正比例教学设计

2024-05-23下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《正比例教学设计》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《正比例教学设计》。

正比例教学设计1

教学目标

1、知识与技能

①理解正比例函数的概念及正比例函数图象特征。

②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

2、过程与方法

①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

3、情感态度与价值观

①结合描点作图培养学生认真细心严谨的学习态度和习惯。

②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

教学重点:

探索正比例函数图形的形状,会画正比例函数图象。

教学难点:

正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合

教学准备:

多媒体课件

教学过程

一、提出问题,创设情境,激发学生的学习兴趣情境

1、(1)你知道候鸟吗?

(2)它们在每年的迁徙中能飞行多远?

(3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。

【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。

二、出示本节课的学习目标

①理解正比例函数的概念及正比例函数图象特征。

②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

教师用课件展示学习目标,学生齐声朗读,记忆。

【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。

三、自学质疑:

自学课本86——87页,并尝试完成下列问题

1、写出下列问题中的函数表达式

(1)圆的周长|随半径r的大小变化而变化

(2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?

(3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化

(4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化

2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。

教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0?

上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出)

做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2

通过上面的例子,师生共同总结正比例函数须满足下面两个条件:

1、比例系数不能为0

2、自变量X的次数是一次的。

表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。

(1)正方形的边长为xcm,周长为ycm;

(2)某人一年内的月平均收入为x元,他这年的总收入为y元;

(3)一个长方体的`长为2cm,宽为,高为xcm,体积为ycm3

【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。

我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动]

1、各小组合作回顾函数图象的画法,画出下列函数的图象

(1)y=2x(2)y=—2x

【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

教师活动:引导学生正确画图、积极探索、总结规律、准确表述。学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。活动过程与结论:

1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112

问:①观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行:

(1)自变量

(2)函数值

(3)升降性

(4)特殊点

(5)过了那几个象限

(6)图象的形状

②总结正比例函数图象的性质

3、两个图象的共同点:都是经过原点的直线。不同点:函数y=2x的图象从左向右呈状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈状态,即随x增大y反而减小

三、巩固练习:

1、判断下列函数哪些是正比例函数

(1)y=2x

(2)y=kx(k≠0)

(3)y=—1/3x(4)y=1/2x+2

(5)y=3x2

(6)y=—3x2

2、教材练习题

比较两个函数图象可以看出:两个图象都是经过原点的直线。函数的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

四、总结归纳正比例函数解析式与图象特征之间的规律:

正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们可称它为直线y=kx。当k>0时,直线y=kx经过一、三象限,从左向右上升,即y随x的增大而增大;当k二、四象限,从左向右下降,即y随x的增大而减小。

五、巩固深化

1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

2、活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象。画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x

六、总结归纳,布置作业

1、在本节课中,我们经历了怎样的过程,有怎样的收获?

2、你还有什么困惑?

作业:P98习题19.2─1、2题。

教学设计说明:

本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。

正比例教学设计2

导学目标

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

导学重点:成正比例的量的特征及其判断方法。

导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

预习学案

填空

1、如果路程时间=(一定),那么()和()成正比例。

2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。

3、如果yx=k(一定),那么()和()成正比例。

导学案

学习例1

在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。

高度24681012

体积5010015050300

底面积

体积和高度有什么变化?观察他们的比值,你发现了什么?

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:

yx=k(一定)

想一想,生活中还有哪些成正比例的量?

小组讨论交流。

看书P40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的'比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

课堂检测

下列各题中的两种相关联的量是否成正比例关系,并说明理由。

1、正方体的棱长和体积

2、汽车每千米的耗油量一定,耗油总量和所行千米数。

3、圆的周长和直径。

4、生产800个零件,已生产个数和剩余个数。

5、全班的人数一定,一、二组的人数和与其他组的人数和。

6、和一定,加数与另一个加数。

7、小苗牌2B铅笔的总价和购买枝数。

8、出油率一定,所榨出的油的重量和大豆的重量。

课后拓展

从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?

板书设计

成正比例的量

高度/cm24681012

体积/cm350100150200250300

底面积/cm2

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例表达式:yx=y(一定)

正比例教学设计3

教学内容:

九年义务教育六年制小学数学第十二册P63——64

教学目标:

1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

教学重点:

能认识正比例关系的图像。

教学难点:

利用正比例关系的图像解决实际问题。

设计理念:

数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的`图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题

教学步骤教师活动学生活动

一、复习激趣1、判断下面两种量能否成正比例,并说明理由。

◎数量一定,总价和单价

◎和一定,一个加数和另一个加数

◎比值一定,比的前项和后项

2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

学生口答

想象猜测

二、探究新知1、出示例1的表格(略)

根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

2、学生尝试画出正比例的图像

3、展示、纠错

每个点都应该表示路程和时间的一组对应数值。

4、回答例2图像下面的问题,重点弄清:

(1)说出每个点表示的含义。

(2)为什么所描的点在一条直线上?

(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

借助直观的图像理解两种量同时扩大或缩小的变化规律。

学生到黑板上示范

互相评价纠错

学生讨论

说说是怎样想的

三、巩固延伸

1、完成练一练

小玲打字的个数和所用的时间成正比例吗?为什么?

根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

估计小玲5分钟打了多少个字?打750个字要多少分钟?

2、练习十三第4题

先看一看、想一想,再组织讨论和交流。

要求学生说出估计的思考过程。

3、练习十三第5题

先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

组织讨论和交流

4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

根据表中的数据,描出所对应的点,再把它们按顺序连起来。

同桌之间相互提出问题并解答。

独立完成,集体评讲

想一想,说一说

画一画,议一议

学生设计,交换检查并相互评价

四、评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

正比例教学设计4

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。教学课时:两课时

第一课时

教学过程:

一、课前预习

1、填好书中所有的表格

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答

二、展示与交流

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

一、反馈与检测

1、在一间布店的柜台上,有一张写着某种花布的米数和总价如下表:

数量(米) 7

总价(元)

9.519

28.5

47.5

66.5

1.表中有和()两种量。

2.任意写出三个相对应的总价和数量的比,并算出它们的比值。 3、在这道题里,花布的()一定,()和()成正比例。 自己读题,并试着填一填.指名汇报.二、回答问题

1、根据下表中平行四连形的面积与高相对应的数据,判断当底是6厘米时,它们是不是成正比例,并说说理由。

平行四边形的面积

218 430

平行四边形的高

默读题目,有答案的举手.2、把表填完整,从中你发现了什么?应付的钱数与所买的邮票的枚数成正比例吗?买面值8角的邮票。打开书21页,在书上完成.3、判断下面各题中的两个量是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长

(4)火车行驶的时间和路程。

(5)火车的速度一定,行驶的时间和路程。

4、能力培养

把一定数量的钱放到银行存活期,存款的年限和所得的利息是不是成正比例?

5、找一找生活成正比例的

板书设计: 正比例 X=ky(k一定)

2.正比例和反比例

第二课时

教学目标:

使学生理解正比例的意义,会正确判断成正比例的量。教学重点难点:

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。教学过程:

一、复习导入 1.复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书: =速度。

②已知总价和数量,怎样求单价?

板书: =单价。

③已知工作总量和工作时间,怎样求工作效率? 板书: =工作效率。

2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

二、新课讲授

1.教学例1

教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的.总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的,即单价一定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2.教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)

小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

三、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4.用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:

(一定)5.教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

四、课堂小结:

通过这节课的学习,你有什么收获?

五、课后作业

完成练习册中本课时的练习。完成教材第46页的“做一做”(1)~(3)。

六、板书设计

第1课时

正比例 =速度(一定)=单价(一定)=工作效率(一定)

(一定)

成正比例的量的三要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。

正比例教学设计5

教学目标

1.使学生理解正比例的意义.

2.能根据正比例的意义判断两种量是不是成正比例.

3.培养学生的抽象概括能力和分析判断能力.

教学重点

使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的'常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2.出示下表,并根据上述内容填表.

正比例教学设计6

教学内容:正比例

教材分析:

正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。

学情分析:

学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。

教学目标:

1.结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学重点:

1、结合丰富的事例,认识正比例,理解正比例的.意义。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(二)情境二:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(三)情境三:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

(四)归纳正比例的意义

1. 时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

2. 购买苹果应付的钱数与质量有什么关系?

3. 正方形的周长与边长有什么关系?

4. 观察思考成正比例的量有什么特征?

一个量变化,另一个量也随着变化,并且这两个量的比值相同。

5. 小结

两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。

二、巩固练习

1. 想一想:

正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁

6

7

8

9

10

11

爸爸的年龄/岁

32

33

(1) 把表填写完整。

(2) 父子的年龄成正比例吗?为什么?

(3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?

板书设计:

正比例

路程÷时间=速度(一定)

总价÷数量=单价(一定)

正方形的周长÷边长=4(一定)

两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。

正比例教学设计7

赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节

课的个人看法:

一、注重数学和生活的联系,课堂灵活开放。

老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的.分散思维。

二、如花微笑,温暖学生。

这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。

三、用问题引领学生,突出学生的主体地位。

“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

正比例教学设计8

教学目标:

1、知识与技能

经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。

2、过程与方法

通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

3、情感态度与价值观

在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。教学重点:正确理解正比例的意义。教学难点:能准确判断成正比例的量。教学准备:多媒体课件,学生练习纸 教学过程:

一、在学生熟悉的儿歌中引入正比例的量: 你听过《数青蛙》这一首儿歌吗?(课件)

师:你会往下唱吗?三只青蛙,四只青蛙,n只青蛙呢?

师:你在唱得时候有什么规律吗?

生:嘴巴数和青蛙只数一样,眼睛数总是青蛙只数的2倍,腿数总是青蛙只数的4倍。

师:你真聪明,会横着观察观察表格。

生:青蛙每增加一只,嘴巴数增加1张,眼睛增加2只,腿数增加4条。

师:很好,你是竖着观察表格的。

师:我已经学过比,所以还可以说,眼睛数/青蛙只数=2;腿数/青蛙只数=4;嘴巴数/青蛙只数=1。

看来,嘴巴数、眼睛数、腿数都随着青蛙只数的变化而变化,像这样有一定关系的量,在数学上,称为相关联的量。

(学生的自主学习需要教师的引导,此处教师看似无意的评价,实际是对学生学习方法的指导,直接影响学生后续的自主学习活动,有了此处的指导,学生接下来就能顺利地自主观察表格发现规律了。)

二、自主建构正比例的量

(一)初步感受成正比例量的变化规律

看来,像这样相关联的量在变化的时候有一定的规律,有兴趣继续研究吗?在我们的生活中,像这样相关联的量还有许多,老师为同学们的研究找了几组材料:(课件)

1、学生独立填表。

2、选择其中的一张表格,通过观察说说你发现了什么规律? 你可以模仿前面找规律的方法。

3、反馈交流

4、小结:这两张表格的变化情况有什么相同点? 一种量增加或(减少),另一种量也相应增加或(减少),它们相对应的两个数的比值一定

(二)在比较中继续感受成正比例量的变化规律

看到同学们学得那么认真,数学老爷爷也要来考考我们,想挑战吗?他给我们带来下面两组信息,并告诉我们只有一张表格的变化情况和前面的变化规律一样,但不知是哪一张,你能找出是哪一张吗?我们先把表格填写完整。

1、出示材料:

下面是边长与周长,边长与面积的变化情况,把表填写完整。

2、四人小组活动:

思考:哪一张表格的变化情况和前面的变化规律一样? 3、比较图像,再次感受正比例

除了用表格的形式表示它们的变化情况,我们还可以用图来表示它们的变化情况,你想看吗? 指导看图,说说你发现了什么?

师:另外两张表格的变化情况我们也画成了图,你想看吗? 思考:这四张图如果让你分类,你会怎么分?为什么这样分? 其中三张图为什么都呈直线状态,朝一个方向生长?(比值一定)其中一张图为什么呈曲线?(比值不一定)

揭题:像这样的两个相关联的量,我们在数学上就说它们成正比例,具体可以这样描述:

(三)尝试归纳正比例的意义

1、出示:

像这样时间增加(或减少),所走的路程也相应增加(或减少),而且相应的路程与时间的比值(也就是速度)相同,那么,我们就说路程和时间成正比例。

2、你觉得这里哪几个词比较重要?

3、你能照这样说说另外几组成正比例的量吗? 不成正比例的用虽然但是来说

三、运用提高

1、小明和爸爸的年龄变化情况如下,把表填写完整。父子的年龄成正比例吗?你怎么想的?

2、在《数青蛙》儿歌中找找成正比例的量。

四、小结提升:

通过今天这节课的学习,你有什么收获?成正比例的量有什么重要特征?

刚才同学们在一首《数青蛙》的儿歌中就找到了这么多的成正比例的量,可以想象在我们的生活中一定存在着更多的成正比例的量,希望同学们在课后能以数学的眼光去观察,发现生活中成正比例的量,下一节课我们一起交流

板书设计:

正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的两个量的比的比值(商)是一定的 路程/时间=速度(一定)总价/数量=单价(一定)

《正比例》教学反思

对比过北师大和人教版两个版本的教材,人教版的教材中介绍了“两个相关联的量”,而北师大版中没有,在最初的教学设计中本没有设计介绍“相关联的量”这一环节,但课前准备中我也为是否设计这一环节而矛盾,但最后还是在我的课堂中呈现了这一概念,课后自己不禁反思,“正比例的意义”本来就是一抽象的概念,我还在课堂上有加入“相关联的量”这一概念,无疑是增加了学生理解的难度。另在设计教案之初,本以为本班学生整体情况较好,在处理“正比例的意义”中的“比值一定”时,只注重了口头上的描述而忽略了让学生动手去算算比值。课后看见学生的作业,自己不尽感叹“失策”,对于抽象的`概念一定要让学生通过实际的生活经验或者是通过自己的实际操作去理解。

还有本节课还有一个最大的问题,就是没有及时抓住学生精彩的生成。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的周长与半径这些特例是否成正比例,我觉得这实际上就是教师如何有效处理动态生成的问题。

教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。

那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。要达到课堂有精彩的生成且能很好的抓住并能利用生成这点还需要我的不断努力。

正比例教学设计9

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的'规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

正比例教学设计10

教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的.基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

教学目标

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

难点:运用比例的知识解决一些简单的实际问题。

课前准备课件。

教学流程设计意图

一、比的知识:

1.举例说说什么是比?什么是比的基本性质?

2.说一说用比的知识可以解决哪些实际问题。

3.完成教科书第83页“练习与实践”。

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

二、比和分数、除法的联系

出示:a∶b=÷()=(b≠0)

1.先填空,再说说这样填的根据是什么?

2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

3.练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

(2)填空:

=()÷()=()∶()

(填好后展示学生不同的结果。)

三、比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教材第83页的“练习与实践”。

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

估计后再算一算,来验证估计。

(2)完成第3题:解比例,做好后选两题验算一下。

四、完成教材第84页“练习与实践”。

(1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(2)完成第5题:

第一小题让学生独立得出:深色与浅色地砖铺地面积的

比是20∶40,化简得1∶2。

第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

(3)完成第6题。

五、评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

对比和比例进行比较,强化理解,进一步优化知识结构。

复习解比例。

应用比例分配知识解决实际问题。

正比例教学设计11

教学目的:

1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。

2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。

教具、学具准备:

教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。

教学过程:

一、复习准备

1、什么是比例?

2、下面是一列火车行驶的时间和所行的路程,用这个表中的.数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。

时间(时)27

路程(千米)180630

二、导入新课

教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。

三、进行新课

用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。

时间(时)

路程(千米)

教师:先独立思考后再讨论、交流、回答以下问题

(1)表中有哪两种量?

(2)这两种量是怎样变化的?

(3)还能够从表中发现哪些规律?

教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。

板书:相关联。

教师:你们还发现哪些规律呢?

引导学生归纳出:

(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;

(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;

(3)路程和时间的比值都是90;时间和路程的比值都是1/90。

路程和时间的比值是什么?(速度)

在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)

数量(米)1234567…

总价(元)8.216.424.632.841.049.257.4…

先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。

学生分析后引导学生归纳:

(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;

(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;

(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。

教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。

教师:请同学们相互说一说生活中还有哪些是成正比例的量?

指导学生完成第56页“做一做”。

四、巩固练习

指导学生完成练习十六第1~3题。

五、课堂小结

教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

学生小结后教师对全课所学的知识进行归纳。

创意作业

小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。

正比例教学设计12

【教学内容】

《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

【教学目标】

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

【教学重点】

正比例的意义。

【教学难点】

正确判断两个量是否成正比例的关系。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学预设】

一、自学反馈

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

二、关键点拨

1、正比例的意义

(1)出示表格。

高度/㎝24681012

体积/㎝35010015050300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25平方厘米。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的.高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

2、判断正比例关系:下面哪些是成正比例的两个量?

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

三、巩固练习

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

正比例教学设计13

教学目标

1、知识与技能

①理解正比例函数的概念及正比例函数图象特征。②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

2、过程与方法

①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

3、情感态度与价值观

①结合描点作图培养学生认真细心严谨的学习态度和习惯。②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

教学重点:

探索正比例函数图形的形状,会画正比例函数图象。教学难点:正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合教学准备:多媒体课件教学过程设计教学过程

一.提出问题,创设情境,激发学生的学习兴趣情境

1、(1)你知道候鸟吗?

(2)它们在每年的迁徙中能飞行多远?

(3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。

二.出示本节课的学习目标

①理解正比例函数的概念及正比例函数图象特征。

②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

教师用课件展示学习目标,学生齐声朗读,记忆。

【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。

三、自学质疑:

自学课本86——87页,并尝试完成下列问题

1、写出下列问题中的函数表达式

(1)圆的周长|随半径r的大小变化而变化

(2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?

(3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化

(4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化

2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。

教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。

一般地,形如y=kx(k是常数,k≠0)的.函数,叫做正比例函数,其中k叫做比例系数.

教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0?

上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出)

做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2

通过上面的例子,师生共同总结正比例函数须满足下面两个条件:

1、比例系数不能为0

2、自变量X的次数是一次的。

表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。(1)正方形的边长为xcm,周长为ycm;(2)某人一年内的月平均收入为x元,他这年的总收入为y元;(3)一个长方体的长为2cm,宽为,高为xcm,体积为ycm3 【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。

我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动]

1、各小组合作回顾函数图象的画法,画出下列函数的图象(1)y=2x(2)y=—2x 【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.

教师活动:引导学生正确画图、积极探索、总结规律、准确表述.学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.活动过程与结论:

1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242.y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112.

问:①、观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行:(1)自变量(2)函数值(3)升降性(4)特殊点(5)过了那几个象限(6)图象的形状②、总结正比例函数图象的性质

3.两个图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈

状态,即随着x的增大y也增大;经过第一、三象限.函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈

状态,即随x增大y反而减小

三、巩固练习:

1、判断下列函数哪些是正比例函数

(1)y=2x

(2)y=kx(k≠0)

(3)y=—1/3x(4)y=1/2x+2

(5)y=3x2

(6)y=—3x2

2、教材练习题

比较两个函数图象可以看出:两个图象都是经过原点的直线.函数的图象从左向右上升,经过

三、一象限,即随x增大y也增大;函数?的图象从左向右下降,经过

二、四象限,即随x增大y反而减小.

四、总结归纳正比例函数解析式与图象特征之间的规律:

正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们可称它为直线y=kx.当k>0时,直线y=kx经过

一、三象限,从左向右上升,即y随x的增大而增大;当k

二、四象限,从左向右下降,即y随x的增大而减小。

五、巩固深化

1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.

活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.

随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x

六、总结归纳,布置作业

1、在本节课中,我们经历了怎样的过程,有怎样的收获?

2、你还有什么困惑?

作业:P98习题19.2─1、2题.

教学设计说明:

本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。

正比例教学设计14

教学资料:

北师大版小学数学六年级下册《正比例》

教学目标:

1、结合丰富的事例,认识正比例。

2、掌握成正比例变化的量的变化规律及其特征。

3、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学重点:

认识正比例的好处和怎样决定两个变化的量是不是成正比例。

教学难点:

决定两个变化的量是不是成正比例。

教具准备:

课件

教学过程:

一、导入新课:

出示:路程、单价、正方形的边长……

根据上面的某个量,你能想到些量?为什么?

在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。

二、新课探究:

(一)、活动一:初步感受正比例关系。

1、课件出示正方形周长与边长、面积与边长的变化状况:

(1)请把表格填写完整。

(2)观察表格,你能发现什么规律?

(群众填表后,独立观察,发现规律,

2、组织学生交流发现的规律,引导学生比较两个规律的异同点。

3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。

所以两个相互依靠的变量之间的关系是不一样的。

(二)、活动二:结合实例体会正比例的好处:

1、课件出示:

(1)将表格填完整。

(2)从表格中你能发现什么规律?

(以小组为单位,选取一个情境进行研究。)

2、交流汇报:

(三)、活动三:揭示正比例的好处。

1、这2规律有什么共同点?

教师随着学生的回答板书:

都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。

2、教师揭示正比例的含义。

像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)

3、结合实例说明:

表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。

学生说一说表二的两个量。

4、用字母表示出正比例关系。

如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?

(四)、活动四:决定两个量是不是成正比例的量。

1、出示活动一中的表格:

正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?

学生自主决定后交流。

2、看来决定两个量是否成正比例务必具备几个条件?

强调:只有具备两个条件,我们才能说这两个量成正比例。

三、课堂练习:

1、根据下表中的数据,决定表中的两个量是不是成正比例:

平行四边形的面积/cm2

6

12

18

24

30

平行四边形的高/cm

1

2

3

4

5

买邮票的枚数/枚

1

2

3

4

5

所付的钱数/元

0.8

1.6

2.4

3.2

4.0

2、小明和爸爸的年龄变化状况如下:

小明的年龄/岁

6

7

8

9

10

11

爸爸的年龄/岁

32

33

(1)把表格填写完整。

(2)父子的年龄成正比例吗?为什么?

3、决定下面各题中的两个量是否成正比例,并说明理由。

(1)每袋大米的质量必须,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长和长。

(4)圆的周长和直径。

(5)圆的面积和半径。

四、课堂总结:

透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。

板书设计:

正比例

一个量随着另一个量的变化而变化

两个量的比值是不变

x=ky(k必须)

教学反思:

1.课堂流程的设计,延展了探究空间。

本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的'数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。

2.数学材料的呈现,丰富了体验途径。

为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。

3.学习方式的选取,促进了深度感悟。

教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。

正比例教学设计15

教学资料:

人教版23页至24页例1以及相应的“做一做”。

教学目标:

1、掌握用正比例的方法解答相关应用题。

2、透过解答应用题使学生熟练地决定两种相关联的量是否成正比例,从而加深对正比例好处的理解

3、培养学生分析问题、解决问题的潜力。

教学重点:

掌握用正比例的方法解答应用题

教学难点:

能正确决定两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、激趣导入

1、在上新课之前,先考考大家对保亭县的认识。你明白保亭县最高的建筑物是什么?它位于何处?

2、对于保亭县最高的.建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量电视塔的大概高度。这天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算电视塔的大概高度。看谁学得最棒。

二、自学互动

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)小组合作学习交流,边汇报边板书

140÷2×5

=70×5

=350(千米)

答:________________。

3、适时点拨

这两种方法都合理,还能够有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)用比例解答应用题与用算术方法解答应用题的解法不同,但计算结果相同,如果题目中没有要求的,我们采取任何一种方法都能够,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析决定

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

四、测评训练

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:“已知公路长400千米,需要行驶多少小时?”该怎样解答?

②让学生解答改编后的应用题,群众订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

改编例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=400/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

五、总结全课

同学们,你们这天学到了什么?有什么收获呢

《正比例》教学设计

康甲敏

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。教学课时:两课时

第一课时

教学过程:

一、课前预习

1、填好书中所有的表格

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答

二、展示与交流

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

一、反馈与检测

1、在一间布店的柜台上,有一张写着某种花布的米数和总价如下表:

数量(米)

456

7„

总价(元)

9.519

28.5

47.5

66.5

1.表中有()和()两种量。

2.任意写出三个相对应的总价和数量的比,并算出它们的比值。

3、在这道题里,花布的()一定,()和()成正比例。

自己读题,并试着填一填.指名汇报.二、回答问题

1、根据下表中平行四连形的面积与高相对应的数据,判断当底是6厘米时,它们是不是成正比例,并说说理由。

平行四边形的面积

218

430

平行四边形的高

默读题目,有答案的举手.2、把表填完整,从中你发现了什么?应付的钱数与所买的邮票的枚数成正比例吗?买面值8角的邮票。打开书21页,在书上完成.3、判断下面各题中的两个量是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长

(4)火车行驶的时间和路程。

(5)火车的速度一定,行驶的时间和路程。

4、能力培养

把一定数量的钱放到银行存活期,存款的年限和所得的利息是不是成正比例?

5、找一找生活成正比例的 板书设计: 正比例

X=ky(k一定)2.正比例和反比例

第二课时

教学目标:

使学生理解正比例的意义,会正确判断成正比例的量。教学重点难点:

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。教学过程:

一、复习导入 1.复习引入。

用投影仪逐一出示下面的题目,让学生回答。①已知路程和时间,怎样求速度? 板书: =速度。

②已知总价和数量,怎样求单价? 板书: =单价。

③已知工作总量和工作时间,怎样求工作效率? 板书: =工作效率。

2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

二、新课讲授 1.教学例1。

教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的,即单价一定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2.教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)

小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

三、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。要求学生把握三个要素: 第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4.用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:

(一定)5.教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

四、课堂小结:

通过这节课的学习,你有什么收获?

五、课后作业

完成练习册中本课时的练习。完成教材第46页的“做一做”(1)~(3)。

六、板书设计

第1课时

正比例 =速度(一定)=单价(一定)=工作效率(一定)

(一定)

成正比例的量的三要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。

下载正比例教学设计word格式文档
下载正比例教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《正比例》教学设计

    教材分析: 正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成......

    正比例教学设计

    《正比例》教学设计 教学要求: 1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。 2.进一步培养......

    正比例教学设计

    教学要求: 1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。 2.进一步培养学生观察、分析、综......

    《正比例》教学设计

    《正比例》教学设计 教学目标: 1、知识与技能:经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。2、过程与方法:......

    正比例教学设计

    正 比 例 【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册45页~46页 【教学目标】 1.通过观察、比较、判断、归纳等方法,帮助学生理解正比例的意义。 2.培养学生......

    正比例教学设计

    正比例教学设计 正比例教学设计1 尊敬的各位评委:你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍......

    正比例教学设计

    正比例教学设计 正比例教学设计1 教学目标:1 使学生理解什么是相关联的量。2 掌握正比例的意义及字母表达式。3 学会判断两个量是否成正比例关系。教学过程:一、导入师(板书:关......

    认识正比例教学设计

    认识正比例 教学内容:冀教版《数学》六年级下册第7~9页。 教学目标:1.结合具体实例,经历认识成正比例的量的过程。 2.知道正比例的意义,能判断两种量是否成正比例关系,能找出生活......