

分析:有了前面练习的经验,对于学生而言,本例的解答应该不成困难,所以可以放手让学生自行解决,教师只需要注意学生在解答中的不足及对学生能够进行恰当的小结即可。

解:∵∠A、∠B、∠C、∠D的度数之比为1:1:0。6:1,∴可设∠A=x,则∠B=∠D= x,∠C=0。6 x;

又∵∠A+∠B+∠C+∠D=360°,∴x+ x+ 0。6x+ x=360°,∴x=100 ∴∠A=∠B=∠D=100°∠C=100×0。6 =60°

注意:本例在知识上主要是两个方面的应用,①四边形的内角和,②比例的转化。

做一做:

1、已知四边形ABCD,∠ A=∠B=∠C=90°则∠D=_____.2、如图,在四边形ABCD中,∠A=85°,∠D=110°, ∠1的外角是71°,则∠1=______,∠2=______

3、已知四边形ABCD中,∠A与∠C互补,∠B=80°,求∠D的度数。

4、在四边形ABCD中,已知∠A与∠C互补,∠B比∠D大15°,求∠B、∠D的度数。

注意:当四边形的四个内角中有两个角互补时,另两个角也互补。这个结论也可让学生记一记。

5、以四边形ABCD的四个顶点为圆心,以3为半径画圆,则图中阴影部分的面积是多少?(结果中保留∏)

6、如图,已知四边形ABCD中,∠ A=∠B,∠D= ∠C,求证:AB//CD

DABC例

2、如图,在长方形ABCD中,BE平分∠ABC,交CD于点E,DF平分∠ADC,交AB于点F.问:DF是否平行于BE?请说明理由.变式:若将上图的长方形ABCD改成如图∠A=∠C=900的四边形,其他条件不变。问:DF是否还平行于BE?请说明理由.(四)、小结:

1、四边形的概念。通过与三角形的类比,得到四边形了有关概念。

2、四边形的内角和定理

四边形的内角和等于360°。

3、把四边形的问题转化成三角形问题来求,数学常用的化归思想。把四边形问题转化为三角形进行讨论,体现了转化的思想,即把未知转化为已知,把复杂转化为简单。这是我们研究知识解决问题的一种重要方法。

4、作四边形的对角线,是研究四边形的常用辅助线之一。

(五)、布置作业:

第二篇:多边形及多边形内角和教案

多边形及多边形的内角和

【教学目标】 知识与能力: 1.了解多边形定义。

2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.

4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:

1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。

2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;

3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】

Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】

1、创设情境,导入新课 1/4页

(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】

(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。

(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。

(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固

【总结回顾,反思内化】 这节课学了什么?学生自由发言。

教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为

(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】

第三篇:多边形及其内角和教案

多边形

教学目标:

1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形.

教学重点、难点:

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形. 2.难点:

多边形定义的准确理解.

课时安排:第一课时

教学方法:自主探索,合作交流 预习提示:

(1)你能仿照三角形的定义给多边形定义吗?

(2)什么叫多边形的边、顶点、对角线、内角和外角?试画图说明。(3)凸多边形与凹多边形有什么区别?(4)什么叫正多边形?

教学过程:

一、知识探索

投影:图形见课本P84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 让学生画出五边形的所有对角线. 4.凸多边形与凹多边形

看投影:图形见课本P80.7.3—6.

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本P81练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本P84第1题.

课堂检测:

1.下列不是凸多边形的是()

2.下列图形中∠1是外角的是()

3.下列说法正确的是()

A.一个多边形外角的个数与边数相同。B.一个多边形外角的个数是边数的二倍。C.每个角都相等的多边形是正多边形。D.每条边都相等的多边形是正多边形。

4、为迎接2008奥运会,北京四家宾馆A、B、C、D 决定建一个停车场,使它到四个宾馆的距离和最小.请你帮他们确定停车场的位置,并说明理由.7.3.2 多边形的内角和

[教学目标] 1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.

[教学重点、难点] 1.重点:

(1)多边形的内角和公式.

(2)多边形的外角和公式.

2.难点:多边形的内角和定理的推导. [教学过程]

一、探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果,从中你得到什么结论?

同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.

二、思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则

n边形的内角和等于(n一2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.

如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.

A 1O234EB5

分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠

1、∠

2、∠

3、∠4不是五边形的内角,应舍去.

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

CDEDA 12O34CB

三、例题

1如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.

BCA D

解:如图,四边形ABCD中,∠A+∠C=180°。

∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说:如果四边形一组对角互补,那么另一组对角也互补.

2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边

形的外角和.六边形的外角和等于多少?

A B216F5C3ED4

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

解:∵六边形的任何一个外角加上它相邻的内角和为180°.

∴六边形的六个外角加上各自相邻内角的总和为6×180°.

由于六边形的内角和为(6—2)×180°=720°

∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.

所以我们说多边形的外角和与它的边数无关.

对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°. 如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本P83--84练习1、2、3题.

习题7.3

第2、3题

五、课堂小结

引导学生总结本节课主要内容.

六、课后作业

课本P85第4、5、6题.

第四篇:《多边形及其内角和》教案设计1

多边形的内角和教案

[教学目标] 1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点:

(1)多边形的内角和公式.(2)多边形的外角和公式.

2.难点:多边形的内角和定理的推导. [教学过程]

一、探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.

从中你得到什么结论?

同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.

二、思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗?

设多边形的边数为n,则

n边形的内角和等于(n一2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.

如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.

A E341O2B5DC

分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠

1、∠

2、∠

3、∠4不是五边形的内角,应舍去.

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

EDA 12O

三、例题

34CB

例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.

BCA D

解:如图,四边形ABCD中,∠A+∠C=180°。

∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说:如果四边形一组对角互补,那么另一组对角也互补.

例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角

和.六边形的外角和等于多少?

A B216F53CD4E

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.

求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°. 解:∵六边形的任何一个外角加上它相邻的内角和为180°.

∴六边形的六个外角加上各自相邻内角的总和为6×180°.

由于六边形的内角和为(6—2)×180°=720°

∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)

同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.

所以我们说多边形的外角和与它的边数无关.

对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.

如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本P89练习1、2、3题. P90第2、3题

五、课堂小结

引导学生总结本节课主要内容.

第五篇:11.3 多边形及其内角和(第1课时)教案

“快乐课堂六步教学法”模式 八年级上学期数学教学案 备课人:

学习内容: 11.3多边形及其内角和(1)新授课 总第7课时

学习目标:

知识与技能:观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角、对角线等数学概念,理解正多边形的概念,区别凸多边形与凹多边形。

数学思考:了解多边形的有关概念,感悟类比方法的价值

解决问题:能由实物中辨别寻找出几何图形,由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识.情感态度与价值观:了解类比这种重要的数学学习方法,体验生活中处处有数学的道理。学习重点:了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别。学习难点:正多边形的正确理解以及凸多边形的辨别 学习过程:

一、情境导课:(知识链接、自查辨误、情景激趣)复习:1.什么是三角形?怎样表示?

2.什么是三角形的边,角以及外角?图片观赏:

你能从图中找出几个由一些线段围成的图形吗? 学生回答,相互补充,教师点明本节课题。

(设计理念:利用现实生活情境吸引学生尽快投入到数学课堂中来。让学生们观察、回答、补充,既能体现主体性,又能较自然地过渡到新课教学中来)

二、教材导学:(独学教材,对学交流,群学探究、精讲点拨)这些线段围成的图形有何特性? 【(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.】 这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢? 你能仿照三角形的定义给多边形定义吗?

(设计理念:运用类比方法学习新知识,便于发现新旧知识的异同点,同时完善学生的认知结构。)归纳:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。明确概念:

1.多边形相邻两边组成的角叫做多边形的内角.如图中的∠A、∠B、∠C、∠D、∠E 2.多边形的边与它的邻边的延长线组成的角叫做多边形的外角。如图中的∠1是五边形ABCDE的一个外角

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 四边形有几条对角线?五边形有几条对角线?画图看看。你能猜想n边形有多少条对角线吗?说说你的想法。

“快乐课堂六步教学法”模式 八年级上学期数学教学案 备课人:

三、解答题.

7.画出图(1)中的六边形ABCDEF的所有对角线.

8.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系? 9.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系? 4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

参考答案:1.× 2.× 3.√ 4.n-3,n-2 5.一条边,同一侧 6.相等 相等 7.略

8.可以得4个三角形,它与边数相等 9.可以得4个三角形,它比边数少1 10.可以得4个三角形,它比边数少2

五、拓展延伸(揭示学科思想方法、展示中考题目)

如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴? 解答:解:n=1时,有1个三角形,需要火柴的根数为:

n=13×1;n=3n=2n=2时,有4个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630故答案为:630

六、反思小结:(梳理知识、整理学案(或笔记)、识记反思、明确作业)(1)、收获与发现:

(2)、疑惑与问题:

知识点概述:

1、多边形及有关概念。

2、区别凸多边形和凹多边形。

3、正多边形的概念。

4、n边形对角线有1n(n-3)条。

5、从多边形的一个顶点作对角线可把多边形分成个(n-2)三角形 2(3)、作业:P21教科书练习题

第1、2题

P24教科书习题11.3

第题.(4)板书设计 教师教学反思:

下载4.1多边形教案word格式文档
下载4.1多边形教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似多边形的教案

    4.3 相似多边形 学习目标: 1、会说出相似多边形的概念和性质. 2、在简单情形下,能根据定义判断两个多边形相似. 3、会用相似多边形的性质解决简单的几何问题. 重点与难点: 1、......

    《多边形的内角和》教案

    《多边形的内角和》教案 以下是查字典数学网为您推荐的 《多边形的内角和》教案,希望本篇文章对您学习有所帮助。 《多边形的内角和》教案 众所周知,数学课堂是以学生为中......

    多边形的内角和教案

    一、教学目标1、知识目标 (1)使学生了解多边形的有关概念。 (2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。2、能力目标 (1)通过对“多边形内角和公式”......

    11.3多边形及其内角和 教案(汇编)

    11.3 多边形及其内角和 11.3.1 多边形 [教学目标] 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. [教学重点、难点] 1.重点: (1)了解多边形及其有关......

    多边形公开课教案及反思

    多边形及其内角和 俞冬志 [教学目标] 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. [教学重点、难点] 1.重点: (1)了解多边形及其有关概念,理解正......

    多边形的面积教案

    第六单元 多边形的面积 单元教学内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积以及解决问题。 单元教材分析: 本单元教材是在学生掌握了平行四边形、三......

    《多边形的面积》教案

    《多边形的面积》教案 教学目标 1、通过剪切、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。 2、学会计算组合图形的面积。 3、在......

    《多边形的认识》教案

    多边形 教学目的: 1.通过动手操作,会按角的特征及边的特征给三角形进行分类。 2.培养学生动手动脑及分析推理能力。 教学重难点: 1.会按角的特征及边的特征给三角形进行分类。 2.画指......