第一篇:相似三角形单元教学计划
《相似三角形》单元教学计划 教学目标:
1.通过具体实例认识图形的相似.2.了解相似多边形和相似比的含义,探索相似多边形的性质.3.了解三角形相似的概念,探索相似三角形的性质.4.掌握平行线分线段成比例定理.5.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.6.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.7.了解图形的位似,能够利用图形的位似将一个图形放大或缩小.8.了解在同一坐标系中位似变换后图形的坐标变化.将一个多边形的顶点坐标扩大或缩小相同倍数时对应的图形与原图形是位似的.9.会利用图形的相似解决一些简单实际问题.1.结合相似图形性质和判定方法的探索与证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的表达能力.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.过程与方法
培养学生用联系和转化的观点看待周围的事物,增强探索问题的信心和热情.情感态度与价值观
前面学习了图形的全等和全等三角形的有关知识,也研究了几何图形的全等变换,“全等”和“相似”都是图形之间的一种变换,全等图形是相似比为1的相似图形,所以本章相似形的学习,以全等形和全等变换为基础,是全等三角形在边上的推广,比全等形更具有一般性,是前面学习图形全等的拓展和发展.本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形的.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,按照研究对象的“一般→特殊→特殊位置关系”的顺序展开研究.首先,教科书从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形——相似图形,举例说明了放大、缩小两种操作与相似图形之间的关系.接着教科书把研究对象缩小为特殊的相似图形——相似多边形,由相似多边形的定义推出了相似多边形的性质.对于相似多边形的判定,教科书以三角形为载体进行研究,此外,还研究了相似三角形的其他性质和应用.最后,教科书研究了一种具有特殊位置关系的相似图形——位似图形.本章的知识不仅将在后面学习“锐角三角函数”和“投影与视图”时得到应用,而且对于建筑设计、测量、绘图等实际工作也具有重要价值.在本章中,相似三角形的判定和性质是本章的重点内容,相似三角形判定定理的证明是本章的难点内容.此外,综合应用相似三角形的判定和性质,以及学生前面学过的平行线、全等三角形、平行四边形等知识解决问题(包括实际问题)也是本章的一个难点.为了降低学生在推理论证方面的难度,本章加强了证明思路的引导,或者用分析法分析出由条件到结论必需的转化,或者提示了证明的关键环节;为了降低学生在解决实际问题中的难度,本章专门设置了相似三角形应用举例,从不同角度为解决实际问题作出示范.【重点】
1.相似三角形的判定与性质及应用判定和性质解决问题.2.位似图形的性质及画法.【难点】
1.相似三角形的判定定理的证明.2.位似变换的坐标表示.教材说明: 1.初中数学从《全等三角形》开始,已经进入了推理证明阶段,本章的学习在已有的基础上继续进行必要的推理证明,本章的证明所涉及的问题不仅包含相似的知识,也有很多是和三角形、全等、平行、勾股定理、平面直角坐标系等知识融合在一起的,例如相似三角形判定定理的证明中利用了全等三角形作为“桥梁”,性质的证明借助了代数运算,因此推理论证的难度提高了.教学时应注意帮助学生复习已有的知识,做到以新带旧、新旧结合;也要注意以具体问题为载体,加强证明思路的引导,帮助学生确定证明的关键环节,指导学生写出完整的证明过程.同时注意根据教学内容及时安排相应的训练,让学生能够逐步达到独立分析、完成证明.2.学生通过前面对三角形、四边形、圆等几何图形的学习,对于研究几何图形的基本问题、思路和方法已经形成了一定的认识.本章教学中要充分利用学生已有的研究几何图形的经验,用研究几何图形的基本套路贯穿全章的教学.例如,在教授本章之前,可以让学生类比对全等三角形研究的主要内容,提出对形状相同、大小不同的三角形应研究的主要问题和方法,构建本章内容的基本线索,使他们对将学习的内容做到心中有数.因此本章在教学相似三角形的性质之前,可以先让学生自己发现性质,再给出证明.3.相似是生活中常见的现象,日常生活中存在着相似的例子,相似图形的性质在实际生活中有着广泛的应用,能直接应用相似三角形的判定和性质的实例很多,教材中融入了许多实际背景问题,所以在教学中要注重数学与实际生活的联系,每个课时都让学生体会数学来源于生活,又应用到生活中去.课时安排
27.1 图形的相似 2课时 27.2 相似三角形
27.2.1相似三角形的判定(3课 时)27.2.2相似三角形的性质(1课 时)27.2.3相似三角形应用举例(2课 时)6课时 27.3位似 2课时 单元概括整合 1课时
第二篇:三角形单元教学计划
三角形单元教学计划
教学目标
知识目标
1、理解三角形及其内角、中线、高线、角平分线等概念,了解三角形的稳定性。
2、了解 三角形重心的概念。
3、探索并证明三角形内角和定理。证明三角形的任意两边之和大于第三边。
4、理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
5、掌握多边形形的概念:掌握多边形内角和 能力目标
1、在探索图形的过程中,经历观察、操作、想象、推理、交流的活动,积累数学活动经验,进一步发展空间概念和推理能力。
2、了解三角形及其内角、中线、高线、角平分线的概念,探索并三角形的内角和及三角形三边之间的关系,了解三角形的稳定性。
3、尝试用多种方法表达自己的想法,表述问题解决的理由,发展初步的演绎推理能力和有理表达的能力。
4、感受数学与现实世界的密切联系。教学重难点
重点:三角形三边关系、内角和 难点:三角形三边关系
课时安排
本单元上课时间大约11课时,具体分配如下: 与三角形
有关的线段
3课时 2 与三角形
有关的角
3课时 3 多边形及其内角和
2课时 4 数学活动
1课时 5 测试
2课时
作业设计
教学文本
第三篇:三角形相似教案
相似三角形的判定(1)教学设计
一、课题
相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时)
二、教材分析
1.内容要点
本节课让学生利用相似三角形的定义来进一步探索相似三角形的判定条件,从而让学生在学习新知里发展思维,加强与前面已学过的知识:图形的相似、相似多边形的主要特征(相似多边形对应的角相等,对应边的比相等),相似比甚至引导学生联系八年级上册所学的相等三角形的判定定理和平行从对比探索中增强学生的推理归纳和类比应用的能力。2.地位
本节课处于承上启下的位置,既增强了对图形的相似和相似多边形定义联系和运用,又为下一课时相似三角形的判定2以及以后的几何证明奠定了基础。3.作用
从初步认识相似三角形到探索如何利用平行线的特点判定两个三角形相似,从无到有的知识萌发,让学生由探究得到的平行线分线段成比例定理初步返回去严谨地认识两个图形的相似,在探索过程中掌握自主探究、类比、归纳以及转化的思想方法,增强推理能力,进而让学生感受到数学图形之美。经过对平行线分线段成比例定理以及相似三角形判定定理的探究学习,使学生的合情推理意识和主动探究的学习习惯得到发展。
三、学情分析 1.认知基础
学生在八年级上册中已经全面地认识了三角形,并且掌握了全等三角形的判定定理,加上平行线同位角等性质,并且在上一节课已学过了图形的相似以及相似多边形的主要特征,为本节课的学习相似三角形打下了基础。学生在观察、想象、合作探究、归纳概括等方面有了初步的体验,再加上学生会做辅助线,这为本课的学习奠定了一定的基础,但学生对转化思想,几何论证推理能力还在初步形成阶段,这使本节课的学习还有一定的困难。2.情意基础
学生是九年级的学生,对于新知识有一定的接受能力,且数形结合思想,转化思想都相对成熟,对探索学习饶有兴趣,但是思维容易固化,对问题看待不够全面。
四、教学目标
1.理解相似三角形不因位置改变而改变,书写三角形相似时对应角的字母顺序对应;
2.能运用平行线和三角形中线比例关系证明“A字型”三角形相似,能运用三角形全等的方法将“X字型”三角形转化为“A字型”三角形证明其相似;
3.理解相似三角形概念,能正确找出相似三角形的对应边和对应角; 4.能掌握并运用相似三角形判定的“预备定理”; 5.让学生参与探索,获取相似三角形判定条件,感受数学的魅力,体会到数学的充满探索与创造,在学习中发现数学的乐趣并在数学学习生活中形成自主,自信,健康的心理。
五、教学重难点
1.教学重点
相似三角形判定的“预备定理”的探索; 2.教学难点
探索过程中的各种三角形相似的有关证明;
六、教学方法和手段 1.教学方法 引导探究法 2.教学媒体 PPT
七、教学设计思想
探究式的教学方法是新课改的一个重要内容,布鲁纳主张学习的目的是以发现学习的方式使学科的基本结构转变为学生头脑中的认知结构,并且指出学生的知识学习是通过类别化信息的加工过程,积极主动地形成认知结构。利用学生的好奇心,设疑,解疑,组织互动,有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探究与合作交流中理解和掌握本节课的内容,增强直观效果,提高课堂效率。其次,数形结合思想,化归思想以及归纳法和分析法的应用,让学生对新知的认识更加透彻,对问题的探索思路更加明确,并从中让思维得到进一步的提升。
八、教学过程
(一)复习引入(5分钟)1.复习概念性质(3分钟)
T:同学们还记得相似图形的概念是什么吗? S:对应角相等,对应边成比例的两个图形相似。T:相似的两个图形会随它们位置的改变而改变吗? S:不会。
T:很好,大家先记着我们刚刚回忆的内容。下面我们来了解一下最简单的多边形----三角形的相似情况。
T:刚才我们回忆了相似图形的一些性质,那现在我手头上有根据相似图形性质画出来的两个相似三角形,不论它们之间的相对位置如何,乃至处于不同的平面,这两个三角形仍然是相似的。(老师拿出两个相似三角形并在同一平面变换两个三角形纸片的位置,然后让两纸片处于不同平面变换位置)(老师将两纸片贴在黑板上并标明字母)T:同学们我们要用字母表示这两个三角形相似,应该怎么写呢?我们一起来写,首先把两个三角形表示出来,分别是∆ABC∆DEF,同学在写的时候还要注意对应的顶点字母相对应,那中间用什么符号来表示两个三角形相似呢?有同学可以告诉我吗?
S:大写字母S横着写。
T:很好,这跟我们曾经学过的什么符号很像呢? SSS:全等符号。
T:那课后大家思考全等三角形与相似三角形之间有什么联系,下节课我再叫同学回答这个问题。2.创设情境(2分钟)
(老师利用这组相似三角形纸片,将两个三角形的一个对应顶点重叠,贴在黑板上)
T:同学们你们看,相似三角形∆ABC和∆DEF的∆ABC的顶点A与∆DEF的顶点D重合并且∠BAC与∠EDF重合,那边EF和边BC有什么关系吗?
S:平行。
T:为什么呢?
S:同位角相等两直线平行。
T:嗯,AEB三点共线,且∠AEF=∠ABC,所以EF和BC平行。
(二)探索新知(20分钟)
T:如果平行于∆ABCBC边的直线与其他两边AB、AC相交与点E、F,所构成的∆AEF是否与∆ABC相似呢?
S:相似(不相似)。
T:大部分同学都说相似,接下来我们该做些什么去证明这两个三角形相似呢?
T:首先我们从我们学过的类似的图形出发,假设这条平行线是三角形中位线,我们来证明看看。同学们自行思考,待会来分享思路。[PPT显示相应题目和图形](2min过去了,期间教师下台观察学生情况,选一名写完了的同学上台分享思路)
S1:(在黑板上画△ABC并取分别AB、AC中点D、E,连接DE)∵DE是△ABC的中位线∴DE=1/2BC(由三角形中位线定理)
∴AB/AD =AC/AE =BC/DE =1/2.又∵两直线平行同位角相等 ∴∠ADE=∠B,∠AED=∠C,∠A=∠A ∴△ADE∽△ABC.T:同学们觉得S1的解答对吗? S:对。
T:S1的解答充分运用了已学的三角形中位线的知识,找出来隐含在三角形ADE和三角形ABC中边的比例关系,依照定义证明出了这两个三角形相似,证明过程很完整,是对的,让我们给他一些掌声鼓励。(解析S1的做法,并给予肯定)
(老师和学生一起鼓掌)T:接下来加大难度咯,“如图过点D作DE∥BC交AC于点E,那么△ADE与△ABC相似吗?”,请同学们自行思考,待会请同学上来分享思路。[PPT显示相应题目和图形](4min过去了)
S2:由同位角相等可知三个角对应相等,只需证明对应边成比例.因为DE∥BC,所以AD/AB=AE/EC=k, 只需证明DE/BC=k.过点D作DF∥AC交BC于点F,则由两组对边分别平行,得四边形DFCE为平行四边形.所以DE/BC=FC/BC,∵DF∥AC ∴FC/BC=DA/BA,故DE/BC= DA/BA =k ∴△ADE∽△ABC.T:S2将问题转化为了求三角形的一边对应成比例,通过作辅助线DF,构造出了平行四边形,并灵活运用平行四边形和相似的性质,得到了三边对应相等,从而证明了两个三角形相似,做的很棒,让我们把掌声送给他!(和同学们一起鼓掌)T:以上都是平行线与边AB和边AC相交的情况,现在我们延长AB和AC,如图当DE与三角形两边延长线交于边BC下方时,所构成的三角形和原三角形是否相似呢? [PPT显示相应题目和图形] S:相似。
T:要怎样证明呢? S:和上一题一样。
T:对,没错。像这种平行线位于点A下方的,我们统称为“A字型”,凡是拥有这种形状的三角形和平行线,都隐藏着相似三角形。那如果DE与三角形两边延长线交于边点A上方时,所构成的三角形和原三角形是否相似呢?请同学们自行思考。[PPT显示相应题目和图形](T下台观察、指点。2min后)
T:老师刚刚发现,大部分同学都不再用定义进行繁琐的证明了,而是直接由“A字型”的结论出发,将新图形转换为“A字型”加以证明。有哪位同学愿意上台分享一下,你是怎样转化的呢?
S3:分别在边AB和边AC作点N’和M’,使AN=AN’,AM=AM’,由对顶角相等和SAS可得
△AMN≌△AM’N’,从而得到“A字型”,故新三角形和原三角形相似。T:S3分析的很好!让我们给他掌声鼓励!(和同学们一起鼓掌)我们称这种图形为“X字型”,通过“A字型”和“X字型”的相似三角形探究,我们现在可以总结得出我们一开始要证明的结论了,同学们还记得是什么吗?
S:逆命题(刚刚的猜想)。
T:没错,我们给这个刚刚证明的猜想一个名称“预备定理”,大家请看屏幕,一齐朗读一边[PPT显示预备定理] S:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
T:预备定理比定义要简便的多,它的几何语言也是相当简洁 ∵EF∥BC ∴△ADE∽△ABC.(三)知识迁移(7分钟)(备注:此环节题目让学生以同桌为单位交流完成,老师再请同学发言说明思路)
(四)总结反思(7分钟)
定义:„„。要求三边三角满足对应关系,非常严谨但证明过程过于繁琐且使用条件有限。
预备定理:„„。只要求有找到原三角形一边的平行线,构成“A字型”或“X字型”,极大简化了证明过程。
(备注:以上总结,老师说整体性语言,关键字引导学生说出)
(五)布置作业(1分钟)
1.常规作业(第几页第几题)
2.探索作业:请以本节课所学知识,“测量”教室天花板的高度,写一测量方案。
九、板书设计
十、反思
第四篇:相似三角形教案
相似三角形
【基础知识精讲】
1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系.
2.进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学习数学的兴趣和自信心.
【重点难点解析】
相似三角形的概念及相似三角形的基本定理.
【典型热点考题】
例1 如图4-21,□ABCD中,M是AD延长线上一点,BM交AC于点F,交DC于G,则下列结论中错误的是()
图4-21 A.△ABM∽△DGM B.△CGB∽△DGM C.△ABM∽△CGB D.△AMF∽△BAF
点悟:用本节概念和定理直接判断. 解:应选D.
例2 如图4-22,已知MN∥BC,且与△ABC的边CA、BA的延长线分别交于点M、N,点P、Q分别在边AB、AC上,且AP∶PB=AQ∶QC.
图4-22 求证:△APQ∽△ANM. 证明:∵ AP∶PB=AQ∶QC,∴ PQ∥BC,又MN∥BC,∴ MN∥PQ ∴ △APQ∽△ANM.
例3 写出下列各组相似三角形的对应边的比例式.
(1)如图4-23(1),已知:△ADE∽△ABC,且AD与AB是对应边.(2)如图4-23(2),已知:△ABC∽△AED,∠B=∠AED.
图4-23 点悟:要写出两个相似三角形的对应边的比例式,首先要确定两个相似三角形的对应边.因为相似三角形是全等三角形的推广,所以要确定两个相似三角形的各组的对应边,可以参照确定全等三角形对应边的方法,从确定这两个相似三角形对应的顶点出发.
解:(1)已知△ADE∽△ABC,且AD和AB是对应边,它们所对的顶点E和C为对应顶点,而A是两三角形的公共顶点,∠BAC为公共角,所以两三角形另两组对
ADDEBCEACA应边为DE和BC,EA和CA,得AB.
(2)已知△ABC∽△AED,且∠ABC=∠AED,A为公共顶点,另一对应顶点为D和C,三组对应边分别是AD和AC,AE和AB,DE和CB.
ADAEABDECB得AC.
本题两类相似三角形的图形是相似三角形的基本图形. 第一类为平行线型.
平行线型是由两条平行线和其他直线配合构成的两个相似三角形,它的对应元素比较明显,对应边,对应角,对应顶点有同样的顺序性,对应边平行或重合.基本图形有两种(图4-24):
图4-24 第二类是相交线型.
这一类型的对应元素不十分明显,对应顺序也不一致,对应边相交.它的基本图形,也有两种,一种是有一个公共角,另一种是一组对顶角(图4-25).
图4-25 其他类型的相似形多可以分解成这两种基本类型或转化为这两种基本类型. 例4 如图4-26,已知:△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于F.求证:AB·DF=BC·EF.
图4-26 点悟:如果我们把条件和结论涉及的线段AD,CE,AB,DF,BC,EF在图中都描成红线,可以发现一个完全由红线构成的三角形,即△DBE,还有一条线AC,是△DBE的截线,分别截△DBE的三边DB,BE,DE(或它们的延长线)于A,C,F.这类问题添辅助线的方法至少有三种,即过红线三角形任一顶点作对边的平行线,并与该三角形的截线或其延长线相交(如图4-27),在每一种图形中,虽然只有一对平行线,但与这对平行线有关的基本图形都能找到两对,根据每一个基本图形都可以写出包含辅助线段在内的一个比例式.
图4-27
ADDFBHEFCEBC以(2)为例,可以写出ABBHABDFAD,又可以写出BH.前两式均有BH,于是
BC可得,及
BHBCEF,所以,有
ABDFEF.又因为ADCEADCE=CE,于是有AB·DF=BC·EF.(证略)利用比例线段也可以证明两直线平行或两线段相等.
例5 如图4-28,已知:梯形ABCD中,AD∥BC,E,F分别是AD,BC的中点,AF与BE相交于G,CE和DF相交于H,求证:GH∥AD.
图4-28 点悟:条件中的AD∥BC,给出了两个基本图形,而AE=ED,BF=FC,又使从两
AGDHHF个基本图形中给出的比例式有一个公共的比值,从中可以得到GF.所以GH∥AD.
证明:∵ AD∥BC,AEAGGFEDDHHF∴ BF,FC.
∵ AE=ED,BF=FC,AGDHHF∴ GF,∴ GH∥AD.
例6 如图4-29,已知:AD平分∠BAC,DE∥AC,EF∥BC,AB=15cm,AF=4cm. 求:BE和DE的长.
图4-29 点悟:题设中的两对平行线起着不同的作用.由DE∥AC,AD平分∠BAC,可以得到AE=DE.这样已知及欲求的线段BE,AE,AB,AF都在AB和AC这两条边上,利用EF∥BC,就可以得到相应的比例线段.求得答案. 解:∵ DE∥AC,∴ ∠3=∠2,又AD平分∠BAC,∴ ∠1=∠2,∴ ∠1=∠3,∴ ED=AE. ∵ EF∥BC,ED∥CF,∴ EDCF为平行四边形,∴ ED=CF=AE.
设AE=x,则 CF=x,BE=15-x. ∵ EF∥BC,AEAFCFx4x∴ BE,即15x,2∴ x4x600
解得,x110(舍),x26. ∴ DE=6cm,BE=9cm.
例7 如图4-30,已知:在△ABC中,AD和BE相交于G,BD∶DC=3∶1,AG=GD. 求BG∶GE.
图4-30 点悟:按照例4的分析,过点G作GM∥AC,根据平行线截得比例线段定理,得BG∶GE=BM∶MC,于是只要求出BM∶MC的值即可. 解:作GM∥AC交BC于M,则 BG∶GE=BM∶MC. ∵ AG=GD,DMMC12DC∴ .
BD∵ DCBD131,61BD即2DC,MC61161.
71BDMCMCBM,即MC,∴ BG∶GE=7∶1.
点拨:以上四例中,我们复习了线段成比例和平行线分线段成比例的有关知识.
【易错例题分析】
例1 已知:在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点. 求证:△ADQ∽△QCP. 证明:在正方形ABCD中,∵ Q是CD的中点,AD2∴ QCBP,3BC4DQ∵ PC,∴ PC.又∵ BC=2DQ,∴ PCDQPC,∠C=∠D=90°,2.
AD在△ADQ和△QCP中,QC∴ △ADQ∽△QCP. 警示:证此类题应避免没有目标而乱推理的情况.
例2 一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如图4-31(1)、(2)所示,请你用学过的知识说明哪位同学的加工方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).
解:由AB=1.5米,SΔABC1.5平方米,得BC=2米.设甲加工的桌面边长为x米,∵DE∥AB,Rt△CDE∽Rt△CBA,CDDEAB672xx1.5∴ CB,即2.
解得 x,过点B作Rt△ABC斜边AC上的高BH,交DE于P,交AC于H.
由AB=1.5米,BC=2米,SΔABC1.5平方米得AC=2.5米,BH=1.2米. 设乙加工的桌面边长为y米,∵ DE∥AC,∴ Rt△BDE∽Rt△BAC.
BPDEAC1.2yy2.5∴ BHy,即1.2
3037303722即x>y,xy,解得,6因为7所以甲同学的加工方法符合要求. 警示:解此类要避免看不出相似直角三角形而无法解的情况,更要避免看不出对应线段造成的比值写错而形成的计算错误.
例3 如图4-32,AD是直角△ABC斜边上的高,DE⊥DF,且DE和DF分别交AB、AFBEBDAC于E、F.求证:AD.
图4-32(2002年,安徽)正解:∵ BA⊥AC,AD⊥BC,∴ ∠B+∠BAD=∠BAD+∠DAC=90°,∴ ∠B=∠DAC.又∵ ED⊥DF,∴ ∠BDE+∠EDA=∠EDA+∠ADF=90°,∴ ∠BDE=∠ADF,∴ △BDE∽△ADF.
BDBEAFAFBEBD∴ AD,即 AD.
警示:本例常见的错误是不证三角形相似,直接进行线段的比,这是规范的一种情况.
【同步达纲练习】
一、选择题
1.如图4-33,在△ABC中,AB=AC,AD是高,EF∥BC,则图中与△ADC相似的三角形共有()
A.1个 B.2个 C.3个 D.多于3个
2.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图4-34在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3…若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是()
A.24 B.25 C.26 D.27
图4-33 图4-34
二、填空题
3.如图4-35,△AED∽△ABC,其中∠1=∠B,则AD∶________=________∶BC=________∶AB.
图4-35 图4-36 4.如图4-36,D、E、F分别是△ABC的边AB、BC、CA的中点,则图中与△ABC相似的三角形共有________个,它们是_______________.
5.阳光通过窗口照到室内,在地面上留下2.7m宽的亮区,已知亮区到窗下的墙脚最远距离是8.7m,窗口高1.8m,那么窗口底边离地面的高等于________.
三、解答题
6.如图4-37,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2PEPF.
7.已知:如图4-38,等腰△ABC中,AB=AC,∠BAC=36°,AE是△ABC的外角平分线,BF是∠ABC的平分线,BF的延长线交AE于E.求证:(1)AF=BF=BC;(2)EF∶BF=BC∶FC.
图4-37 图4-38 8.四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于F,∠ECA=∠D.求证:AC·BE=AD·CE.
参考答案
【同步达纲练习】
1.C 2.C 3.AC,ED,AE 4.4,△ADF、△DBE、△FEC、△EFD
5.4m 6.连结PC,先证明△ABP≌△ACP,∴PB=PC,再证明△PCF∽△PEC,∴PC∶PE=PF∶PC.∴PC2PEPF,∴PB2PEPF
7.(1)由已知可求得∠ABF=∠BAC=36°,∠C=∠BFC=72°,∴BC=BF=AF
(2)∵△EAF、△BCF都是底角为72°的等腰三角形,∴△EAF∽△BCF,∴EF∶BF=AF∶CF,又AF=BC,∴EF∶BF=BC∶FC
8.∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∵∠ECA=∠D,∴∠ECA=∠B,又∵∠E=∠E,∴△ECA∽△EBC,∴AC∶BC=CE∶BE,∴AC∶AD=CE∶BE,∴AC·BE=AD·CE
第五篇:《相似三角形》说课稿
《相似三角形》说课稿范文1
各位领导老师大家好:今天我说课的课题是华师版初中三年级数学 “相似三角形的性质”。
下面,我分以下几个部分来汇报我对这节课的教学设计,“教材分析”、“ 学生的认知起点分析”“教学目标、教学重点和难点”“学法指导”、“教学过程的设计”和“评价分析”加以说明。
一、教材分析。
教材的地位及作用:对于相似三角形的研究,实际上是对平面几何中两个封闭图形关系研究的进一步,相似三角形的性质”是初中数学“相似形”中的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,这些性质是解决有关实际问题的重要依据,因此必须熟练掌握三角形相似的性质,学会灵活运用相似三角形的性质,在学习数学中起着承上启下的作用。
二、学生的认知起点分析:
学生通过前面的学习已了解了三角形相似的概念,掌握了相似三角形判定的这为探究三角形相似的性质,做好了知识上的准备。另外,学生也具备了识别三角形全等的知识,通过类比,使学生能主动参与本节课的操作、探究。
三、教学目标:
根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为:
(1)知识目标:使学生掌握相似三角形的性质定理及其证明方法,能运用相似三角形性质定理解决问题。
(2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践能力。
(3)德育目标:通过全等三角形和相似三角形的类比学习,树立学生从特殊到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。
四、教学重、难点:
因为相似三角形的性质是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,根据教学目标我设置了本节的
1、重点:相似三角形的性质及其应用。
2、难点:相似三角形性质的探索过程。
五、教学方法与教学手段的选择。
为了充分调动学生学习的积极性,使学生变被动学习为主动愉快的学习,使课堂教学生动、有趣、高效,本节课我将采用自主探索、启发引导、。合作交流、反馈测试展开教学,并采用计算机辅助课堂教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维,这样一方面可以激发学生学习的兴趣,提高学生学习的效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学习体会。
六、学法指导。
在学法指导上,充分引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,体会数学内容之间的联系,在解决问题的过程中,深化对其本质属性的理解,培养学生学习的主动性和积极性,让学生在愉悦的气氛中感受到数学学习的无穷乐趣。
七、设计思想。
在本节课设计中,从分发挥了教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性,主动参与到合作探究讨论中来,使学生在与他人的合作交流中,获取新知,并是个性思维得到发展。
在本节的学习中,采用探究的形式,引导学生通过操作、观察、探索、交流、发现,得出相似三角形对应角相等,对应边成比例外 ,对应边上的高线、对应边上的中线、对应边上的角平分线也是成比例的,都等于相似比,通过进一步探讨还得出相似三角形周长的比等于相似比,面积的比等于相似比的平方,同时对得到的知识加以运用,配备了巩固练习,让学生做到活学活用,并适时与学生沟通,营造亲切、和谐、活跃的课堂气氛,以激发学生积极思维,促进认知发展。
八、教学程序。
1、明确目标,重点、难点,为学生指明方向避免盲目性。
2。知识链接 目的在于引导学生用类比思想学习新知。
3、启发诱导 探索新知 培养学生自主学习与合作学习。
4、巩固练习检验学生对所学知知识掌握情况。
5、归纳小结 知识的再现 梳理知识。
6、作业布置:进一步巩固所学知识。
九、评价分析。
今天这节课主要是对数学学科“学案导学”这种新知教学模式进行一次尝试,也是对从细节入手,打造优质高效数学课堂的主题进行了一次探索,通过这节课的教学,我的收获也很多,这为我们以后的课堂教学积累经验。我认为这节课比较理想的方面有:
1、教学方法和教学手段的选择比较恰当合理。
选择恰当的教学手法和教学手段是高效课堂的重要保障,在探究上主要是采用合作交流的形式,因为学生提前有预习,也是检验学生预习的情况,把预习情况在小组汇报,充分调动学生的积极性,使学生变被动为主动学习,使课堂教学生动、有趣、高效。在交流中达成共识。然后以小组汇报形式展示,检验学生对一个探究问题的掌握情况,收到良好效果。探究二以个人展示为主。
分别找不同层次的学生叙述证明过程,探究一作为基础,所以探究二的推理过程就很容易;探究三采用的方法是先自主思考,然后再小组中研讨,学生板演的形式来完成。因为探究三学生在自主思考中,我通过学生的反应和表情发现一部分学生有障碍,所以我及时安排了这次探究。三个探究题采用了不同的方法和形式,体现了探究方法的多元化,同时采用计算机辅助教学,激励学生积极参与、观察。发现只是的内在联系,使每个学生都能积极思维,激发学生学习兴趣,提高学生的学习效率,拓展学生思维空间,培养学生用创造性思维去学习。
2、教学目标基本得到落实。
一节课的中心工作就是要落实好教学目标,课前的准备和课堂的各个环节都是为落实目标来服务的,通过本节的'教学可以看出学生对相似三角形对应高的比,对应中线的比,对应角平分线的比。周长的比等于相似比,面积的比等于相似比平方,这几条性质掌握比较好,在探索这几条性质的过程中,学生经历观察、猜想、验证的过程,感到了新知的产生过程,这为掌握新知奠定了基础,通过巩固训练,也可以反应学生对本节课所学知识基本掌握。
3、抓住重点,突破难点。
本节课的重点是相似三角形的性质及其应用,在课堂上紧紧抓住重点层层展开教学,通过观察猜想,测量验证和推理论证得出相似三角形的性质,符合学生的认知规律让所有学生都动起来,参与进来。差生不再是旁观者。使学生能积极主动去探索新知和获取新知。通过复习中的第一个和第四个,学生就有了思想准备。本节课研究的问题与全等三角形的性质类似。全等与相似明显区别就是全等对应边相等,相似对应成比例,学生在探究的几个问题上就类比全等的性质去研究,降低了问题的难度,进而突破难点。
4、分层教学,体现比较明显。
分层教学时我校的一个教学特色,学生两极分化严重,既得让尖子生吃得饱,又得让差生吃得好,所以我把班级学生分成6个小组,每个小组由一名组长,组长为1号,其他成员是按数学成绩的高低编号2——7号,本节课的复习几个问题是各组的5,6,7号同学展示,这是以前所学的基础知识,是他们应该掌握的内容,通过展示,基本掌握探究1是各组代表展示,探究2是各组3、4号同学展示,探究3是各组的2号同学展示。习题最后一题是1号同学展示,在研究过程中,组长组织一一汇报自己的想法,小组中评价达成共识。作业设置有必做题、选做题、备选题也是针对不同层次的学生来设置的,也充分体现了新的课程标准人人获得不同的提高。
5、合作学习效果明显。
学生在合作学习中表现非常优秀,讨论气氛浓厚,每个个体都积极主动参与进来,在小组中展示自己想法,个别小组的研究还有一定的深度和广度,通过展示可以发现研讨具有实效性。
6、学生活动比较好。
我觉得在这节课当中,学生参与活动的人数比较多,活动的次数比较多,比如举手回答问题比较积极,本节课安排了3次典型的学生活动,小组活动参与意识比较强烈。
在整个教学过程中,教师主要是发挥了主导作用,适时点拨、引导,把时间交给了学生,大胆放手让学生去做,尽可能调动学生的积极性,让学生主动参与到合作探究中来,使学生在与他人合作交流中获得新知,个性思维得到发展。时时与学生沟通,营造亲切、和谐、活跃的课堂气氛,激发学生积极思维,促进认知发展。
我认为本节课的不足之处:
1、在每个探究结束后,只是口头总结,应该做几张幻灯片,显示在大屏幕上,这样效果会更好。
2、通过课堂实践,我认为学生小组人员过多,不宜全面交流,会影响学习效果。
3、课堂上有几个生成问题。第一个是在证明相似三角形比等于相似比平方时,我随机留了一名同学讲解,讲得很好,第二个是没想到在练习3题中,学生能提出各种解法。第5题上没想到有同学提出了另一种解法,这样就冲击了我后面的小结中预设时间,本来想找几个同学说,我还有个总结,后面时间有点紧。
4、由于紧张原因,在放映幻灯片中有几处错误,如讲完性质时总结,本来应由学生总结,但我一放时都放了出来。
《相似三角形》说课稿范文2
一、教材分析
(一)教材的地位和作用
相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。
(二)教学的目标和要求
1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。
2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。
3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。
(三)教学的重点和难点
1.重点:相似三角形和相似比约概念及判定三角形相似的预备定理。
2.难点:相似三角形约定义和判定三角形相似的预备定理。
二、教法与学法
采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。
三、教学过程的分析
看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。
1.关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再格中位线所在约直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为△ABC,原三角形记为△A'B'C'。因此,如果有:
∠A=∠A',∠B=∠B',∠C=∠C',
那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。
2.关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:
如果两个三角形相似,那么它们的.对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。
3.关于相似比的概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比(或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。
4.在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥ BC,则△ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:
当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。
因此我们可得(预备)定理:
定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课本P224页练习1、2做为课堂练习,之后进行提问与调板,了解学生掌握知识的情况。
最后小结本节课的知识要点及注意点。小结之后布置作业和预习。