高考卷 06 普通高等学校招生全国统一考试(上海卷.文科数学)含详解

2020-11-12 20:21:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高考卷 06 普通高等学校招生全国统一考试(上海卷.文科数学)含详解》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考卷 06 普通高等学校招生全国统一考试(上海卷.文科数学)含详解》。

2006年普通高等学校招生全国统一考试

上海卷

数学(文史类)

一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空填对得4分,否则一律得零分。

1、已知,集合,若,则实数。

2、已知两条直线若,则____.3、若函数的反函数的图像过点,则。

4、计算:。

5、若复数满足(为虚数单位),其中则。

6、函数的最小正周期是_________。

7、已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是____________________.8、方程的解是_______.9、已知实数满足,则的最大值是_________.10、在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是______(结果用分数表示)。

11、若曲线与直线没有公共点,则的取值范围是_________.12、如图,平面中两条直线和相交于点,对于平面上任意一点,若分别是到直线和的距离,则称有序非负实数对是点的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是____________.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。

13、如图,在平行四边形中,下列结论中错误的是

()

(A)

(B)

(C)

(D)

14、如果,那么,下列不等式中正确的是()

(A)

(B)

(C)

(D)

15、若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的()

(A)充分非必要条件

(B)必要非充分条件

(C)充分必要条件

(D)既非充分又非必要条件

16、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是

(A)48

(B)

(C)

(D)36

三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤。

17、(本题满分12分)

已知是第一象限的角,且,求的值。

18、(本题满分12分)如图,当甲船位于A处时获悉,在其正东方方向相距20海里的处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援(角度精确到)?

19、(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。

在直三棱柱中,.(1)求异面直线与所成的角的大小;

(2)若与平面S所成角为,求三棱锥的体积。

20、(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。设数列的前项和为,且对任意正整数。

(1)求数列的通项公式

(2)设数列的前项和为,对数列,从第几项起?

21、本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段中点的轨迹方程;

(3)过原点的直线交椭圆于点,求面积的最大值。

22(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分。

已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数在上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由。

上海数学(文史类)参考答案

一、(第1题至笫12题)

1.4

2.2

3.4.5.3

6.π

7.8.5

9.0

10.11.-1

12.4

二、(第13题至笫16题)

13.C

14.A

15.A

16.D1、已知,集合,若,则实数。

2、已知两条直线若,则2.3、若函数=(>0,且≠1)的反函数的图象过点(2,-1),则原函数的图象过点(-1,2),∴,=.

4、计算:。

5、若复数满足(为虚数单位)为纯虚数,其中,则m=2,z=3i。

6、函数=sin2x,它的最小正周期是π。

7、已知双曲线中心在原点,一个顶点的坐标为,则焦点在x轴上,且a=3,焦距与虚轴长之比为,即,解得,则双曲线的标准方程是.8、方程的解满足,解得x=5.9、已知实数满足,在坐标系中画出可行域,得三个交点为A(3,0)、B(5,0)、C(1,2),则的最大值是0.10、在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是.11、曲线得|y|>1,∴

y>1或y<-1,曲线与直线没有公共点,则的取值范围是[-1,1].12、如图,平面中两条直线和相交于点,对于平面上任意一点,若分别是到直线和的距离,则称有序非负实数对是点的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,所以满足条件的点的个数是4个.二、选择题:

13.C

14.A

15.A

16.D

A

B

C

D

13.如图,在平行四边形ABCD中,根据向量的减法法则知,所以下列结论中错误的是C.

14、如果,那么,∴,选A.15、若空间中有两条直线,若“这两条直线为异面直线”,则“这两条直线没有公共点”;若

“这两条直线没有公共点”,则

“这两条直线可能平行,可能为异面直线”;∴

“这两条直线为异面直线”是“这两条直线没有公共点”的充分非必要条件,选A.16、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”,分情况讨论:①

对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;②

对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个;所以正方体中“正交线面对”共有36个.选D.三、(第17题至笫22题)

17.解:=

由已知可得sin,∴原式=.18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.于是,BC=10.∵,∴sin∠ACB=,∵∠ACB<90°

∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.19.解:(1)

∵BC∥B1C1,∴∠ACB为异面直线B1C1与AC所成角(或它的补角)

∵∠ABC=90°,AB=BC=1,∴∠ACB=45°,∴异面直线B1C1与AC所成角为45°.(2)

∵AA1⊥平面ABC,∠ACA1是A1C与平面ABC所成的角,∠ACA

=45°.∵∠ABC=90°,AB=BC=1,AC=,∴AA1=.∴三棱锥A1-ABC的体积V=S△ABC×AA1=.20.解(1)

∵an+

Sn=4096,∴a1+

S1=4096,a1

=2048.当n≥2时,an=

Sn-Sn-1=(4096-an)-(4096-an-1)=

an-1-an

∴=

an=2048()n-1.(2)

∵log2an=log2[2048()n-1]=12-n,∴Tn=(-n2+23n).由Tn<-509,解待n>,而n是正整数,于是,n≥46.∴从第46项起Tn<-509.21.解(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1.又椭圆的焦点在x轴上,∴椭圆的标准方程为

(2)设线段PA的中点为M(x,y),点P的坐标是(x0,y0),由

x=

x0=2x-1

y=

y0=2y-

由,点P在椭圆上,得,∴线段PA中点M的轨迹方程是.(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.当直线BC不垂直于x轴时,说该直线方程为y=kx,代入,解得B(,),C(-,-),则,又点A到直线BC的距离d=,∴△ABC的面积S△ABC=

于是S△ABC=

由≥-1,得S△ABC≤,其中,当k=-时,等号成立.∴S△ABC的最大值是.22.解(1)

由已知得=4,∴b=4.(2)

∵c∈[1,4],∴∈[1,2],于是,当x=时,函数f(x)=x+取得最小值2.f(1)-f(2)=,当1≤c≤2时,函数f(x)的最大值是f(2)=2+;

当2≤c≤4时,函数f(x)的最大值是f(1)=1+c.(3)设0g(x1),函数g(x)在[,+∞)上是增函数;

当0g(x1),函数g(x)在(0,]上是减函数.当n是奇数时,g(x)是奇函数,函数g(x)

在(-∞,-]上是增函数,在[-,0)上是减函数.当n是偶数时,g(x)是偶函数,函数g(x)在(-∞,-)上是减函数,在[-,0]上是增函数.

下载高考卷 06 普通高等学校招生全国统一考试(上海卷.文科数学)含详解word格式文档
下载高考卷 06 普通高等学校招生全国统一考试(上海卷.文科数学)含详解.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐