课题:1.6.1整式的乘除--完全平方公式(导学案)
姓名
内容
P23-P24
课时
导
学
目
标
1.经历探索完全平方公式的过程,进一步发展推理能力.(重点)
2.会推导完全平方公式,并能运用公式进行简单的计算.(难点)
3.了解(a+b)2=a2+2ab+b2的几何背景,发展几何直观观念.导学重点:
理解完全平方公式的结构特征,准确运用完全平方公式进行运算。
导学难点:
理解完全平方公式及其探索过程。
导
学
过
程
课前回顾
由下面的两个图形你能得到那个公式?
公式:
公式结构特点:
(1)左边:两数、两数的乘积
(2)右边:两项(平方减
平方)
探究新知
1、观察下列算式,他们能用平方差公式计算?如果不能,如何计算?
(m+3)2
(2+3x)2
解:原式=
解:原式=
2、观察发现结果有几项?每一项是怎么得到的?能猜想下面的算式等于多少吗?
(a+b)2=
导
学
过
程
探究新知
3、如何验证等式:(a+b)2=a2+2ab+b2
新知
1、完全平方公式:(a+b)2=a2+2ab+b2
口诀:完全平方得三项,首平方、尾平方、乘积2倍放中央。
例题讲解
1.利用完全平方公式计算:
(1)(4x+5y)2
(2)(2x+y)2
解:原式=
解:原式=
议一议
(a-b)2=?
你是怎样计算的?
导
学
过
程
新知
1、完全平方公式:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
口诀:完全平方得三项,首平方、尾平方、乘积2倍放中央,。
例题讲解
例2.利用完全平方公式计算:
(1)(2x-3)2
(2)
(mn-a)2
解:原式=
解:原式=
当堂练习
1.下面各式的计算是否正确?如果不正确,应当怎样改正?
(1)(x+y)2=x2+y2
()
(2)
(2x+y)2
=4x2
+4xy+y2()
(3)(-x
+y)2
=x2+2xy+y2()
(4)(x-y)2
=x2-y2
()
2.运用完全平方公式计算:
(1)
(6a+5b)2;
(2)
(4x-3y)2;
解:原式=
解:原式=
(3)(2m-1)2;
(4).解:原式=
解:原式=
导
学
过
程
课堂小结
拓展
拓展
如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.
作业
新课标:
1.6.1
完全平方公式
学习心得