采矿工程复习题

时间:2019-05-13 22:16:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《采矿工程复习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《采矿工程复习题》。

第一篇:采矿工程复习题

采矿工程复习题 一 填空 1.矿井井巷按其作用和服务范围不同

可分为三类,分别是开拓巷道,准备巷道,回采巷道

2.放顶煤开采中工作面内煤炭损失主

要在有初采损失,末采损失,端头12.13.14.任务的水平

水平垂高:是开采水平服务范围上下边界之间的垂直距离

井底车场:是连接井筒和井下主要运输巷道的一组巷道和硐室的总称 采煤工艺:采煤工作面各种工序所用方法、设备极其在时间空间上的或水文情况比较复杂、井筒需用特殊法施损失

3、减少放煤工艺损失

4、改善工,或多水平开采急斜煤层的矿井,一般巷道布置减少区段煤柱损失 都应采用立井开拓。

五、绘图说明题(20分)2.简述采区内采煤工作面各种开采顺序的结合图1说明巷道掘进顺序和生产系特点 统。

答:1,工作面后退式:回采巷道先 开掘出来,工作面由采区边界附近图为:倾斜分层走向长壁下行垮落采煤法分层同采采区损失,采煤工艺损失

3.盘区式准备方式的有上山盘区 下

山盘区 石门盘区 单翼盘区 跨多石门盘区

4.综采工作面端部斜切进刀有两种

方式分别是不留三角煤端部斜切进刀和留三角煤端部斜切进刀

5.柱式体系采煤法包括房式采煤法,房柱式采煤法和巷柱式采煤

6.我国按实际应用情况,准备方式可

归纳为采区式,盘区式及带区式三种

7.井巷式煤仓分类的是垂直式,倾斜

式,混合式

8.矿井生产的主要系统是运煤系统

通风系统 运料排矸系统 排水系统

9.综采工作面的主要设备有双滚筒

采煤机,可弯曲刮板输送机,液压支架

10.采区下部车场形式按装车站位置不

同有大巷装车式,石门装车式,绕道装车式

11.回采巷道的护巷方式有沿空留巷和

沿空掘巷

12.采区上部车场的基本形式有平车

场和甩车场

13.影响顶煤冒放性的主要因素的是

煤层赋存条件,煤层厚度,工作面长度

14.长壁采煤工艺包括破煤,装煤,运

煤,支护,采空区处理工序过程

15.三下一上是:建筑物下 铁路下 水

体下 和承压水上

16.工作面超前支护不小于:20m采煤

工作面最大风速为4m|s

17.井田开拓的发展方向:开采水平内

准备方式的多样化;采(盘、带)区的大型化;开采水平内生产的高产高效集中化;水平内开采布置的单层化和全煤巷化等。

18.三带:跨落带、裂隙带和缓慢下沉

带。煤层底板的下三带为:破坏带、完整岩层带(或保护带)、地下水导升带。

19.煤层按厚度分为:薄厚煤层、中厚

煤层、厚煤层。按倾角分为:近水平煤层、缓倾斜煤层、中倾斜煤层、急倾斜煤层。按稳定性分为:稳定煤层、中等稳定煤层、不稳定煤层。

20.采区的主要参数有:采区倾斜长度,采区走向长度,采区生产能力,采区采出率及采区煤柱尺寸。

二 名词解释 1.阶段 在井田范围内,沿着煤层的倾斜方向,按一定标高把煤层划分为若干个平行于走向的具有独立生产系统的长条,每个长条成为一个阶段

2.水平通常将设有井底车场,阶段运

输大巷并且担负全阶段运输任务的水平称为开采水平

3.井田 划分给一个矿井或露天开采的那一部分煤

4.在地质历史发展过程中,由含碳物

质沉积形成的大面积含煤地带称为煤田

5.在井田范围内,经过地质勘探,煤

层厚度和质量均合乎开采要求,地质构造比较清楚,目前可供利用的可列入平衡表内的储量称为矿井工业储量

6.正规循环:在规定的时间内保质保

量地完成了循环作业图中规定任务的循环

7.采煤方法:采煤工艺与回采巷道布

置及其在时间上、空间上的相互配合。

8.采区车场:采区上(下)山与区段

平巷或阶段大巷连接处的一组巷道及硐室。

9.上山:位于开采水平以上,为本水

平或采区服务的倾斜巷道

10.下山:位于开采水平以下,为本水平

或采区服务的倾斜巷道

11.采放比:通常将布置有井底车场和

阶段运输大巷并且担负全阶段运输

相互配合。

15.采区:在阶段范围内,沿走向把阶段划分为若干具有独立生产系统的块段,每一块段称为采区。

16.回采巷道:仅为采煤工作面生产服务的巷道,如区段运输平巷、区段回风平巷、开切眼(形成初始采场的巷道)

17.矿井生产能力:指矿井的设计生产能力,以“Mt/a”(或万t/a,1Mt/a=100万t/a)表示。根据矿井生产能力不同,我国把矿井划分为大、中、小三种类型的井型。mm

18.DK615-4-12:单开道岔,600

轨距,轨型为15,辙叉号码为4,道岔曲线半径为12m三.简答

1.简述井筒(硐)形式的比较和选择? 答:平硐开拓

优点:井下出煤不需提升转载即可由平硐直接外运,因而运输环节和运输设备少、系统简单、费用低;

平硐的地面工业建筑较简单,不需结构复杂的井架和绞车房;

不需设井底车场,更无需在平硐内设水泵房、水仓等硐室,减少许多井巷工程量;

平硐施工条件较好,掘进速度较快,可加快矿井建设;

平硐无需排水设备,对预防井下水灾也较有利。

适用范围:在地形条件合适、煤层赋存较高的山岭、丘陵或沟谷地区,只要上山部分煤的储量大致能满足同类井型的水平服务年限的要求时,都应采用平硐开拓。

斜井:优点:斜井与立井相比,井筒掘进技术和施工设备比较简单,掘进速度快,地面工业建筑、井筒装备、井底车场及硐室都比立井简单,一般无需大型提升设备,同类井型的斜井提升绞车也较立井需用的绞车型号小,因而初期投资较少,建井其较短;

在多水平开采时,斜井的石门总长度较用立井开拓时为短,因而掘进石门的工程量和沿石门的运输工作量较少;

延深斜井井筒的施工比较方便,对生产的干扰少;

我国研制和使用新型强力胶带输送机,增加了斜井开拓的优越性,扩大了其应用范围。

缺点(与立井相比):在自然条件相同时,斜井要比立井长得多;

围岩不稳固时,斜井井筒维护费用高;采用绞车提升时,提升速度较低、能力较小、钢丝绳磨损严重、动力消耗大、提升费用较高,当井田斜长较大时,采用多段绞车提升,转载环节多、系统复杂,更要多占用设备的人力;

由于斜井较长,沿井向敷设管路、电缆所需的管线长度较大,有条件时可采用钻孔下管路排水供电,但要为此留保安煤柱,增加煤柱损失;

对生产能力特大的斜井,辅助提升的工作量很大,甚至需增开副斜井;

斜井的通风风路较长,对瓦斯涌出量大的大型矿井,斜井井筒断面小,通风阻力过大,可能满足不了通风的要求,不得不另开专用进风或回风的立井并兼做辅助提升;当表土为富含水的冲积层或流沙层时,斜井井筒掘进技术复杂,有时难以通过。

适用范围:当井田内煤层埋藏不深、表土层不厚、水文地质情况简单、井筒不需特殊法施工的缓斜和倾斜煤层,一般可采用斜井开拓。

立井:优点:井筒短、提升速度快、提升能力大,对辅助提升特别有利;

对井型特大的矿井,可采用大断面的立井井筒,装备两套提升设备;

井筒的断面很大,可满足大风量的要求;

由于井筒短,通风阻力较小,对深井更为有利。

适用范围:当井田的地形地质条件不利于采用平硐或斜井时,都可考虑采用立井开拓。对于煤层赋存较深、表土层厚,向采区上山方向推进采煤,准备时间长,采掘无干扰,漏风少,巷道容易维护,我国广泛使用2,工作面前进式:工作面由采区上山附近向采区边界方向回采,区段平巷沿空留巷,减少了平巷掘进的工程量并提高了采出率,但得采取有效地支护手段及放漏风措施3,工作面往复式:上采面前进式,实质是前两种回采方式的结合,兼有上述两种方式的优缺点,特点:上区段采煤结束时采煤工作面设备可直接搬迁到其下面的工作面,缩短了设备的搬运距离,节省搬运时间,得到加强设备的维护 3.简答综采放顶煤技术的主要优缺点及适用条件 答:优点;有利于合理集中生产,对煤层及地质条件具有较强的适应性3,具有显著的经济效应。缺点1,采出率较低,工作面粉尘大,自然发火,瓦斯积聚隐患大。适用条件(1)、煤层厚度。M = 5  12m为佳,过小易超前冒顶,过大破坏不充分。(2)、煤层的可放性(即煤层硬度)煤质松软,层理节理发育容易放出;煤质中硬,f  2最好;个别f = 3.1  3.9,层理节理发育亦可。(3)、煤层倾角不宜太大,缓倾斜煤层中一般<15 o,太大影响支架的稳定性,25 o  30o

煤层中也试验成功,支架要加防倒防滑装备。(4)、煤层结构过厚、过硬的夹矸影响顶煤放落,单层夹矸厚度大于0.5m或f大于 3要采取措施。顶煤中的夹矸总厚度不宜大于顶煤厚度的10 15%(5)、顶板条件顶板岩性最理想的条件是基本顶I、II级,直接顶有一定厚度,采空区不悬顶,冒落后松散体基本能充满采空区。(6)、地质构造煤层厚度变化大,地质构造复杂,断层切割块段,阶段煤柱等,无法应用分层长壁采煤法时,可放顶煤。采面短,亦可放顶煤。如:回采鸡窝煤。(7)、自然发火、瓦斯及水文地质条件。对于自然发火期较短、瓦斯量大,以及水文地质条件复杂的煤层,先要调查清楚,并有相应的措施后才能采用放顶煤开采。4.简述倾斜长臂采煤法的优点,问题和适用条件 答:倾斜长壁采煤法的优点:1,巷道布置简单,巷道掘进工程量及维护费用低,投产快2运输系统简单,占用设备少,运输费低3,回采巷道沿煤层掘进,易固定方向,采面可等长布置,利于生产管理4,通风线路短,风流方向转折少,通风构筑物少5,对淋水和瓦斯大的某些地质条件适应性强6,技术经济效益显著,单产,巷道掘进率,采出率和工效指标好倾斜长臂采煤法的问题:1,长距离倾斜巷道铺运和行人困难2,当前采掘机械设备不完全适应倾斜长壁工作面开采的要求3,大巷装车点较多倾斜长壁采煤法的适用条件:1,煤层倾角小于12时,效果最好2,采取一定技术措施,可适用于12~17的煤层 5.道岔:使车辆由一线路转运到另一线路的装置单开道岔 — DK 对称道岔 — DC 渡线道岔 — DX

DX918 — 5 — 2016第一段数:

6、9-分别表600mm、900mm轨距;15、18、24 — 分别表示轨型;第二段数字(4、3、5)为辙叉号码;后四位数 — 前两位数:表示曲线

半径,后两位数:表示轨中心距

6.工作面正规循环作业图表

采煤机进刀方式:割三角煤斜切进刀。组织形式:四六制。液压支架支护方式:滞后支护。割煤-移架-推溜。——|||——(推移输送机)—<—<——(割煤)—︵︵—(检修)—□—(移架)

经济定购批量=根号下2x每次定购的采购费x物资年需量/单位物资的年管费用

7.提高采出率的措施?

答:1.减少初采损失

2、减少端头

巷道布置图 巷道掘进顺序: 在采区沿走向的中部位置,由运输大巷1开掘采区下部车场3,并由此在底板岩层中掘进轨道上山5和运输上山4。两条上山掘至采区上部边界后,轨道上山5以采区上部车场6与回风大巷2相通,而运输上山则直接与回风大巷2连通,形成通风回路。然后,在第一区段下部掘进中部车场的甩车场

7、区段回风石门8,并由此向采区边界掘进区段集中平巷9(沿下区段顶分层回风平巷位置开掘)和10。在巷道10和巷道9中分别每隔一定距离掘溜煤眼12和联络巷11。当巷道10和巷道9掘至采区边界附近时,由近边界的一个溜煤眼和联

络巷进入煤上分层,并开始掘上分层第一区段的超前分层运输平巷14和开切眼。与此同时,在第一区段上部,利用阶段回风大巷2兼做区段回风集中平巷,并由此每隔一定间距掘回风小石门13与分层回风平巷相连通。同样,从靠近采区边界的回风小石门掘上分层的超前回风平巷15与开切眼相连通。这样第一区段上分层的采煤工作面就准备完毕。在掘进上述巷道的过程中,要将下部的采区煤仓

19、采区变电所

16、绞车房

17、区段溜煤眼18等硐室及有关的联络巷道掘

完,并完善各车场。

生产系统:

(一)运煤系统 运煤路线:分层工作面→分层区段超前运输平巷14(或20)→溜煤眼12→区段运输集中平巷10→区段溜煤眼18→运输上山4→采区煤仓19→大巷装车外运。

(二)材料运输系统 采煤工作面所需的材料运输路线为:材料和设备自采区下部车场3→轨道上山5→上部车场6→回风大巷2→回风小石门13→区段超前回风平巷15(或21)送至分层工作面。区段分层超前运输平巷14和20掘进时所需的材料,自轨道上山5→中部车场7→轨道集中平巷道9→联络斜巷11运至掘进工作面。区段运输集中平巷10所需的材料,由轨道上山5经中部甩车场7运入。

(三)排矸系统及掘进出煤系统 分层超前运输平巷14及20在掘进时所出的煤,经溜煤眼12和运输集中平巷10与工作面回采出煤一道运出。分层回风平巷15和21超前掘进时所出的煤在装入矿车后,经上部车场

6、轨道上山5至下部车场3运出。

(四)通风系统 新鲜风流:运输大巷1→下部车场3→轨道上山5→中部车场7→运输集中平巷10和轨道集中平巷9→联络斜巷11(有两个溜眼12与分层运输平巷14相通,其中一个溜煤眼可进风)→分层运输平巷14(或20)→采煤工作面。污风:采煤工作面→分层回风平巷15(或21)→回风小石门13→至回风大巷2排入大气。

上山盘区集中上山联合准备 巷道掘进顺序:

自岩石运输大巷1开掘盘区材料斜巷3和甩车道16,进入m

1后,掘进盘区无极绳运输的轨道上山4,同时从运输大巷1开掘进风斜巷7和盘区煤仓9,通达m

2。

沿

m2掘进盘区运输上山5,并开掘回风斜巷8到m1。自轨道上山4分别开掘m1一二区段的进风巷10和运输巷11。自运输上山5开掘m2区段进风巷12,并从12向上掘区段材料斜巷14与m1区段

进风巷10连通,开掘区段溜煤眼15通达运输上山。区段平巷掘至盘区边界后掘进工作面开切眼。

第二篇:采矿工程

采矿工程——矿长:采矿人的“最高境界”

周剑波谈起采矿工程专业,大多数人都有一种“神秘”的感觉:采矿就是下矿井挖矿石吧,一定会干很多苦活累活吧!的确,所谓采矿,是指将有用矿物从地壳内或地表开采出来,并运送到选矿厂或其它使用地点的一种生产过程和作业。简单来讲,就是“挖矿”。但是,这仅仅是“采矿”二字的含义,加上“工程”,就不能单纯地理解为到矿山“挖矿”了。采矿工程是一种规模最大、最复杂的岩土工程,是应用工程学知识和科学方法,来圈定、设计、开拓和回采含有用矿物的矿床。而我们采矿工程专业的学生,正是要学习这种矿床开采的理论和方法。

采矿工程专业分为煤、金属及非金属方向,培养的是能掌握固体矿床开采的基本知识、基本理论和基本技术,具备采矿工程师的基本能力,能从事矿区开发规划、矿床开采(露天、地下)设计、矿山安全技术、工程监察、生产技术管理以及科学研究与技术创新的高级应用型工程技术人才。我们老师曾自豪地说过:矿业公司的总工程师无一例外都是采矿工程专业出身,采矿人的“最高境界”是矿长。

要成为总工程师或矿长,必须具备全面的知识与素养。而采矿工程专业开设的课程所涉及的学科领域是非常广泛的,包括各种公共基础课程,如高等数学、综合外语、大学物理、计算机基础、经济管理等,还有矿床开采的基本理论与专业知识以及岩土开挖的基本知识。其中,主干学科是力学与矿业工程,主干课程包括工程制图、工程力学、VB程序设计、地质学、测量学、岩石力学、爆破工程、采掘机械、井巷工程、矿床地下开采、矿床露天开采、矿井通风与安全。当然,课程的设置会因学校和专业方向的不同而有所差异。

在目前的采矿工程专业培养中,课程虽然涉及面广,但是真正“专业”的课程却相对不足,采矿方法的创新比较困难。老师曾说,我们现在用的教材跟上世纪七八十年代的教材的内容是大同小异的,采矿方法在本质上是基本相同的,近年来才发展创造了一些爆破技术和数字化矿山技术。与国外先进矿山相比,我国的采矿技术与装备、安全规范等都相对落后。因此,这也给我们新时代的采矿学子提供了广阔的推陈出新的契机。

采矿工程专业的实践性非常强,这也弥补了专业课相对不足的缺陷。主要的实验和实习有:工程训练、物理实验、电工电子技术实验、岩石力学实验、爆破实验、测量学实习、采矿专业认识与地质实习、生产实习、毕业实习。通过这些实践,学生能将理论与实际结合起来,既增加了趣味性,又掌握了知识、开拓了视野。这也是采矿工程专业的优势之处。选择这个专业必须要有足够的心理准备!因为矿山不可能建在城市里面或郊外,它只能在偏僻的地方。条件好点的矿山可能有自己的职工宿舍、娱乐设施,福利待遇也不错,还可以安置家属;那些处在深山老林、穷乡僻壤的矿山就算有很好的福利待遇,也抵不过艰苦的环境。所以,选择这个专业必须要有吃苦耐劳、奉献的精神,这不是嘴上说说能吃苦耐劳就可以的!我国矿山的安全隐患一直是个严重的问题,尤其是煤矿,随着技术的不断发展与法律法规的不断完善,矿山的安全系数越来越高了,安全事故逐年减少,矿山的安全隐患并不是人们想象中的那样可怕。我们去矿山工作同样必须掌握好技术,并时刻保持安全意识。此外,很多开设采矿工程专业的院校是不招收女生的,就算招也不过几个女生,这是由人的身体条件决定的,这并不是对女性的歧视,相反是出于尊重和保护。而男生到矿山工作,也可

能因为缺少女性而面临着无法结婚生子的问题。因此,选择专业必须慎重考虑,结合自己的家庭因素与个人的兴趣爱好,真正喜爱这个专业,全心全意地从事这个行业,才可能有所作为。

2011年6月,麦可思研究院发布的就业蓝皮书《2012年中国大学生就业报告》中指出,采矿工程专业是2012年全国本科就业十大“绿牌”发展专业之一。“绿牌”专业是指:月收入、就业率持续走高,失业量较低且就业满意度较高的专业,为需求增长型专业。可见,在我国经济增长面临较大压力、部分矿产品价格下降的背景下,采矿工程毕业生仍然保持着较高的就业率,采矿工程专业人才仍是社会发展急需的人才。但是,高就业率不可能一成不变,四年过后国家政策、经济形势可能发生转变,就业形势也会随之改变。

除了直接面向矿山就业外,毕业后可以进入政府管理部门从事能源开发与规划工作,进入安监局从事矿山安全监管工作,也可进入矿山设计研究院从事矿山开采设计工作。但能够得到这种“铁饭碗”工作的本科生在极少数,一般情况下最低门槛是硕士研究生。如今,越来越多的同学选择继续深造,考研[微博]甚至考博,因为研究生毕业能进入全国各大冶金设计院和省级设计院。

另外,对于学习采矿工程专业的学子来说,也可以跨专业领域就业。这就得益于较广的课程学习。比如你对爆破感兴趣,将来可以进入爆破领域;采掘机械学得好,你可以从事机械制造行业;计算机技术过硬,你可以进入矿山软件公司;你也可以到与采矿工程专业毫不相关的行业工作。总之,只要你有能力、够努力,相信“条条道路通罗马”,你一定会找到属于你自己的路!

拥有本专业国家特色专业院校名单:中国矿业大学、东北大学、重庆大学[微博]、贵州大学[微博]、西安科技大学、河北工程大学、内蒙古科技大学、华北科技学院、江西理工大学、河南理工大学等。

第三篇:采矿工程毕业论文

继续教育学院毕业设计(论文)

设计(论文)

目:

综采工作面大采高采煤方法的应用

姓名:姜 烘 亮

学 号:C93550109090037

专业:采矿工程

学习中心:潞安奥鹏

住址:山西省长治潞安集团王庄矿

电话:***

Email: jianghongliang0909@open.com.cn

日期:2011年9月16日

指导教师:姜元勇 继续教育学院毕业设计(论文)

摘 要

煤炭我国重要的基础能源和重要原料,煤炭工业的发展支撑了国民经济的快速发展。在20世纪50年代和60年代,煤炭在我国一次能源生产和消费结构中的比重分别占90%和80%以上,2004年煤炭所占的比例分别为75.6%和67.7%。

近年来,随着综采设备制造技术的飞速发展,综采设备走向重型化、强力化和自动化,使设备的可靠性得到保证,有力的推动了大采高综采技术的发展,带来了新一轮采煤技术的革命,目前在神东、晋城等矿区已率先在f=1.5-5的厚煤层中使用大采高综采设备,实现了国内工效最高,吨煤成本最低的成果,极大地提高了煤炭市场的竞争能力。

本文主要观点有:在煤炭企业生产中地质条件和煤炭赋存条件允许的情况下应该优先考虑使用大采高采煤方法。

关键词:大采高;综采技术; 继续教育学院毕业设计(论文)

目 录

摘要.................................................2 1.绪论...............................................5 1.1 研究的目的和意义...............................5 1.1.1研究目的...................................5 1.2.2研究意义...................................5 1.2 本文的框架结构.................................6 2煤炭工业发展现状及面临的主要挑战.........................7 2.1煤炭工业发展现状 ……...............................7 2.1.1改革开放以来煤炭工业取得显著成绩...............7 2.1.2行业主要特点..................................8 2.2、煤炭工业面临的主要挑战............................8 2.2.1资源保障问题...................................8 2.2.2煤矿生产能力与技术结构问题....................9 2.2.3行业结构与企业发展问题........................10 2.2.4煤矿安全与矿区环境治理问题...................11 2.2.5煤炭运输与燃煤污染问题.......................12 3.大采高技术发展现状…….................................13 3.1我国大采高技术的应用……..........................13 继续教育学院毕业设计(论文)

3.2高效综采的快速发展……............................14 4.综采工作面大采高采煤方法在潞安王庄矿的应用…….........16 4.1 王庄煤矿概况.....................................16 4.2 工作面巷道布臵及生产系统.........................18 4.2.1工作面位臵选择分析............................18 4.2.2工作面巷道布臵................................19 4.2.3 生产系统....................................22 4.3工作面设备选择....................................23 4.3.1 工作面设备选择..............................28 4.4 采煤方法及回采工艺...............................29 4.4.1采煤方法......................................30 4.4.2回采工艺......................................30 4.4.3工艺说明......................................30 4.5大采高自动化综放工作面取得的成就……...............31 4.5.1、工作面单产、工效再创新高…..................31 4.5.2、提高了采高,优化了采放比,提高了资源回收率…31 5.研究结论及建议.........................................33 参考文献……………………………………………………………………………………...34 继续教育学院毕业设计(论文)

1.绪 论

1.1 研究的目的和意义 1.1.1研究目的

为了研究大采高综采技术的可行性与必要性,详细地分析王庄矿的煤层赋存和现有生产技术状况,并对神东上湾、晋城寺河及赵庄等矿进行了现场考察,收集了各矿使用大采高综采设备开采的有关技术资料,经过分析对比认为,目前大采高综采工作面采用大功率,高可靠性设备,具有较强地适应能力,在王庄矿使用是可行的,必将进一步加快王庄矿以减队减面,增产增效为主要内容的集约化发展步伐,推动王庄乃至潞安的采煤技术发展,促进安全高效矿井的建设。1.1.2研究意义

为了研究大采高综采技术在王庄矿现有生产条件下的可行性,王庄矿于2007年11月成立了由机电、生产、地质、通风、运输、自动化、计划及综采安装等科室、队组人员组成的调研小组,详细地分析王庄矿的煤层赋存和现有生产技术状况,并对神东上湾、晋城寺河及赵庄等矿进行了现场考察,收集了各矿使用大采高综采设备开采的有关技术资料,经过分析对比认为,目前大采高综采工作面采用大功率,高可靠性设备,具有较强地适应能力,在王庄矿使用是可行的,必将进一步加快王庄矿以减队减面,增产增效为主要内容的集约化发继续教育学院毕业设计(论文)

展步伐,推动王庄乃至潞安的采煤技术发展,促进安全高效矿井的建设。在采煤机械化程度日益提高的今天,选用先进的采煤技术已成为保障煤矿企业安全高效生产的必由之路。1.2 本文的框架结构

本文一共分为五章,第一章是绪论,对全文内容进行提纲性的概括,起到总领的作用。第二章是概述煤炭工业发展现状及面临的主要挑战。第三章是大采高技术发展现状。第四章是综采工作面大采高采煤方法在潞安王庄矿的应用。第五章是研究结论与建议。继续教育学院毕业设计(论文)

2.煤炭工业发展现状及面临的主要挑战

2.1煤炭工业发展现状

煤炭是我国重要的基础能源和重要原料,煤炭工业的发展支撑了国民经济的快速发展。在20世纪50年代和60年代,煤炭在我国一次能源生产和消费结构中的比重分别占90%和80%以上,2004年煤炭所占的比例分别为75.6%和67.7%。2.1.1改革开放以来煤炭工业取得显著成绩

(1).煤炭产量持续增长

全国原煤产量由改革开放初期的6亿吨左右提高到2004年产量19.56亿吨,增长2倍多,处于历史最高水平,为我国国民经济发展提供了能源保障。

(2).生产水平大幅度提高

大中型煤矿机械化水平、单产、单进、原煤工效,都逐年增高。建成了一批国际领先、高产高效矿井,初步建全了技术、设计、制造、培训比较完整的技术保障体系。(3).产业结构调整取得重大进展

政企分开迈出重大步伐,大多数国有大中型煤炭企业开始建立现代企业制度。一些企业开始了跨地区、跨行业的产业联合,煤、电、化、路、港、航产业链开始形成,一批劣势企业退出市场。继续教育学院毕业设计(论文)

(4).行业整体效益不断增加

在经历三年严重的经济困难后,2001年煤炭行业开始走出低谷,呈现恢复性增长。2002年后步入快速增长周期,经济运行质量不断提高。2004年全国规模以上煤炭企业补贴后实现利润达418亿元。2.1.2行业主要特点(1).煤炭是资源性行业

煤炭是不可再生的资源。煤矿的寿命取决于其所拥有的煤炭储量。我国大多数煤矿远离城市和经济发达地区、社会负担重,经济基础差。地区条件不一,煤炭企业发展不平衡性在行业中十分突出。(2).煤炭是高危行业

因煤矿生产条件所限,从历史上看,在各国工业部门中,煤矿的事故死亡率是最高的。我国煤矿95%生产能力是井工开采。高瓦斯和双突矿井占全国煤矿矿井总量的1/3,90%矿井有煤尘爆炸危险性。随着开采深度增加,影响安全生产因素愈来愈多,条件愈来愈复杂。(3).煤炭是投资高风险行业

煤矿开采环节复杂,矿井建设投资大,周期长,见效慢,煤炭市场不确定因素多。因此,从建井到生产,经营风险大,多数煤炭企业产业结构上的问题影响了企业市场适应能力和抗灾能力。(4).煤炭是为国民经济发展做贡献的行业

煤炭属于初级产品,煤矿的效益向后续加工工业传递和辐射。单一继续教育学院毕业设计(论文)的产品结构,企业经济效益难以提高,我国煤炭开采的价值和效益体现在后续产业和对国民经济发展的支撑作用。2.2、煤炭工业面临的主要挑战 2.2.1资源保障问题

我国煤炭品种齐全、资源比较丰富,但资源勘探程度低,经济可采储量和人均占有量较少,资源破坏和浪费严重,生态环境和水资源严重制约煤炭资源的开发。

我国煤炭资源区域分布不均衡。秦岭、大别山以北,煤炭储量占全国总储量的90.7%,其中晋、陕、蒙三省(区)占全国的65%。

资源保证程度低。截止2000年末,我国尚未利用的精查储量约为600亿吨,目前可供大中型矿井利用的精查储量仅300亿吨左右。据估算,到2020年,煤炭精查储量需增加约1250亿吨。

当前我国资源破坏和浪费严重。部分煤炭企业存在着“采厚弃薄”、“吃肥丢瘦”等浪费资源现象,全国煤矿平均资源回收率为30%~35%左右,资源富集地区的小型矿井资源回收率只有10%~15%。我国适合建设大型煤炭基地的整装煤田,随意被分割肢解现象严重。2.2.2煤矿生产能力与技术结构问题(1).煤矿生产技术水平低

全国采煤机械化程度仅为42%,除部分国有大矿之外,大多数煤矿生产技术水平低,装备差,效率低。特别是乡镇煤矿,基本上是非继续教育学院毕业设计(论文)

机械化开采。

2004年乡镇煤矿产量仍占我国煤炭总产量的39%,在资源消耗和人员伤亡上,已付出了很大的代价。(2).部分煤矿超能力生产

据调查分析,2003年国有煤矿的11.2亿吨产量中,属于超能力和无能力矿井生产的煤炭约为1.42亿吨,占国有煤矿产量的13%。煤矿超强度超能力生产满足了国民经济发展对煤炭的需求,但其造成的负面影响,一是缩短煤矿开采年限,二是威胁煤矿安全生产。(3).大中型煤矿煤炭供给能力不足

据预测,我国现有生产煤矿和在建煤矿的合计生产能力到2010年和2020年分别为17.7亿吨和14.7亿吨。要实现煤炭产需平衡,需要再建设一批新井和扩大现有煤矿的生产能力,预计到2010年和2020年分别需要再增加生产能力4.5亿吨和11.1亿吨。2.2.3行业结构与企业发展问题(1).煤炭产业集中度低

2004年我国前8家煤炭企业市场集中度为20.68%,远低于世界其它主要产煤国家。(2).煤炭企业负担过重

煤矿企业税负比1994年税制改革前提高了6个百分点;2003年,煤炭行业支出铁路建设基金约100多亿元;国有重点煤矿企业办社会继续教育学院毕业设计(论文)

问题突出,地方政府接收困难,原国有重点煤矿办社会年净支出60亿元。

2004年末,原国有重点煤矿在职人员257万人,由于所在地区社会承受能力弱,难以减人提效。

部分煤矿资源枯竭,生产能力下降,生产成本上升,富余人员、工伤抚恤人员多,转产困难。

(3).煤矿企业效益差、职工收入低

2004年原中央财政煤炭企业补贴前亏损面仍高达48%,补贴后仍有6%的企业亏损。2004年原国有重点煤矿在岗职工平均收入16812元,低于全国平均水平。

2.2.4煤矿安全与矿区环境治理问题(1).煤炭安全形势严峻

2004年煤矿共死亡6027人,百万吨死亡率为3.08,显著高于世界其它主要国家。如美国为0.03,波兰0.09;

大多数煤矿生产和安全技术装备落后,防灾抗灾能力差,重大、特大事故频繁发生。2004年共发生死亡10人以上特大和特别重大事故42起,死亡1008人。(2).矿区环境治理问题

矿井生产中排放的煤矸石约占原煤产量的8~10%,现已累计堆存煤矸石30多亿吨,占地超过15万亩。继续教育学院毕业设计(论文)

矿区地面塌陷、煤田自燃火灾、部分煤矸石自燃、煤矿瓦斯排放对生态环境构成严重影响。

煤矿开采每年排出地下水约22亿立方米,我国西北部主要煤炭产区,煤炭开采加剧了水资源的匮乏,对矿区生态环境造成影响。

井下煤层气年抽出量约100亿立方米,90%直接排放到大气中。2.2.5煤炭运输与燃煤污染问题(1).煤炭运输制约

我国煤炭资源主要分布在西北部,而煤炭消费重心在东南部,形成了“北煤南运、西煤东调”的格局,运输距离长,运输费用高,影响煤炭供应能力和市场竞争力:铁路运力不足的问题将长期存在;港口吞吐能力满足不了需要;公路长距离运输成本过高。(2).煤炭消费与环境保护问题

煤炭在利用过程中将产生大量的污染物和温室气体。特别是煤炭的不合理利用,排放了大量烟尘和有害气体,严重污染环境。随着煤炭消费量的增加,环境保护压力将越来越大。

我国酸雨覆盖区已扩大到约占国土总面积的30%,SO2排放的75%以上来源于燃煤。2003年SO2排放总量增加至2158万吨,酸雨污染加重。2003年燃煤总量增加,烟尘排放总量增加至1047万吨。我国CO2排放量目前居世界第二位,CO2的排放约80%来自煤炭燃烧。继续教育学院毕业设计(论文)3.大采高技术发展现状

3.1我国大采高技术的应用

我国国有重点煤矿厚煤层储量占44%,而厚煤层产量占45%以上,绝大多数高产高效矿井是在以厚煤层开采为主的生产条件下实现的。目前,我国重点煤矿厚煤层开采方法主要有综采放顶煤开采和大采高综采两种。放顶煤开采虽然已经在我国发展成为一种厚煤层高产高效采煤方法,广泛应用于5~15m厚煤层一次采全高,但仍有许多难以解决技术难题。对于4~6m的稳定厚煤层,大采高综采具有更好的技术经济优势,近十年来,以神东矿区为代表的现代化矿井建设,依靠得天独厚的厚煤层覆存条件和先进的管理模式,采用国际一流装备,进行4~6m一次采全高,不断刷新工作面高产高效纪录,工作面年产超过1000万t。晋城寺河煤矿采用国产大采高液压支架,成功实现6元6.5m一次采全高,月产突破80万t,创造了世界最大采高高产高效纪录 国外主要产煤国家厚煤层开采主要采用一次采全高长壁开采,美国、澳大利亚等发达国家家的煤矿普遍采用高效集约化生产,最大采高4.5m;南非和捷克最大采高达到6m液压支架向高工作阻力的两柱掩护式支架发展,支护工作阻力达6 000~12 000kN,支护高度3一6m,支架立柱缸径320~440mm,支架中心距1.75m和2.om,支架控制方式为环形供液及电液控制,支架的降、移、升循环时间小于10s,支架的寿命试验高达50 000次以上.继续教育学院毕业设计(论文)

3.2高效综采的快速发展

世纪之交的十多年间,以长壁高效综采为代表的煤炭井工开采技术取得前所未有的新进展。高效综采发展主要体现在以下三方面:一是综采工作面生产能力大幅度提高,采区范围不断扩大,出现了“一矿一面”年产数百万吨煤炭的高产高效和集约化生产模式;二是高效综采装备和开采工艺不断完善,推广使用范围不断扩大,中厚煤层开采、厚煤层一次采全高开采和薄煤层全自动化生产等技术和工艺取得巨大成功;三是高效综采装备的研制开发取得新的技术突破,年生产能力已经达到10 Mt,并实现了综采工作面生产过程自动化,大型综采矿井技术经济指标已经达到大型先进露天矿水平。鉴于我国煤炭为主的能源结构和当前煤炭需求快速增长,高效综采也将成为能源开发技术重要的竞争领域一次采全高工作面的循环进度主要考虑采煤机的截深,放顶煤开采工作面的循环进度.考虑采煤机截深和放煤步距。截深的确定首先是根据工作面整体生产能力进行考虑,综合机械化开采初期,工作面截深均选用o.6m标准截深,随着技术的进步,工作面装备能力的加大提供了采煤机足够的截割功率和输送机足够的输送能力,巷道支护技术的提高保证了大断面巷道的掘进和维护, 给工作面加大截深提供了有力的技术支持,近年来,高产高效矿井能够普遍采用0.8m和 1.om截深,有力保证了矿井生产能力的提高。

实际生产中,截深的确定首先考虑煤层地质条件的影响,其考虑因继续教育学院毕业设计(论文)

素包括:工作面顶板的破碎程度、工作面煤质(硬度、节理层理发育程度)、煤层的瓦斯含量等。其次要考虑工作面设备能力;截深的加大是伴随着采煤机截割功率的增加而实现的,同时对采煤机截齿、截割部受力、整体结构等因素有关,采煤机的能力增加一方面体现在截割功率的增加,另一方面体现在牵引速度的增加;同时截深的选取还应考虑支架的支护强度和 防护能力以及输送机的运输能力。采煤机截深不但要考虑传统的截割功率大小,而且对于综采放顶煤工作面还要考虑与放煤步距的协调统一。放顶煤工作面实践证明合理的放煤步距为1 m左右。即采煤机截深为0.6 m时采用两刀一放,采煤机截深为0.8m和1.0m时采用一刀一放。合理的放煤步距是提高回采率、降低含矸率的重要因素。放煤步距应该满足两个条件,一是与支架放煤口的纵向尺寸的水平投影一致,二是与采煤机截深成整数倍关系。

三、工作面生产能力工作面的生产能力与采煤机截深、牵引速度及设备开机率有关。国产综采工作面装备经过近十几年的发展,技术水平及可靠性得到了很大的提高,采煤机的牵引速度可以达到6~8m/min,综采工作面的开机率已经由50%左右提高到70%以上。继续教育学院毕业设计(论文)

4.综采工作面大采高采煤方法在潞安王庄矿的应用

王庄煤矿自1988年探索综放开采技术以来,经过近二十年的发展,这种对厚煤层的采煤技术日趋成熟,目前已经成为我国厚煤层的主要开采方法之一。但近年来,随着综采设备制造技术的飞速发展,综采设备走向重型化、强力化和自动化,使设备的可靠性得到保证,有力的推动了大采高综采技术的发展,带来了新一轮采煤技术的革命,目前在神东、晋城等矿区已率先在f=1.5-5的厚煤层中使用大采高综采设备,实现了国内工效最高,吨煤成本最低的成果,极大地提高了煤炭市场的竞争能力。

为了研究大采高综采技术在王庄矿现有生产条件下的可行性,王庄矿于2007年11月成立了由机电、生产、地质、通风、运输、自动化、计划及综采安装等科室、队组人员组成的调研小组,详细地分析王庄矿的煤层赋存和现有生产技术状况,并对神东上湾、晋城寺河及赵庄等矿进行了现场考察,收集了各矿使用大采高综采设备开采的有关技术资料,经过分析对比认为,目前大采高综采工作面采用大功率,高可靠性设备,具有较强地适应能力,在王庄矿使用是可行的,必将进一步加快王庄矿以减队减面,增产增效为主要内容的集约化发展步伐,推动王庄乃至潞安的采煤技术发展,促进安全高效矿井的建设。4.1 王庄煤矿概况

王庄煤矿于1966年12月建成投产,原设计能力为90万吨/年,先后经过两次改扩建和多次系统环节改造,矿井集约化程度、综合生继续教育学院毕业设计(论文)

产能力和可持续发展能力大幅度提高,目前矿井安全生产许可能力达710万吨/年。王庄矿井田面积79.68Km2(包括后备区28Km2),开采深度由+880米至+350米标高.矿井开拓:矿井开拓方式为立、斜井综合开拓,现有+740和+630两个生产水平,上下水平通过暗斜井沟通。目前,正在准备+540水平的开拓延深。现有43、52、61、62四个生产盘区。

主提升运输系统:王庄矿有两套主提升运输系统,+740水平为立井箕斗(7.5t/斗)提升,+630水平为斜井胶带提升。主斜井胶带年提升能力为537万吨,主立井箕斗年提升能力为175万吨,通过主提升运输系统环节改造,沟通了两水平的主运输提升系统,实现了两水平提升能力互补,矿井综合提升能力超过710万吨/年。

辅助运输系统: 辅助运输为轨道运输,轨道轨距为900mm。斜井轨道提升方式为斜井串车提升。水平大巷均采用架线电机车牵引材料列车运送生产材料、设备等。采区车场及采区轨道,采用无极绳绞车与小绞车接力运输方式运送材料。工作面风、运巷轨道采用无极绳绞车与小绞车牵引运输方式。

地质概况:王庄煤矿现开采的3号煤层赋存于二叠系下统山西组地层的中下部,煤层厚度3.16~7.87m,平均厚度6.62m,硬度f=1-3,62、43采区稍硬,f=2-3,结构一般较简单,该煤层厚度变异系数Y=10.59%。其可采指数Km=1,属稳定煤层。3号煤层直接顶板为砂质泥岩、泥岩、局部为粉砂岩,厚0~ 10.75m。老顶为中继续教育学院毕业设计(论文)

粒砂岩、细粒砂岩,厚1.10~13.60m。裂隙发育,呈张开状,无充填物充填。煤层上覆岩性,从直接顶到老顶为软弱~坚硬型,坚硬~坚硬型。上部覆岩为软弱~坚硬相间平行复合结构。岩层倾角为3~11°。直接底板为炭质泥岩、砂质泥岩、粉砂岩,厚度0~5.33m。其下部为细粒砂岩和中粒砂岩。

现有储量:截止2007年12月末,王庄煤矿现开采的3号煤层储量/资源量为39584.4万吨,其中现生产水平+740及+630水平16237.1万吨,+540水平23347.3万吨。现生产水平工作面圈定储量为3121.5万吨,工作面可采储量为2809.4万吨。+540水平除去村庄及高速路压煤,河下压煤外,可供开采设计的储量为7404.6万吨。

综上所述,王庄矿在生产规模、地质条件和煤层储量等方面上具备应用大采高综采设备的能力和条件。4.2 工作面巷道布置及生产系统 4.2.1工作面位置选择分析

根据本次对神东上湾、晋城寺河及赵庄等矿大采高工作面现场调研情况,综合分析王庄矿各采区煤层赋存、矿压特征和生产条件,认为将大采高工作面布臵在6207较为合理: 1、6207所在的62采区为2006年新投入运行的采区,储量丰富,安排衔接容易;另一方面62采区进风6450m3/min,6207工作面回采时,风量也容易满足。2、6207工作面埋藏深度为260米左右,煤质为f=2-3,构造简单,继续教育学院毕业设计(论文)

与晋城寺河矿相似,同时根据相邻6205已采工作面的矿压资料分析,62采区的矿压显现不明显。3、6207工作面为下山回采,可以适当缓解大采高开采带来的煤墙片帮现象,有利于煤墙和顶板管理。4.2.2工作面巷道布置

(1)、工作面巷道布臵

6207工作面沿煤层倾斜方向布臵,俯斜开采。工作面切眼长度230m ,沿推进方向风、运巷长970m。6207工作面巷道布臵见图2—1。

6205采空区6207风巷风巷皮带/3#630用回6207运巷62下山62专专回

图2—1 6207工作面巷道布臵图

(2).巷道断面与支护形式

630轨道6207工作面巷继续教育学院毕业设计(论文)

巷道断面、支护形式及用途

6207工作面风、运两巷及开切眼均采用锚网支护,运巷主要用于运煤、进风及列电、皮带、转载机等设备布臵。风巷主要用于运料、回风。巷道断面确定 巷道宽度的确定 运巷

按我矿设备列车与带式输送机中间部分并列布臵,人行道与设备检修道合并考虑,所需的巷道净宽L应满足: L≥L1+K1+K2+K3+L2 L—巷道净宽;

L1—列电设备的最大宽度,m;取1.85m K1—列电至煤墙间隙,m;取0.3m K2—人行道及检修空间宽度,m;取0.7m即可满足要求 K3—皮带架至煤墙间隙,m;取0.5m L2—皮带架宽度,m;取1.95m 因此,L≥1.85+0.3+0.7+0.5+1.95=5.3m 继续教育学院毕业设计(论文)

运巷宽度确定为5.3m。

风巷

风巷为安装和回采期间运输巷道,为满足运输要求,对照寺河矿巷道设计选取风巷宽度为5.0m。

开切眼宽度的确定

按支架安装要求,开切眼宽度应满足: B≥(L2+w2)1/2+S+K B—切眼宽度,m L—支架的运输长度,m;取7.0m w—支架宽度,m;取2.0m S—安全间隙,m;取0.7m K—辅助支护的支柱所需空间,m;取0.4m 因此,B≥(72+22)1/2+0.7+0.4=8.38 m 综上所述,开切眼宽度可以取8.5m。巷道高度

大采高工作面端头架的支撑高度为3.0-5.5m,采煤机滚筒直径3.5 m,综合考虑,各巷的高度选为4.0m,开切眼选为3.8m。继续教育学院毕业设计(论文)

目前王庄矿使用的150掘进机可掘最大断面为5.5×4.8 m,可满足其要求,不需增加掘进设备。4.2.3 生产系统(1)、运煤系统

采煤机落煤 → 工作面刮板运输机→转载机→6207运巷皮带→630/3#皮带→630/2#皮带→630/1#皮带→61煤仓→630强皮→51煤仓→51强皮→主皮带煤仓→主皮带→地面。

运煤系统的瓶颈为630/3#皮带,带速4m/s,能力3000t/h,不重载起动是可行的,要上大采高设备对630/3#皮带进行扩容即可。(2)、辅助运输系统 运料:

材料副斜井→暗斜井→630大巷→62材料车场→630南轨→6207风运车场→ 6207工作面 运人:

副立井→暗斜井→630大巷→火药库通道→630/3#皮带→6207运巷→6207工作面(3)、通风系统 继续教育学院毕业设计(论文)

西进风井---630大巷火药库通道630/1#皮带630/2#皮带 —630/3#皮带---6207运巷---6207工作面---6207工作面风巷---62专用回风巷---62风井---地面

(4)、供电系统:6207工作面由62/1#变电所供电,62/1#变为双回路供电电源分别来自62总变I、II回路,地面电源为62风井35KV变电所,互为备用。(5)、通讯系统

在6207运巷机头和工作面转载机机头分别安设一部程控电话,用于井下及井下与井上的通话联系。

在6207工作面安设一套工作面通讯控制系统,用于工作面的通讯控制。

(6)、排水系统:6207风运巷低洼处通过水泵排至630/3#皮带2#水仓—62水仓——地面(7)、照明系统

运巷皮带机头、三岔口安装

127V隔爆日光灯,工作面每隔5架安装一盏隔爆灯。4.3工作面设备选择

4.3.1 工作面设备选择 继续教育学院毕业设计(论文)

根据对神东集团上湾煤矿、晋城煤业寺河煤矿和赵庄煤矿使用大采高支架及其配套设备情况,结合我矿煤层赋存特点、工作面矿压资料和运输条件,满足高产高效、经济、安全的要求的前提下,尽量考虑设备的可拆卸性,而且要达到采煤工艺简化、原煤回收率大幅提高、设备运行可靠之目的,王庄煤矿大采高工作面设备配套选型如下:

(1)、液压支架(郑煤集团 估价150万/架)

我矿煤层厚度平均为6.65米,如果考虑一次采全高,就我国目前支架生产现状来看,没有最适合我矿煤层厚度的架型,针对这一问题,我们与郑煤集团进行了深入交流,通过联合开发,可以设计出适合我矿地质条件的采高在6.8米的液压支架,设计制造周期估计在8-10个月,估价150万/架。

大采高液压支架主要技术特征 架 型 两柱掩护式 底座宽度 约1880mm 支护高度 3.0-6.8m 最低支护强度:大于1.1MPa平均对地比压:2.48-2.74Mpa 工作阻力 约15000kN 推移步距 1000mm(2)、采煤机(西安煤机厂,1200万/台)继续教育学院毕业设计(论文)

目前情况下,德国艾可夫生产的采煤机最大采高为6.3米,美国久益公司生产的采煤机最大采高为6.5米,均不适应我矿煤层条件,根据我矿多年使用西安煤机厂生产的采煤机经验,对此厂生产的采煤机质量和使用情况均比较满意,因此我们选西安煤机厂生产的MG900/2210-GWD型采煤机。

MG900/2210-GWD型采煤机主要技术特征 采高:3.5-6.8m 生产能力:5500t/h 滚筒直径:3500mm 截深:1000mm 截割功率:2×900KW 牵引功率:2×110KW 最大牵引力:1000KN 最大牵引速度:23m/min 破碎机功率:150KW 泵电机:40KW 装机总功率:2210KW MG900/2210-GWD型采煤机主要结构特点

MG900/2210-GWD型交流电牵引采煤机是一种多电机驱动,电机横向布臵,交流变频调速无链双驱动重型超大功率电牵引采煤机。总装机功率2210KW,并配有破碎装臵,机面高度2710mm,适合用于采高3.525 继续教育学院毕业设计(论文)

米—6.8米,煤层倾角≤15°,可以截割坚硬煤层并可以强行通过矸石断层。

(3)、刮板输送机(山西煤矿机械制造有限公司,1600万/部)为与MG900/2210-GWD型采煤机配套,我们选用SGZ1200/2×700型刮板输送机

SGZ1200/2×700型刮板输送机主要技术特征 输送能力:2200t/h 链 速:1.31m/s 功 率:2×700/3.3KV 联轴节形式:限矩摩擦离合器 溜槽内宽:1200mm 链条规格:φ42×146mm SGZ1200/2×700型刮板输送机主要结构特点

1)采用高强度合金钢制造,并经淬火处理的锻造刮板。2)紧凑型行星齿轮传动减速器,可满足任何工作面配套设计要求。

3)具有伸缩功能的输送机机尾,可保证刮板链在适度张紧的状态下工作。

4)输送机配臵液压马达低速传动装臵,可用于刮板链的紧链操作。

(4)、顺槽其他配套设备 继续教育学院毕业设计(论文)

转载机(山西煤矿机械制造有限公司,260万/部)选用SZZ1200/400型中双链转载机,其技术参数如下: 设计长度:60m 输送能力:2500t/h 链 速:1.56m/s 驱动功率:400KW/3.3KV 溜槽内宽:1200mm 链条直径:φ38×137mm 破碎机(山西煤矿机械制造有限公司,40万/台)选用PCM315型破碎机,其技术参数如下: 破碎能力:2500t/h 驱动功率:315KW/3.3KV 入料粒度:1200×800mm 出料粒度:不大于300mm 联轴节形式:液力偶合器

自移装臵(山西煤矿机械制造有限公司,75万/套)

选用ZY2700皮带机自移机尾,如果我矿运输条件不能满足皮带机自移机尾的运输,我矿将不采用皮带机自移机尾,其技术参数如下:

自移最大推力:2×910KN 行程:2700mm 适应皮带机宽度:1400mm 继续教育学院毕业设计(论文)

主要结构特点:配臵ZY2700皮带机自移机尾可实现工作面回采期间皮带机机尾的前移和皮带运行姿态的调整,可实现工作面不间断连续生产,机尾滚筒采用螺旋滚筒,可以实现自行清煤。

皮带机(西北二厂,1500万/部)

考虑到我矿现主运输运输能力,选用SSJ140/3×400型顺槽皮带机,其技术参数如下:

运输能力:Q=2500-3000t/h 带宽:B=1400mm 额定带速:V=3.5-4m/s 胶带型号:PVC阻燃整芯带,带强1800S 电机功率:3×400KW 减速装臵:CST 乳化液泵站(无锡煤矿机械厂,45万/套)选用BRW—400/31.5型乳化液泵站,配臵4泵2箱。4.3.2供电设计

(1)、工作面总的装机容量为:

采煤机2210KW、刮板输送机1400KW、转载机400KW、破碎机315KW、乳化液泵站4*250KW、喷雾泵2*45KW,皮带机3*400KW,风运巷低压34KW,涨紧装臵55KW,卷带装臵45KW。

(2)、根据工作面的设备配臵情况:(1268万)继续教育学院毕业设计(论文)

配臵三台4000KVA负荷中心,两用一备,负荷中心出线为:3.3KV电压五路出线,1.14KV电压五路出线,127V电压出线两路。2#负荷中心出线为:3.3KV电压出线五路出线,1.14KV电压出线四路出线,0.69KV电压两路出线,127V电压两路出线。

皮带机配备一台1600KVA移变,风运巷低压配500KVA移变一台 报价:4000KVA负荷中心3台1185万,1600KVA移变1台65万,500KVA移变1台18万,总计1268万。

(3)、电缆截面的选用:

负荷中心电源电缆用150MM2/6KV高压橡套电缆,采煤机电缆用150MM2/3.3KV,破碳器电缆用50MM2/3.3KV,转载机电缆用50MM2/3.3KV,输送机电缆用70MM2/3.3KV,乳化液泵电缆用50MM2/1.14KV,喷雾泵电缆用25MM2/0.69KV。低压电缆用70MM2。

(4)、所需电缆及接线盒:(1140.87万)

6KV接线盒40个13万,3.3KV进口快速插头10个30万,1.14KV接线盒10个0.62万,0.69KV接线盒30个0.6万。总计44.22万。

6KV高压/150MM2电缆6500米442万,3.3KV/50MM2电缆1500米48.75万,3.3KV/70MM2电缆1000米43.5万,1.14KV/50MM2电缆1000米21万,0.69KV/70MM2电缆4500米127.8万,机组电缆3.3KV/150MM2电缆1000米360.6万,1.14KV/120MM2电缆1000米53万,总计1096.65万。

4.4 采煤方法及回采工艺 继续教育学院毕业设计(论文)

4.4.1采煤方法:

本工作面采用走向长壁大采高自然冒落后退式综合机械化采煤方法。4.4.2回采工艺

1、进刀方式

本工作面采用端部割三角煤斜切进刀。

2、推溜、移架方式

本工作面推溜、移架全部为邻架(或成组)电液控操作。4.4.3工艺说明 ①割煤、装煤、运煤

本工作面采用电牵引双滚筒采煤机。采高6.5-6.6米,截深1米,正常割煤时,前滚筒割顶煤,后滚筒割底煤。采煤机滚筒旋转时,煤被滚筒上的截齿破碎下来,并由螺旋叶片装入大溜,少量煤在推大溜时被铲煤板装入大溜内,极少量散落在支架与大溜间的浮煤,由人工装入大溜内。②移架

本工作面采用电液控制支架,可实现三种移架方式:(1)双向邻架自动顺序移架;(2)成组顺序移架;(3)手动移架; ③推溜

本工作面所用支架可实现三种推溜方式: 继续教育学院毕业设计(论文)

(1)双向邻架推溜;(2)双向成组推溜;(3)手动推溜;

推溜滞后采煤机后滚筒15m进行。④运煤

工作面机组割下的煤由大溜运至端头卸载,经转载机、由皮带运出。4.5大采高自动化综放工作面取得的成就 4.5.1、工作面单产、工效再创新高

6207工作面创造日产33186吨、工作面工效最高502吨/工的新记录,大大提高了劳动生产效率。工作面作业人员由36人减至21人,大大减少了作业人数,提高了生产效率。

4.5.2、提高了采高,优化了采放比,提高了资源回收率

工作面采高由3m提高到了3.8m,将采放比由1:1.2调整为1:0.80,并将综放工作面通风断面增大到16m2,从而可有效的稀释了工作面瓦斯浓度,工作面回收率达92.1%,大大提高了资源回收率。4.5.3、支架采用电液控制系统,优化了生产作业程序,减轻了劳动强度,改善了作业环境

通过支架控制器按键可以进行临架单动作操作,如临架收缩护帮板、升降前后柱等动作;也可实现临架单架自动控制和成组操作,如临架自动移架、临架自动放煤等动作,临架成组自动移架、成组收护

继续教育学院毕业设计(论文)

帮板、成组推前溜、成组拉后溜等成组动作。作业人员站在进风侧用控制器按键操作支架,移架下落的煤尘不会落在操作区域,降低了劳动强度并改善了作业环境。

继续教育学院毕业设计(论文)

5.研究结论及建议

本文在大量检索并阅读有关参考文献的基础上,对综采工作面大采高采煤方法在煤炭企业生产中的应用进行了深入的分析和研究,取得了一些有益的研究结果结论。

中国煤炭工业发展爽飞猛进,高产取得了举世瞩目的依靠科技进步,实现高效集约化开采是高产高效矿井建设高效矿井的普遍模式. 综采工作面大采高采煤方法在煤炭生产中的应用会越来越成熟,越来越重要。

总之,在煤炭企业生产中,煤层厚度3~8m稳定煤层,结构一般较简单,允许的情况下应该优先考虑使用大采高采煤方法。

继续教育学院毕业设计(论文)

参考文献

[1] 张荣立 何国维 《采矿工程设计手册》 煤炭工业出版社 2003年5月

[2]煤炭工业部.煤炭工业矿井设计规范.北京:中国设计出版社.1999

[3]徐永昕.煤矿开采学.徐州:中国矿业大学出版社.2001 [4]吴志羲.煤矿矿井开采设计手册.北京:煤炭工业出版社.2003

第四篇:采矿工程专业

学院简介

能源科学与工程学院成立于2005年5月,其前身是1909年创办的焦作路矿学堂矿务学门,历经焦作矿务大学采矿冶金科、焦作矿业学院采煤系、焦作矿业学院采矿工程系、焦作工学院资源与材料工程系、河南理工大学资源与材料工程系等不同发展时期。学院设有采矿工程、工业工程、交通工程、煤及煤层气工程4个本科专业。设有矿业工程一级博士点、矿业工程博士后流动站、矿业工程一级硕士点、系统工程二级硕士点以及矿业工程领域、工业工程领域工程硕士点,采矿工程学科为河南省一类省级重点学科,采矿工程专业为国家级特色专业。

学院现有教职工78人,具有博士生导师9人,教授、教授级高工17人,副教授、高级工程师25人,具有博士学位的教师40人。拥有河南省特聘教授1人,省级学术带头人3人,采矿工程教学团队为国家级教学团队。

学院下设采矿工程系、工业工程系、煤与煤层气工程系。设有矿山开发设计研究所、工矿技术开发公司、岩层控制与特殊开采研究所及采矿工艺技术等四个校级研究所(公司)。拥有岩石力学、矿山压力、相似材料模拟、数值计算、人因工程、交通工程、煤层气工程等多个专业实验室,实验室面积4000余平方米,万元以上设备120台套,试验设备总值2000余万元。建设有深井瓦斯抽采与围岩控制技术国家地方联合工程实验室、河南省高校煤与煤层气安全高效开采工程技术研究中心以及矿产资源安全高效开采河南省重点学科开放实验室等科研平台。

“十一五”期间,学院的教学与科研工作取得较大进展,获得省级教学成果奖4项,《采煤概论》、《开采损害与保护》被遴选为国家级精品课程,采矿工程教学团队被遴选为国家级教学团队。主持和承担各类科研项目近500项,科研经费8000余万元,其中省部级以上课题68项。获省部级以上科技进步奖20余项。在国内外公开刊物上共发表论文700余篇,其中SCI、EI、ISTP收录120余篇,出版专著32余部,教材18部。学院积极开展国际国内学术交流,与美国西弗吉尼亚大学、肯塔基大学、加拿大麦吉尔大学等多所大学建立了校际联系,先后派出16人次到国外留学或进行学术交流,每年邀请多名国内外知名学者来学院讲学。近年来,主办国际学术会议1次,全国性学术会议6次。

学院形成本科、硕士、博士三级教学体系,现有在校生2679人,其中本科生2181人,硕士304人,博士19人,已累计为国家培养了本科生8000余人,研究生500余人。

学院将继续以学科建设为龙头,积极吸纳人才,力争建成以矿业工程学科为主,相关学科协调发展,特色鲜明、优势突出,在若干研究领域达到国际先进或国内领先,在国内外具有一定影响的高水平研究型学院。

采矿工程专业

本专业是国家级特色专业,实施教育部“卓越工程师教育培养计划”专业。培养掌握固体(煤、金属及非金属)矿床开采的基本理论和方法,具备采矿工程师的基本能力,能在采矿工程领域从事矿区开发规划、矿井设计、开采技术、矿井通风、矿山安全技术、矿山监察、生产技术管理和科学研究等方面工作,具有较强实际工程能力和一定研究能力的复合应用型人才。

主要课程:材料力学、矿山经济学、电工与电子技术、矿山电工、矿山机械、矿山测量学、矿山地质学、岩体力学、井巷工程、矿山压力与岩层控制、采矿学、矿井通风、矿山安全技术等。采矿工程专业(本科)

培养目标:本专业培养掌握固体(煤、金属及非金属)矿床开采的基本理论和方法,具有较扎实的专业技术理论知识和较强的专业技术技能,并获得采矿工程师的基本训练,能在采矿领域从事矿产资源开发规划、矿山设计、矿山安全技术及工程设计、监察、生产技术管理和教育、科学研究的应用型高级工程技术人才。主要课程:大学英语、高等数学、工程数学、工程制图、工程力学、电工与电子技术、计算机应用基础、岩体工程力学、矿山地质、矿山机械、矿山测量、采矿学、井巷工程、矿山通风与安全、矿山压力及其控制、事故分析与灾变处理、矿山资源加工利用概论、矿山企业管理。

就业方向:学生毕业后,可从事矿山开采、岩土工程、隧道工程等领域的设计、生产、施工、安全监督、科研、管理、矿业信息、计算机应用及教学等方面的工作。

学生毕业后,可在固体矿床开采、岩土工程领域,从事固体矿床设计、生产、施工管理、安全监察等工作,或在教育、科研机构等单位从事相应的教学和科研工作。

第五篇:采矿工程毕业设计

只要记分牌上的时间还跳动,就不能轻言放弃。目录

前言 1 1 矿区概述及井田特征 2 1.1 概述 2 1.1.1 矿区的地理位置及行政隶属关系 2 1.1.2 地形、地貌、交通等情况 2 1.1.3 气候地震等情况 3 1.2 井田及其附近的地质特征 3 1.2.1 井田的地层层位关系及地质构造 3 1.2.2 含煤系及地层特征 4 1.2.3 水文地质 5 1.3 煤质及煤层特征 5 1.3.1 井田内煤层及埋藏条件 5 1.3.2 煤层的含瓦斯性、自燃性、爆炸性 7 1.3.3 井田的勘探程度及进一步勘探要求 7 2 井田境界及储量 8 2.1 井田境界 8 2.1.1 井田范围 8 2.1.2 边界煤柱留设 8 2.1.3工业广场保护煤柱留设 8 2.1.4 边界的合理性 9 2.2 井田的储量 9 2.2.1 井田储量的计算原则 9 2.2.2 矿井工业储量 10 3 矿井的年产量、服务年限及一般工作制度 12 3.1 矿井年产量及服务年限 12 3.1.1 矿井的年产量 12 3.1.2 服务年限 12 3.1.3 矿井的增产期和减产期 产量增加的可能性 13 3.2 矿井的工作制度 13 4 井田开拓 14 4.1 井筒形式、位置和数目的确定 14 4.1.1 井筒形式的确定 14 4.1.2 井筒位置及数目的确定 15 4.2 开采水平的设计 19 4.2.1 水平划分的原则 19 4.2.2 开采水平的划分 20 4.2.3 设计水平储量及服务年限 23 4.2.4 设计水平的巷道布置 23 4.2.5 大巷的位置、数目、用途和规格 23 4.3 采区划分及开采顺序 24 4.3.1 采区形式及尺寸的确定 24 4.3.2 开采顺序 25 4.4 开采水平井底车场形式的选择 26 4.4.1 开采水平井底车场选择的依据 26 4.4.2 井底车场主要硐室 27 4.5 开拓系统综述 30 4.5.1 系统概况 30 4.5.2 移交生产时井巷的开凿位置、初期工程量 31 5 采准巷道布置 33 5.1 设计采区的地质概况及煤层特征 33 5.1.1 采区概况 33 5.1.2 煤层地质特征及工业储量 33 5.1.3 采区生产能力及服务年限 33 5.2 采区形式、采区主要参数的确定 34 5.2.1 采区形式 34 5.2.2 采区上山数目、位置及用途 34 5.2.3 区段划分 34 5.3 采区车场及硐室 35 5.3.1 车场形式 35 5.3.2 采区煤仓 35 5.4 采准系统、通风系统、运输系统 36 5.4.1 采准系统 36 5.4.2 通风系统 36 5.4.3 运输系统 36 5.5 采区开采顺序 36 5.6 采区巷道断面 37 6 采煤方法 39 6.1 采煤方法的选择 39 6.1.1 选择的要求 39 6.1.2 采煤方法 39 6.2 开采技术条件 39 6.3 工作面长度的确定 40 6.3.1 按通风能力确定工作面长度 40 6.3.2 根据采煤机能力确定工作面长度 41 6.3.3 按刮板输送机能力校验工作面长度 6.4 采煤机械选择和回采工艺确定 42 6.4.1 采煤机械的选择 42 6.4.2 配套设备选型 44 6.4.3 回采工艺方式的确定 44 6.5 循环方式选择及循环图表的编制 47 6.5.1 确定循环方式 47 6.5.2 劳动组织表 48 6.5.3 机电设备表 49 6.5.4 技术经济指标表 50 7 建井工期及开采计划 51

7.1 建井工期及施工组织 51 7.1.1 建井工期 51 7.1.2 工程排队及施工组织排队 52 7.2 开采计划 53 7.2.1 开采顺序及配产原则 53 7.2.2 开采计划 53 8 矿井通风 55 8.1 概述 55 8.2 矿井通风系统的选择 55 8.2.1 通风方式的选择 56 8.2.2 通风方法的选择 57 8.3 矿井风量的计算与风量分配 57 8.3.1 矿井总进风量 57 8.3.2 回采工作面所需风量的计算 58 8.3.3 掘进工作面所需风量 59 8.3.4 硐室所需风量的∑Qd的计算 60 8.3.5 其他巷道所需风量 61 8.3.6 风量的分配[17] 62 8.4 矿井总风压及等积孔的计算 62 8.4.1 计算原则 62 8.4.2 计算方法 64 8.4.3 计算等积孔 65 8.5 通风设备的选择 66 8.5.1 矿井主要扇风机选型计算 66 8.5.2 电动机选型计算 68 8.5.3 耗电量 68 8.6 灾害防治综述[13] 69 8.6.1 井底火灾及煤层自然发火的防治措施 69 8.6.2 预防煤尘爆炸措施 70 8.6.3 预防瓦斯爆炸的措施 70 8.6.4 避灾路线 70 9 矿井运输与提升 71 9.1 概述 71 9.2 采区运输设备的选择 71 9.2.1 采区运输上山皮带的选择 71 9.2.2 采区轨道上山运输设备的选择 72 9.2.3 运输顺槽转载机和皮带机选择 72 9.2.4 回风顺槽中运输设备的选择 73 9.2.5 工作面刮板输送机的选择 73 9.3 主要巷道运输设备的选择 74 9.4 提升 74 9.4.1 提升系统的合理确定 74 9.4.2 主井提升设备的选择 75 9.4.3 副井提升设备的选择 76 10 矿井排水 77 10.1 矿井涌水 77 10.1.1 概述 77 10.1.2 矿山技术条件 78 10.2 排水设备的选型计算 78 10.2.1 水泵选型 78 10.3 水泵房的设计 80 10.3.1 水泵房支护方式和起重设备 80 10.3.2 水泵房的位置 80 10.3.3 水泵房规格尺寸的计算 80 10.4 水仓设计 81 10.4.1 水仓的位置及作用 81 10.4.2 水仓容量计算 81 11 技术经济指标 83 11.1 全矿人员编制 83 11.1.1 井下工人定员 83 11.1.2 井上工人定员 83 11.1.3 管理人员 83 11.1.4 全矿人员 84 11.2 劳动生产率 84 11.2.1 采煤工效 84 11.2.2 井下工效 84 11.2.3 生产工效 84 11.2.4 全员工效 84 11.3 成本 85 11.4 全矿主要技术经济指标 86 结论 92 参考文献 93 附录A 94 附录B 97 前言

中国是世界最大产煤国

煤炭在中国经济社会发展中占有极重要的地位 煤炭是工业的粮食 我国一次能量消费中 煤炭占75%以上 煤炭发展的快慢

将直接关系到国计民生 作为采矿专业的一名学生

我很荣幸能够为祖国煤炭事业尽一份力

毕业设计是毕业生把大学所学专业理论知识和实践相结合的重要环节 使所学知识一体化

是我们踏入工作岗位的过度环节 设计过程中的所学知识很可能被直接带到马上的工作岗位上 所以显得尤为重要

学生通过设计能够全面系统的运用和巩固所学的知识 掌握矿井设计的方法、步骤及内容

培养实事求是、理论联系实际的工作作风和严谨的工作态度 培养自己的科学研究能力

提高了编写技术文件和运算的能力

同时也提高了计算机应用能力及其他方面的能力

该说明书为刘官屯矿0.90Mt/a井田初步设计说明书 在所收集地质材料的前提下 由指导教师给予指导

并合理运用平时及课堂上积累的知识 查找有关资料

力求设计出一个高产、高效、安全的现代化矿井

本设计说明书从矿井的开拓、开采、运输、通风、提升及工作面的采煤方法等各个环节进行了详细的叙述

并进行了技术和经济比较 论述了本设计的合理性 完成了毕业设计要求的内容 同时说明书图文并茂

使设计的内容更容易被理解和接受 在设计过程中

得到了指导老师的详细指导和同学的悉心帮助 在此表示感谢

由于设计时间和本人能力有限 难免有错误和疏漏之处 望老师给予批评指正矿区概述及井田特征 1.1 概述

1.1.1 矿区的地理位置及行政隶属关系

矿区位于唐山市东北约13km处的荆各庄村附近在开平煤田凤山西北侧 矿井走向长5km 倾斜长2.2km 井田面积11km2 南与马家沟矿业公司相距6km 中间有陡河相隔

北与陡河电厂相距3.5km 行政属开平区管辖

1.1.2 地形、地貌、交通等情况

1)地形地貌

为一平坦的冲积平原 北部山区为燕山山脉的余脉 井田北、东、南三面被低山包围

颇有山前扇状地景观 井田地面标高-100m

2)交通

该矿区的交通十分方便

铁路:一条通往用煤大户陡河电厂的专用线

并与吕陡线在井田上方交汇;另一条经马家沟矿业公司与老京山线的开平站相联 公路:北距10km与京沈高速公路、102国道相联 南距7km经开平与205国道、津秦高速公路相联 形成了比较完整的交通网 四通八达

井田内共有8个自然村 主要从事农业

除东新庄外其它7个村庄已搬迁完毕

图1-1 刘官屯矿交通位置图

Fig.1-1 Liuguantun Mining traffic and location

3)水文

本区东南的陡河 发源于北部山地 下游集入石榴河 向南流入渤海 主流全长100km 河水终年不固 不冻

在双桥村一带有水库

水库大坝距井田东端最近距离2.2km 陡河最高水位+219.5m 低于地面标高40m左右 冬季水位介于+216~+217m

1.1.3 气候地震等情况

本区系于半大陆性气候 夏季炎热多雨

多东南风;冬季严寒凛冽 秋冬多西北风

雨季集中在七、八、九三个月 年平均降雨量648.8毫升 最高气温38.50C 最低气温-22.6℃ 年平均气温10.6℃

冻结期由11月二旬至次年3月上旬 冻结深0.66m 地震烈度六级

1.2 井田及其附近的地质特征

1.2.1 井田的地层层位关系及地质构造

开平煤田位于燕山南麓

在大地构造上位于中朝地台燕山沉降带的东南侧

燕山南麓煤田在地质力学体系上处于天山~阴山纬向构造带、新华夏系构造带和祁吕~贺兰山山字形的三个巨型构造体系的交汇部位 开平煤田受新华夏构造体系的影响 以一系列NNE向的褶曲及逆断层组成

北部受纬向构造的影响逐渐向南弯转成走向近东西向 煤系地层由石炭系中统唐山组

上统开平组、赵各庄组及下二叠系大苗庄组、唐家庄组等组成 岩性以砂岩、泥岩为主

基底地层为中奥陶系马家沟组石灰岩 分布于煤田周边地带 与煤系地层呈不整合接触 见井田地质特征表1-1 煤田向南倾伏

其南部界限可能跨过宝坻~奔城大断层伸入另一个二级构造单元--华北断陷 经钻口和电测曲线对比推断 本区主要断层共有2条 分别为F1 和F2 区内尚未发现有大面积岩浆活动 所见分布于煤田西侧和南侧

区内未发现区域变质或侵入变质现象

说明:据2001全国地层委员会和2004国际地层委员会发布的时代划分方案 石炭纪二分 二叠纪三分

但为了与矿上其他资料吻合方便起见 本次仍沿用旧的时代划分方案

本井田西部以I号勘探线和F1断层为界 东部以VI号勘探线为界 北部以-300m等高线为界 南部以-750等高线

井田内赋存有9、12-2号两个可采煤层

表1-1 井田地质特征表

Tab.1-1 Well field geological feature table

年代

厚度/m

新生界 第四系

Q

~~~~~~不整合~~~~~~

洼里组

0~890

界 二叠系

上统

P22

2800

P21

古冶组

346

下统

P12

唐家庄组

180

P11

大苗庄组

石 炭 系 上统 C32 赵各庄组 74

C31 开平组 70

中统 C2 唐山组

-------平行不整合------马家沟组 65 下 古 生 界 奥 陶 系 中统 O2 345

下统 O12 亮甲山组 115

O11

冶里组 203 寒 武 系 上统 ?33 凤山组 68

?32 长山组 48

?31 崮山组 82

中统 ?2 张夏组 120

下统 ?12 馒头组 150

?11 景儿峪组 263 元 古 界 震

上统

Z2W

迷雾山组

1200

Z2Y

杨庄组

400

下统

Z1K

高于庄组

600

Z1T+H

大红峪黄崖关组

~~~~~~不整合~~~~~~

五台群

450

太古界

前震旦

Ar

1.2.2 含煤系及地层特征

开平煤田构造形式以褶皱为主 线型排列比较明显

向斜背斜多呈相间平行排列

区内由西至东有:蓟玉向斜及其两侧的窝洛沽向斜、丰登坞背斜、车轴山向斜、卑子院背斜、弯道山~西缸窑向斜、凤山~缸窑背斜、开平向斜 本设计的十组煤分四个分层 走向中部厚

沿走向往两侧逐渐变薄 但从钻孔看 变化不大

整个十组煤厚度均匀 从全矿井看

煤层角度东部较小 西部边界偏大 深部角度小 浅部角度大

1)表土层及风化层的深度

矿井田内地势平坦 为第四系冲积层所覆盖 冲 积层较厚

井田浅部以风积细粉砂岩为主 颗粒细而均匀

表土层厚度平均在100m 且有流沙

2)煤层总数及可采层数

本区煤层岩性变化不大 煤层结构相对简单 有少量夹矸 共含十一个煤组

本设计的十组煤全区发育 9、12-2均为可采煤层

1.2.3 水文地质

荆东四矿的水文地质条件属一般型 有八个含水层 自下而上分别为:

1)奥陶系石灰岩岩溶裂隙承压含水层(Ⅰ)

2)K2~K6砂岩裂隙承压含水层(Ⅱ)

3)K6~煤12砂岩裂隙承压含水层(Ⅲ)

4)煤9~煤7砂岩裂隙承压含水层(Ⅳ)

5)煤5以上砂岩裂隙承压含水层(Ⅴ)

6)风化带裂隙、孔隙承压含水层(Ⅵ)

7)第四系底部卵石孔隙承压含水层(Ⅶ)

8)第四系中上部砂卵砾孔隙承压和孔隙潜水含水层(Ⅷ)

其中与矿井生产较密切的为Ⅰ、Ⅳ、Ⅶ

全矿预测涌水量:

最大涌水量 419.6 m3/h

正常涌水量 256.3 m3/h 1.3 煤质及煤层特征

1.3.1 井田内煤层及埋藏条件

煤层走向主体为东西走向 整体近似于长方形 煤层赋存比较稳定 全区发育

平均倾角为14°左右 可采煤层间距见表1-2

表 1-2 煤层间距见表

Tab.1-2 Seam pitch table

煤层

平均厚度(m)

煤层间距(m)

12-2 3

煤层赋存状态十煤组共分9、12-2分层 全区发育 见煤层柱状图 如图1-2

图1-2 综合柱状图

Fig.1-2 Synthesis column map

本区煤层中夹石在井田中部最薄 往南北两翼逐渐变厚 沿倾向方向变化小

沿走向方向向南北变化稍大 本组地层一般厚度72.60m 以粉砂岩为主 粘土岩含量减少

各种岩石所占的百分比为:粘土岩10.1% 粉砂岩类占52.6% 砂岩类占31.4% 石灰岩占2.9%

岩相组合上为浅海相薄层泥质碳酸盐岩和泻湖海湾相粉砂岩及砂岩沉积物的交替沉积 煤的容重见表1-3

表 1-3 煤的容重

Tab.1-3 Bulk density of coal

容重

最小

最大

平均

t/m3

1.19

1.46

1.30

本组内赋存三层石灰岩 由下而上命名为K4、K5、K6 其中K5石灰岩为深灰色泥质生物碎屑岩 时而接近钙质粘土岩

特点是含灰白色的动物介壳 富集成层

与深灰色泥质灰岩交替成细带状 形成明显的水平层理和水平波状层理 极易区别于其它石灰岩 厚度薄但比较稳定

本组比较突出的特点是出现了含煤沉积 是典型的海陆交互相沉积序列

井田内各煤层的伪顶多为薄层泥岩 直接顶一般为粘土岩或粉砂岩 底板多为粉砂岩次之 区内虽然岩性变化大 但有一定规律 即由东往西

由下向上岩性逐渐由细变粗 北部和中部较稳定 各类砂岩层理不甚发育 破碎易风化

具有较强的膨胀性 遇水后即软化

断裂带附近层间滑动发育 其内的巷道围岩不稳定 易冒落变形

位于煤层间的巷道有不同程度的移动和破坏

1.3.2 煤层的含瓦斯性、自燃性、爆炸性

本井田煤层瓦斯含量均很低 属低沼矿井 据化验资料

瓦斯绝对涌出量为:1.27~5.56m3/min平均4.75 m3/min 相对涌出量为:0.39~3.38m3/t平均1.17 m3/t 煤尘爆炸指数为:为38.42%~64.20%;本区由于煤燃点低 易自燃发火

煤尘试验结果为火焰长度40mm 岩粉量55% 具有爆炸性

自燃发火期为3-6个月

1.3.3 井田的勘探程度及进一步勘探要求

目前

勘探程度已达到精查

确定了高级储量为50%以上 但为了满足以后生产要求 应提高一水平的勘探程度 使高级储量达到70%以上井田境界及储量 2.1 井田境界 2.1.1 井田范围

本井田西部以I号勘探线和F1断层为界 东部以VI号勘探线为界 北部以-300等高线为界 南部以-750等高线为界

井田内赋存有9、12-2号两个可采煤层

2.1.2 边界煤柱留设

矿井走向长5km 倾斜长2.2km 井田面积11km2 井田内地形比较完整

井田四周依据相关规定和安全考虑分别留设20m的边界煤柱 由于井田西面和南面为断层所包围

故西部和南部的井田边界即为断层保护煤柱和井田境界保护煤柱 按《煤矿安全规程》[2]规定 边界煤柱的留法及尺寸:

1)井田边界煤柱留30m;

2)阶段煤柱斜长60m 若在两阶段留设

则上下阶段各留30m;

3)断层煤柱每侧各为20m;

4)采区边界煤柱留10m

根据参考《煤炭工业设计规范》[1]和《矿井安全规程》[2]的相关数据要求和规定 本井田所留的各种保护煤柱均合理 符合规定

2.1.3工业广场保护煤柱留设

由《设计规范》规定:工业场地占地面积:45-90万t/年 1.2~1.3公顷/10万t;120-180万t/年 0.9~1.0公顷/10万t;240-300万t/年 0.7~0.8公顷/10万t 400-600万t/年

0.45-0.6公顷/10万t 本矿井设计年产90万t 则工业广场占地面积为S=(90/10)*1.2=10.8公顷=108000m2 则工业广场设计成长380m 宽290m的矩形

在确定地面保护面积后 用移动角圈定煤柱范围

工业场地地面受保护面积应包括保护对象及宽度15m的围护带

在工业场地内的井筒 圈定保护煤柱时

地面受保护对象应包括绞车房、井口房或通风机房、风道等 围护带宽度为15m

2.1.4 边界的合理性

在本井田的划分中 充分的利用到现有条件 既降低了煤柱的损失

也减少了开采技术上的困难 使工作面的部署较为简易 同时

本井田的划分使储量与生产相适应

矿井生产能力与煤层赋存条件、开采技术装备条件相适应 井田有合理的尺寸

条带尺寸满足《煤炭工业设计规范》[1]的要求 走向长度划分合理

使矿井的开采有足够的储量和足够的服务年限 避免矿井生产接替紧张

根据《煤炭工业设计规范》[1]的规定 采区开采顺序必须遵守先近后远 逐步向边界扩展的原则 并应符合下列规定:

1)首采采区应布置在构造简单 储量可靠

开采条件好的块段

并宜靠近工业广场保护煤柱边界线

2)开采煤层群时 采区宜集中或分组布置 有煤和瓦斯突出的危险煤层

突然涌水威胁的煤层或煤层间距大的煤层 单独布置采区

3)开采多种煤类的煤层 应合理搭配开采

综上所述

矿井首采区定在靠近工业广场的西北部 采区储量丰富

有利于运输的集中和减少巷道的开拓费用 所以井田划分是合理的 因此 综上来看

本井田的划分是合理的

也就是说本井田设计的边界是合理的

2.2 井田的储量

2.2.1 井田储量的计算原则

1)按照地下实际埋藏的煤炭储量计算 不考虑开采、选矿及加工时的损失;

2)储量计算的最大垂深与勘探深度一致 对于大、中型矿井 一般不超过1000m;

3)精查阶段的煤炭储量计算范围 应与所划定的井田边界范围相一致;

4)凡是分水平开采的井田 在计算储量时

也应该分水平计算储量;

5)由于某种技术条件的限制不能采出的煤炭 如在铁路、大河流、重要建筑物等两侧的保安煤柱 要分别计算储量;

6)煤层倾角不大于15度时

可用煤层的伪厚度和水平投影面积计算储量;

7)煤层中所夹的大于0.05m厚的高灰煤(夹矸)不参与储量的计算;

8)参与储量计算的各煤层原煤干燥时的灰分不大于40%

2.2.2 矿井工业储量

矿井的工业储量:勘探地质报告中提供的能利用储量中的A、B、C三级储量 本井田的工业储量的计算:

1)工业储量

井田煤层埋藏深度为-300~--750标高之间

工业储量为:

Eg=11000000×(4+3)×1.3/cos14=103195876.3t

2)井田永久煤柱

井田永久煤柱损失包括铁路、井田境界、断层防护煤柱 和浅部矿井水下开采防水煤柱

a断层煤柱损失

断层的两侧各留20m的保护煤柱 此断层的面积为1188×40=47520m2

故此断层保护煤柱损失为:47520×(3+4)×1.3=43.2万t

b井田境界煤柱损失

井田境界留设30m的边界煤柱

总长为13528m;井田境界保护煤柱所占面积为405840m2 经计算

故境界保护煤柱损失为:405840×7×1.3=369.31万t

P1=43.2+369.31=412.51万t

3)矿井设计储量

Es= Eg-P1=10319.58-412.51=9907.07万t

4)采区回采率

矿井采区回采率

应该符合下列规定:厚煤层不应小于75﹪;中厚煤层不应小于80﹪;薄煤层不应小于85﹪ 全矿采区回采率按下式计算:

==0.77

5)矿井设计可采储量

Ek=(Es-Pz)×(2-1)

式中

Ek--设计可采储量

Es--井田设计储量

Pz--煤柱损失

--采区平均回采率

煤柱损失Pz主要包括工业广场压煤、阶段间煤柱等

工业广场压煤Y

9煤层压煤量=(828+905)×683÷2×4×1.3=307.75万t

12-2煤层压煤量=(840+926)×704÷2×3×1.3=242.44万t

Y=307.75+242.44=550.19万t

阶段煤柱=(2851 +1861)×(4+3)×1.3÷cos14= 4.42 t

Pz=550.19+4.42=554.61

设计可采储量:Ek =(Es-Pz)

=(9907.07-554.61)0.77= 7201.4万t 矿井的年产量、服务年限及一般工作制度 3.1 矿井年产量及服务年限 3.1.1 矿井的年产量

矿井的年产量(生产能力)确定的合理与否

对保证矿井能否迅速投产、达产和产生效益至关重要

而矿井生产能力与井田地质构造、水文地质条件、煤炭储量及质量、煤层赋存条件、建井条件、采掘机械化装备水平及市场销售量等许多因素有关 经分析比较

设计矿井的生产能力确定为0.9 Mt/a 合理可行 理由如下:

1)储量丰富

煤炭储量是决定矿井生产能力的主要因素之一 本井田内可采的煤层达到2层 保有工业储量为1.03亿t 按照0.9Mt/a的生产能力 能够满足矿井服务年限的要求

而且投入少、效率高、成本低、效益好

2)开采技术条件好

本井田煤层赋存稳定 井田面积大 煤层埋藏适中 倾角小 结构简单

水文地质条件及地质构造简单 煤层结构单一

适宜综合机械化开采 可采煤层均为厚煤层

3)建井及外运条件

本井田内良好的煤层赋存条件为提高建井速度、缩短建井工期提供了良好的地质条件 本井田内交通十分便利

刘官屯矿井田大部位于河北省丰南市境内 地处交通要塞

是华北通往东北的咽喉地带

京沈、京秦、大秦三大铁路横贯全境 津山、京沈干线km横跨东西 东有秦皇岛港 西邻天津港

新建的唐山港位于津秦两港之间 境内铁路公路交织成网 交通发达

为煤炭资源的运输提供了便利条件

综上所述

由于矿井优越的条件及外部运输条件

矿井的生产能力为90万t是可行的、合理的

并且符合《煤矿安全规程》和《设计规范》的相关要求

3.1.2 服务年限

矿井保有工业储量1.03亿t 设计可采储量7201.4万t 按0.9Mt/a的生产能力 考虑1.4的储量备用系数 则

式中: K--矿井备用系数 取1.4

A--矿井生产能力 0.9Mt/a

Zk--矿井可采储量 万t

P--矿井服务年限 年

代入数据得

P= 7201.4 /(90×1.4)=57.15年

因为服务年限大于45年 所以符合《设计规范》要求

3.1.3 矿井的增产期和减产期 产量增加的可能性

建井后产量出现变化 其可能性为:

3-1)(1)地质条件勘探存在一定的误差 有可能出现新的断层

2)由于国民经济发展对煤炭的需求变化 导致矿井产量增减

3)矿井的各个生产环节有一定的储备能力 矿井投产后

迅速突破设计能力 提高了工作面生产能力

4)工作面的回采率提高 导致在相同的条件下 矿井服务年限增加

5)采区地质构造简单 储量可靠

因此投产后有可靠的储量及较好的开采条件

3.2 矿井的工作制度

结合本矿井煤层条件、储量情况、以及达成产量所需要的时间;同时考虑设备检修以及工人工作时间等实际的因素

在满足《煤矿安全规程》的条件之下 本矿井工作制度安排如下:

矿井工作日为330天

本矿井工作制度采用“三八”制 两班采煤 一班检修

日提升工作时间为16小时井田开拓

井田开拓方式应该通过对矿井设计生产能力 地形地貌条件 井田地质条件 煤层赋存条件

开采技术及装备设施等综合因素进行方案比较以及系统优化之后确定 因此

在解决井田开拓问题时 应遵循以下原则:

1)贯彻执行有关煤炭工业的技术政策

为多出煤、早出煤、出好煤、投资少、成本低效率高创造条件 要使生产系统完善、有效、可靠

在保证生产可高和安全的条件下减少开拓工程量;尤其是初期建设工程量 节约基建投资 加快矿井建设

2)合理集中开拓部署 简化生产系统 避免生产分散

为集中生产创造条件

3)合理开发国家资源 减少煤炭损失

4)必须贯彻执行有关煤矿安全生产的有关规定 要建立完善的通风系统 创造良好的生产条件 减少巷道维护量

使主要巷道经常保持良好状态

5)要适应当前国家的技术水平和设备供应情况

并为采用新技术、新工艺、发展采煤机械化、综合机械化、自动化创造条件

6)根据用户需要

应照顾到不同煤质、煤种的煤层分别开采 以及其他有益矿物的综合开采

4.1 井筒形式、位置和数目的确定 4.1.1 井筒形式的确定

井筒是联系地面与井下的咽喉 是全矿的枢纽

井筒选择应综合考虑建井期限 基建投资

矿井劳动生产率及煤的生产成本 并结合开拓的具体条件选择井筒

矿井开拓 就其井筒形式来说

一般有以下几种形式:平硐、斜井、立井和混合式 下面就几种形式进行技术分析 然后进行确定采用哪种开拓方式

平硐:一般就是适合于煤层埋藏较浅 而且要有适合于开掘平硐的高地势 例如山地或丘陵 也就是要有高于工业广场以上具有一定煤炭储量 本井田地势比较平缓

高低地的最大高差也不过几十米 而且煤层埋藏较深 很显然

利用平硐开拓对于本井田来说是没有可行性的

斜井:利用斜井开拓首先要求煤层埋藏较浅、倾角较大的倾斜煤层 且当地地表冲积层较厚 利用竖井开拓困难时 即便是煤层埋藏较深

不惜打较长的斜井井峒的条件下才可能使用 而本井田的条件却不尽如此

全部的可采煤层均赋存于-50m以下 最深达-500m 这样一来

如果按照皮带斜井设计时 倾角不超过17度的话

此时斜井的井筒长度将是很大的 太长的斜井提升几乎是不可能的 而且工程量也是非常巨大的

跟着相关的维护和运输等费用也会大幅度的增加

以上种种因素决定了本井田使用斜井开拓也是不可行的

立井:适用于开采煤层埋藏较深且地表附近冲积层不厚的情况 而且越是这种情况就越显示出立井的优越性

混合式:对于本矿井来说 由于利用平硐和斜井都是不可行的 所以混合式也就不予考虑

本井田的煤层埋藏较深 地表附近的冲积层又比较薄 它对井筒的开凿将不会造成影响 而且立井开拓的一大好处就是 如果基岩赋存较稳定时 开凿以后

其维护费用几乎为零 本井田采用立井开拓时 对于煤炭的提升也较合适

根据《煤炭工业设计规范》[1]规定:煤层埋藏较深、表土层较厚、水文地质条件复杂及主要可采煤层赋存比较稳定.储量比较丰富等特点.本设计采用立井开拓. 4.1.2 井筒位置及数目的确定

1)井筒的数目

a 根据本矿区煤层的埋藏的具体条件 各井筒均采用立井

b主井、副井、风井各一个(见图4-

1、4-

2、4-3)

c井筒参数 表4-1井筒参数

Tab.4-7 Well chamber parameter 井筒名称

用途 井筒长度/m 提升方法

断面尺寸

直径/m 净断面积/㎡

主井 提升煤炭

520 箕斗提升

5.5

23.75

副井

进风、进人、运料排矸

480 罐笼提升

7.0

34.46

风井

回风兼作

安全出口

200

6.0

28.30

该设计采用三个井筒的井田开拓方式:主井、副井、风井 通风方式为中央边界式通风

2)井筒的位置

选择井筒位置的原则:

a 有利于第一开采水平的开采 并兼顾其它水平

有利于井底车场的布置和主要运输大巷位置的选择 石门工程量小

b有利于首采采区不只在井筒附近的富煤块段 首采采区少迁村或不迁村

井田两翼储量基本平衡

c 井筒不易穿过厚表土层、厚含水层、断层破碎带、煤与瓦斯突出煤层或较弱岩层

d 工业广场应充分利用地形 有良好的工程地质条件 且避开高山 低洼地和采空区 不受滑坡和洪水威胁

e工业广场宜少占农田少压煤

f 水源 电源较近

矿井设在铁路专用线路短 道路布置合理点

便于布置工业场地的位置 主要是根据以下一些原则:

a有足够的场地

便于布置矿井地面生产系统及其工业建筑物和构筑物

b有较好的工程、水文地质条件

尽可能避开滑坡、崩岩、溶洞、流沙层等不良地段 这样既便于施工

又可以防止自然灾害的侵袭

c便于矿井供电、给水、运输

并使附近有便于建设居住区、排矸设施的地点

d避免井筒和工业场地遭受水患、井筒位置要高于当地最高洪水位

e充分利用地形、使地面生产系统 工业场地总平面布置及其地面运输合理 并尽可能是平整场地的工程量少

对井田开采有利的井筒位置 确定依据:

倾斜方向的位置:

从保护井筒和工业场地繁荣煤柱损失看 愈靠近浅部

煤柱的尺寸愈小;愈靠近深部 煤柱的损失愈大 因此

井筒沿倾斜方向位于井田中上

走向的位置

a)井筒沿井田走向的位置应在井田中央 当井田储量不均匀分布时 应在储量分布的中央

以次形成两翼储量比较均衡的双翼井田

应该避免井筒偏于一侧造成单翼开采的不利局面

b)井筒设在井田中央时 可以使沿井田走向运输工作量小

而井田偏于一侧的相应井下运输工作量比前者要大

c)井筒设在井田中央时 两翼分配产量比较均衡

两翼开采结束的时间比较接近

d)井筒设在井田中央时 两翼风量分配比较均衡 通风线路短 通风阻力小

综合考虑

主副井筒位置选在井田走向中央位置 位于倾向中上部

风井井口位置的选择:

风井井口位置的选择 应在满足通风要求的前提下 与提升井筒的贯通距离较短 并应利用各种煤柱

有条件时风井的井口也可以布置在煤层露头以后

综合考虑

本矿井的风井沿走向布置在井田的边界中部

图4-1主井断面图

Fig.4-1 Main shaft cross-section fig

主井净直径5.5m 提升容器为9t箕斗一对

采用Jkm4×4(Ⅱ)型多绳磨擦轮提升机 配JRZ170/49-16型绕线式异步电动机两台 每台1000KW 最大提升速度为7.38m/s 该提升设备担负本矿全部煤炭提升

图 4-2副井断面图

Fig.4-2 Auxiliary shaft cross-section fig

副井净直径7.0m 提升容器为一吨双层四车多绳罐笼一对(一宽一窄)采用Jk.25×4(Ⅱ)型多磨擦轮提升机 配JRZ500-12型绕线异步电动机两台 每台500KW 最大提升速度8.02m/s

副井每次提升或下放四辆重车时 另一侧必须配四辆空车

下放液压支架时其重量限制在10.5t以内(包括平板车重)另一侧必须配两辆重车

图4-3风井断面图

Fig.4-3Air shaft cross-section fig

风井位于井田上部边界中部 净直径6.0m用于排风 同时做为安全出口

4.2 开采水平的设计 4.2.1 水平划分的原则

确定原则:

1)根据《煤炭工业设计规范》规定:

(1)90万t的矿井第一水平服务年限不得小于20年 缓倾斜煤层的阶段垂高为200-350m;

(2)条件适宜的缓倾斜煤层 宜采用上下山开采相结合的方式;

(3)近水平多煤层开采 当层间距不大时 宜采用单一水平开拓

2)根据煤层赋存条件及地质构造

煤层的倾角不同对阶段高度的影响较大 本井田的属于缓倾斜煤层 其平均倾角为14°

煤层标高从-750m标高到-300m标高

根据《煤炭工业设计规范》规定缓倾斜煤层的阶段垂高为200~350m 故划分为两个阶段

再结合本井田的煤层标高差较小 阶段斜长较短的实际情况 宜采用单水平上下山开采

3)根据生产成本

阶段高度增大 全矿井水平数目减少 水平储量增加

分配到每t煤的折旧费减少

但阶段长度大会使一部分经营费相应增加

其中随着阶段增大而减少的费用有:井底车场及硐室、运输大巷、回风大巷、石门及采区车场掘进费、设备购置及安装费用等;相应增加的费用有:沿上山的运输费、通风费、提升费、倾斜巷道的维修费

此外还延长生产时间、增加初期投资

因此要针对矿井的具体条件提出几个方案进行经济技术比较 选择经济上合理的方案

4)根据水平接替关系

在上一水平减产前 新水平即作好准备

因此一个水平从投产到减产为止的时间 必须大于新水平的准备时间 正常情况下

大型矿井的准备时间要1.5~2年

井底车场、石门及主要运输大巷亦需要1.5~2年 延伸井筒需要1年

合计需要4~5年的时间

开拓延伸加上水平过渡需要7~9年 所以每个矿井在确定水平高度时

必须使开采时间大于开拓延伸加上水平过渡所需要的时间

根据《煤炭工业矿井设计规范》:当煤层倾角大于12度时 宜采用走向长壁采煤法

本矿井煤层倾角平均为14度 故采用走向长壁采煤法

4.2.2 开采水平的划分

根据本井田的实际情况 以及煤层赋存的条件

提出两个在技术上可行的方案 :

方案一:采用立井单水平上下山开采

总的来说

两个方案再在技术术上均可行 各有优缺点

需要通过经济比较 才能确定其优劣

首先对下阶段的巷道布置在技术上比较两方案的优缺点 详见表4-2

表4-2两种开拓方案的技术分析表

Tab.4-2 two kind of development plan technical analytical table

方案

方案一:采用立井单水平上下山开采

方案二:采用立井双水平加暗斜井上山开采

(1)开拓巷道工程量小 两阶段共用一组大巷和平巷 掘进率较低

(2)提升运输距离较短(3)保护煤柱损失少 可以提高回采率

(4)下山阶段辅助运输容易

(1)采准巷道施工容易 工艺简单

(2)对工作面通风有利 可以避免下行风带来的缺点 通风费用较少

(3)对于煤炭的回采有利

(4)延伸井筒的施工比较方便

(1)施工技术复杂 设备要求多

(2)掘进速度慢 掘进费用高(3)下山开采

工作面生产难度增加 排水困难

(4)顺槽内运输费用较高 生产费用较高

(5)两顺槽间风压差别较大 通风困难

(1)开拓巷道工程量大 增加准备时间

(2)提升能力小 动力消耗大 提升费用高

(3)风路长 风阻大 通风费用高

(4)暗斜井的维护较为困难 维护费用高

对于两个方案进行经济比较:

因两个方案划分的采区基本相同 所以采区上山的经济比较可以忽略不计 具体比较如下:

图4-4立井开拓方案一

Fig.4-4 vertical shaft development planNo.1

图4-5立井开拓方案二

Fig.4-5 Vertical shaft development plan No.2

表4-3案一 单水平上下山开采

Table 4-3 pioneering single-level downhill

项目

工程量

单价

费用

运输提升 万t

1520万t

0.669元/t

1016.8万元

排水 万m3

404.3万m3

0.1525元/m3

61.65万元

合计

1078.4万元

表4-4方案二:暗斜井延伸 两水平开采

Table 4-4 Option 2: Inclined Shaft extension the two levels of exploitation

名 称

掘 进 费 用

长度

(m)

费用

(元/m)

总费用

(万元)

运输暗

斜 井

922

3000

276.6

回风暗

斜 井

922

3000

276.6

井底车场

1100

3000

330

运输大巷

1269

3000

380.7

合计

1263.9万元

通过两个方案进行经济比较 很显而易见

方案二比方案一明显增加两条912m的暗斜井 以及增加相应的采准巷道 掘进费用明显高于方案一

而且相应的运煤、提升费用尚未计入表中 使得方案一的优势更加突出 所以方案一为最优方案

综上所述

本设计采用单水平上下山联合的方式

4.2.3 设计水平储量及服务年限

本井田设计水平为-580水平

第一阶段的设计可采储量为3900.5万t 设计水平的服务年限为34.1年

表4-5 水平储量及服务年限

Tab.4-5 Horizontal reserves and service life

水平序号

可采储量/万t

服务年限/年

第一阶段

3900.5

30.96

第二阶段

3300.9

26.19 4.2.4 设计水平的巷道布置

由于本井田煤层间距较近层间距<80m 故采用集中大巷布置 为便于维护

将大巷布置到12-2煤层底板岩层中 又由于设计中通风方式为边界式 所以采用两条大巷布置

大巷距煤层底板间距一般30m

大巷支护方式掘进时期及时支护采用锚杆支护 后期采用混凝土砌碹 巷道断面特征见图4-6

4.2.5 大巷的位置、数目、用途和规格

1)大巷的位置

选择大巷位置的原则:掘进量少 费用少 维护条件好 煤柱损失少

有利于通风和防火 运输方便

本矿井的可采煤层有两层

双轨大巷布置在12-2号煤层底板岩层的-580m水平处 距煤层底板30m

2)大巷的数目和用途

根据运输和通风条件 本矿井共布置一条双轨大巷

承担整个水平运煤、进风、运料、排水、排矸、行人等任务

3)大巷的规格

因为大巷的服务年限都较长 所以都采用锚喷支护 各大巷具体断面如下:

图 4-6 双轨大巷断面图

Fig.4-6 Transport the big lane sectional drawing

大巷运输方式采用矿车运输 轨型为18公斤/m 轨道大巷轨距600 mm 对大巷运输方式选择的依据是:

1)由于设计生产能力小 采用此种运输方式能满足要求

2)吨公里运输费较低

3)运输能力大 机动性强

随着运距和运量的变化可以增加列车数

4)矿车运煤可同时统一解决煤炭、矸石、物料和人员的运输问题

5)对巷道直线度要求不高 能适应长距离运输 4.3 采区划分及开采顺序 4.3.1 采区形式及尺寸的确定

根据井田地质情况 煤层赋存较稳定 煤层厚度在4左右 井田走向长度5km 井田内两条大的断层构造

以上条件很适合布置综合机械化采煤

而设计规范规定综采工作面双翼采区走向长度应超过1500~2000m 因此将井田共划分四个采区 其中一阶段两个上山采区 北一采区和北二采区 均为双翼采区

二阶段两个下上采区:南一采区 南二采区

表4-6 井田各采区技术特征表

Table 4-6 Mine technical characteristics of the mining area Table 采区

走向长度/m 倾斜长度/m 工业储量/万t 采煤方式 落煤方式 准备方式 N1 2416 1197 2869.2 走向长壁 综采

双翼上山采区 N2 1846 1038 1720.2 走向长壁 综采

双翼上山采区 S1 2281 756 2043.6 走向长壁 综采

双翼下山采区 S2 2226 904 1686.6 走向长壁 综采

双翼下山采区 合计 8769 3895 8319.6

4.3.2 开采顺序

合理的开采顺序是在考虑煤层采动影响的前提下 有步骤、有计划的按照一定的顺序进行 保证采区、工作面的正常接替 以保证安全、均衡、高效的生产 并且有利于提高技术经济指标

合理的开采顺序可以保证开采水平、采区、回采工作面的正常接替 保证矿井持续稳定生产 最大限度地采出煤炭资源

减少巷道掘进率及维护工程量;合理的集中生产 充分发挥设备能力 提高技术经济效益 便于防止灾害 保证生产安全可靠

根据《矿井设计规范》规定

新建矿井采区开采顺序必须遵循先近后远 逐步向井田边界扩展的前进式开采 多煤层开采时 一般先采上层

后采下层的下行式开采

还应厚、薄煤层合理搭配开采;开采有煤与瓦斯突出煤层时 应按开采保护层、抽放瓦斯及单独开采等技术措施要求 顺序开采

为保证均衡生产 一个采区开始减产

另一个采区即应投入生产 为此

必须准备好一个新的采区 所以

一个采区的服务年限应大于一个采区的开拓准备时间

由于双翼两个采区条件相近大巷长度又大致相等

所以采区开采顺序可任选一个先采 本设计开采顺序为:N1采区 S1采区 N2采区 S2采区

煤层间下行式 区段内后退式回采

4.4 开采水平井底车场形式的选择 4.4.1 开采水平井底车场选择的依据

井底车场是连接井筒和井下主要运输巷道的一组巷道和硐室的总称 是连接井下运输和提升的枢纽 是矿井生产的咽喉 因此

井底车场设计是否合理

直接影响着矿井的安全和生产

根据《矿井设计规范》规定

井底车场布置形式应根据大巷运输方式、通过井底车场的货载运量、井筒提升方式、井筒与主要运输大巷的相互位置、地面生产系统布置和井底车场巷道及主要硐室处围岩条件等因素 经技术经济比较确定

由于本设计中主井提升方式为箕斗提升 大巷采用矿车运输

井底车场与大巷距离较远且需用石门联系 从主副井井底车场到大巷均与石门联系 所以井底车场型式选为立式车场 如图4-7

1――主井

2――副井

3――井底煤仓

4――水仓

5――水泵房 6――中央变电所 7――清煤斜巷 图 4-7 井底车场示意图

Fig.4-7 Shaft station abridged general view cross-section distinction 4.4.2 井底车场主要硐室

根据《矿井设计规范》规定 井下硐室应根据设备安装尺寸进行布置 并应便于操作、检修和设备更换 符合防水、防火等安全要求 井下主要硐室位置的选择 应符合下列规定:

a应选择在稳定坚硬岩层中 应避开断层、破碎带、含水岩层;

b井下硐室不布置在煤与瓦斯突出危险煤层中和冲击地压煤层中

井底车场的主要硐室包括煤仓、箕斗装载硐室、中央变电所、中央水泵房及火药库

1)井底煤仓及装载硐室

井底煤仓位置应根据大巷运输方式、装载硐室位置、围岩条件及装载胶带机巷与装载硐室相互联系等因素比较确定

井底煤仓宜选用圆形直仓 井底煤仓的有效容量按下式计算:

(4-1)

式中:

Qmc--井底煤仓有效容量(t)

Amc--矿井日产量(t)

0.15~0.25--系数 大型矿井取大值 小型矿井取小值 本设计取0.15

则井底煤仓容量为:

Qmc=0.15×900000/330=410t

煤仓为圆形垂直煤仓 见图4-8

图4-8垂直煤仓结构图

Fig.4-8 The diagram of coal Depot

1--上部收口;2--仓身;3--下口漏斗及溜口闸门基础;4--溜口及闸门

2)中央变电所、中央水泵房和水仓

中央变电所和中央水泵房联合布置

以便使中央变电所向中央水泵房供电距离最短 一般布置在副井井筒与井底车场连接处附近当矿井突然发生火灾时 仍能继续供电、照明和排水 为便于设备的检修及运输 水泵房应靠近副井空车线一侧

水泵房与变电所之间用耐火材料砌筑隔墙 并设置铁板门为防止井下突然涌水淹没矿井 变电所与水泵房的底板标高应高出井筒与井底车场连接处巷道轨面标高0.5m 水泵房及变电所通往井底车场的通道应设置密闭门 水仓入口

一般设在空车线 井底车场标高最低处 确定水仓入口时 应注意水仓装满水

中央变电所和中央水泵房建成联合硐室 具体见图4-9:

图 4-9 中央变电所和中央水泵房联合硐室

Fig.4-9 Substation capacity and water pump house union booth

3)火药库

由于本矿井采用全部机械化采煤 所以相对用火药较少

选用储量较小的壁槽式火药库就可以满足井下正常工作的需要

库房与巷道的关系:

a库房距井筒、井底车场、主要运输巷道、主要硐室和影响全矿井大部分采区通风的风门的直线距离应不小于80m;

b库房距地面或上下巷道的直线距离不小于15m

根据本设计井底车场的实际位置 采用容重2400kg壁槽式标准爆破材料库 该材料库具有独立的通风系统

打一条通风钻孔直接与地面直接相连 火药库的具体结构见图4-10:

图 4-10 壁槽式爆破材料库

Fig.4-10 Blast material storage

序号

巷道名称

序号

巷道名称

轨道大巷 2

库房巷道

炸药壁槽

雷管壁槽

电气壁槽

消防器材

放炮工具室

发炮室

防火门 10

回风立眼

4.5 开拓系统综述 4.5.1 系统概况 1)开拓方式

本设计矿井采用“立井多水平、集中运输大巷、走向长壁相结合”的开拓方式 采用立井开拓 共3个井筒

主箕斗立井、副罐笼立井、边界风井 采用中央边界式通风方式

矿井开采水平在-580m标高位置 矿井正常生产时

一个采区一个综采工作面保证年产量

2)生产系统:

a 通风系统:由副井进风 主回风井回风

一采区通风路线是:副井 轨道石门 轨道大巷 采区轨道上山 区段轨道石门 区段运输平巷 工作面

区段回风平巷 区段回风石门 采区运输上山 回风大巷 最后由主回风井排出地面

火药库通风:副井入风 采用钻孔立眼回风

b 运煤系统:工作面落煤 区段运输平巷 区段运输石门 溜煤眼下溜 采区运输上山 采区煤仓 运输大巷 运输石门 井底煤仓

最后由主井箕斗提升至地面

c 运矸系统:掘进工作面 区段轨道平巷 采区回风石门 采区轨道上山 轨道大巷 副井 地面

d 运料运人系统:地面 副井 轨道大巷 采区轨道上山 区段回风石门 区段轨道平巷 直至工作面

e 排水系统:采掘工作面 区段平巷 区段轨道石门 采区轨道上山 轨道大巷 井底车场 水仓 副井 地面

4.5.2 移交生产时井巷的开凿位置、初期工程量

1)矿井移交生产时的标准

a 井上、下各生产系统基本完成 并能进行正常的安全的生产;

b “三个煤量”达到规定标准;

c 回采工作面长度一般不少于设计回采工作面长度的50﹪;

d 工业广场内的行政、公共设施基本完成;

e 居住区及其设施基本完成

根据以上标准确定井巷的开凿位置

2)移交生产时井巷开凿的位置

在矿井设计中

全矿年产量由一个综采工作面保证达产 移交生产时

运输上山、轨道上山已经掘进到开采位置

煤层运输平巷、回风平巷已掘完并通过区段石门与上山相连 然后掘开切眼 贯通上下顺槽

3)初期工程量

初期移交工程量是指移交时掘进的各类巷道硐室、井筒等为生产服务的设施的总的掘进体积

初期移交开拓工程量见表4-7:

表4-7交初期工程量表

Tab.4-7 Erealy transfer engineering amount table

名称

长度/m

掘进断面面积/ m2

掘进体积/

主井

520

23.75

12350

副井

480

34.46

16540..8

风井

200

28.30

5660

井底车场

1100

18.4 20240 主要运输石门 130 16.9 2197 主要轨道石门 130 16.9 2197 运输大巷 1600 16.9 27040 运输上山 1170 16.9 19773 轨道上山 1170 16.9 19773 轨道石门 80 16.9 1352 回风石门 259 16.9 4377.1 运输顺槽 1430 16.1 24167 回风顺槽 1430 12.6 18018 回风大巷 1170 16.4 19188 开切眼 180

12.6

2268

总计

195320.9 采准巷道布置

5.1 设计采区的地质概况及煤层特征 5.1.1 采区概况

设计采区为一采区 该采区位于井田西翼 西至井田勘探线

东部边界到工业广场保护煤柱线 大巷布置在-580水平采区平均走向长2416m 倾斜长1256m 采区内共发育两个个可采煤层 煤厚分别为3m、4m 煤层赋存简单

无断层及火成岩侵入等地质构造 煤层倾角平均为14度 煤变质程度高 煤质好

绝对涌出量为10.5m3/min 发火期短

煤层直接顶较厚并且软弱

5.1.2 煤层地质特征及工业储量

一采区做为首采区 是上山开采 采区开采两层煤

煤层平均倾角为14° 属于缓倾斜煤层 采区内地质构造简单 无断层 煤质较好

水分含量0.56~15.54% 瓦斯相对涌出量为10.5m3/t 煤尘无爆炸性危险自然发火期为3-6个月 煤层顶底板较为稳定

采区工业储量为3369.2万t

5.1.3 采区生产能力及服务年限

采区生产能力的基础是采煤工作面生产能力

而采煤工作面的产量取决于煤层厚度、工作面长度及推进度

1)采区生产能力A:

(5-1)

式中:L-回采工作面长度 取180m

V-工作面年推进度 工作面每日进4刀 截深0.8m 因此年推度为1056m

M-采高 4m

r-煤的容重 1.3t/

C-工作面回采率 厚煤层0.93

则: A=180×1188×4×1.3×0.93

=90.92万t/a

同时考虑5%的掘进出煤 则采区的生产能力为:

A总= A×(1+5%)=103.4×1.05=95.47万t/a;

再将上面计算出来的生产能力通过通风能力、风速和风量限制要求计算式中检验 得出符合要求

2)采区服务年限T:

(5-2)

式中: Z-本采区设计可采储量 2351.16万t

A-本区生产能力 90万t/a

=2351.16/90×1.4=18.65年

5.2 采区形式、采区主要参数的确定 5.2.1 采区形式

按照煤层群开采的联系为联合准备 即各煤层共用两个岩石上山和区段石门 煤层倾角平均为14°

瓦斯量低、顶底板均无较大涌水 根据煤层赋存条件

本设计采用走向长壁采煤法

5.2.2 采区上山数目、位置及用途

设计的上山在最下部煤层的底板开掘 运输上山作为采区的主运输 其内铺设皮带

运输采区工作面的出煤

轨道上山铺设轨道作为采区的辅助运输 运送矸石、设备、材料、兼作行人

5.2.3 区段划分

采区倾向长1256m 其中留4m的区段平巷 区段间保护煤柱留10m宽 井田境界煤柱30m 阶段煤柱30m 则本采区可以划分为6个区段 工作面长180m

5.3 采区车场及硐室 5.3.1 车场形式

区段上部车场为顺向平车场 中部为单向甩车场 下部为直向平车场

每个采区只有一个综采工作面 运输量不大

所以只设材料绕道车场 运料斜巷在大巷入口处取平由大巷进入车场绕道存车线 然后直接进入轨道上山 这种布置方式使用方便 运行可靠

1)上部车场:车场形式为顺向平车场(与回风道在同一水平)矿车或材料车经轨道上山提至平车场平台

然后沿着矿车行进方向经回风石门运至工作面或所需材料地点

2)车场:车场形式为石门甩车场形式 单道起坡方式

由轨道上山提升上来的矿车 通过甩车道甩到中部轨道石门中 再进到区段轨道平巷

3)下部车场:本下部车场的绕道属于顶板绕道 从上山来看

通过竖曲线落平后摘钩

沿车场的高道自动滑行到下部车场存车线 由井底来车

则进入车场的底道

自动滑行到下部车场的低道存车线后 挂钩由绞车房提升上去

根据轨道上山起坡点到大巷的距离 本车场属于斜式顶板绕道 [8] 5.3.2 采区煤仓

在采区煤仓的尺寸确定之前 首先对煤仓的容量进行确定:

按循环产量计算煤仓容量Q

Q=L×l×h×r

式中:L--工作面长度 m

l--截深 m

h--采高 m

r--煤的容重 1.3t/ m3

所以Q =180×0.8×4×1.3=748.8t

由以上计算作为依据 选择煤仓容量为800t

由经验

R=2.96≈3 h=25m

采区煤仓用混凝土收口 在煤仓上口设铁箅子 煤仓溜口与装车方向相同 闸门的形式为单扇闸门 开启方式为气动

5.4 采准系统、通风系统、运输系统 5.4.1 采准系统

由运输大巷开掘采区下部车场 向上开掘采区岩石集中运输上山 采区集中轨道上山 与回风大巷贯通 形成通风系统后

在区段上部开掘采区回风石门

在区段下部开掘区段运输石门与区段轨道石门分别与上层煤贯通

在上层煤开掘区段运输平巷

5-4)5-3)((区段回风平巷至采区边界开掘开切眼 形成工作面即可回采

掘进过程中同时开掘中部车场 上部车场及采区各种硐室

5.4.2 通风系统

新鲜风流副井→井底车场→轨道大巷→轨道上山→区段运输平巷→工作面→污风→区段回风平巷→采区回风石门→回风大巷→风井排出地面

5.4.3 运输系统

运煤系统:工作面出煤→区段运输平巷→运煤上山→采区煤仓→运输大巷→井底煤仓→从主井提到地面;

排矸系统:掘进巷道时所出的矸石由轨道上山运到轨道大巷之后到井底车场 然后从副井提至地面;

运料系统:副井→井底车场→轨道大巷→轨道上山→区段回风平巷→使用地点 [6] 5.5 采区开采顺序

本设计采区同一煤层采用区段顺序依次开采 工作面沿走向推进 采区内共有四个煤层 分别都是由远及近开采 由于顶底板岩性较好

受采动影响较小.先采上层煤 再采下层煤

工作面沿走向推进

5.6 采区巷道断面

根据《设计规范》规定

综采工作面胶带输送机顺槽巷道净断面不宜小于12㎡ 回风顺槽净断面不宜小于10㎡

输送机上下山的净断面不宜小于12㎡ 运料、通风、和行人上山的净断面 不宜小于10㎡

采区准备巷道工程量是指从区段石门起的所有巷道和硐室的工程量总和 具体见下表5-1:

表5-1采区准备工程量

Tab.5-1 Ready engineering amount of mining section 巷道 支护形式 断面大小 长度/m 体积

净/m2 掘/m2

净/m3 掘/m3 运输上山 锚喷 16.4 20.2 1170 19188 23634 轨道上山 锚喷 15.3 19.0 1170 17901 22230 绞车房 锚喷 13.5 15 35 472.5 525 采区下部车场 锚喷 13.1 14.9 150 1965 2235 采区煤仓 混凝土 15.9 19.6 21 333.9 411.6 区段运输石门 锚喷 16.4 20.2 145 2378 2929 区段回风石门 锚喷 15.3 19.0 145 2218.5 2755 运输顺槽 梯形棚子 12.3 13.7 1430 17589 19591 回风顺槽 梯形棚子 11.6 13.1 1430 16588 18733 开切眼 锚网 10.1 10.1 180 1848.3 1848.3

图5-1.运输顺槽巷道断面图

Fig.5-1 Transport trough tunnel section

图5-2 回风顺槽断面及特征

Fig.5-2 Returns to the wind to break the chart along the trough and charactic 6 采煤方法

6.1 采煤方法的选择 6.1.1 选择的要求

1)煤炭资源损失少 采用正规采煤方法

2)安全及劳动条件好

3)便于生产管理

4)材料消耗少

5)尽可能采用机械化采煤 达到工作面高产高效

6.1.2 采煤方法

本矿井的两层煤均属于缓倾斜煤层 根据本采区的形状特点

采用走向长壁后退垮落采煤法

表6-1 全井田各采区采煤方法

Table 6-1 entire mining area of the mine mining method

采区

采煤方法

落煤方式

顶板管理

一采区

走向长壁采煤法

综采局部普采

全部垮落法

二采区

走向长壁采煤法

综采局部普采

全部垮落法

三采区

走向长壁采煤法

综采局部炮采

全部垮落法

四采区

走向长壁采煤法

综采局部炮采

全部垮落法

下载采矿工程复习题word格式文档
下载采矿工程复习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    采矿工程毕业论文

    采矿工程本科毕业论文 题 目: ___________________ 专 业: ___________________ 姓 名: ___________________ 日期: 摘要 随着社会不断的发展和进步,我们人类跨入21世......

    080101 采矿工程

    业务培养目标:本专业培养具备固体(煤、金属及非金属)矿床开采的基本理论和方法,具备采矿工程师的基本能力,能在采矿领域等方面从事矿区开发规划、矿山(露天、井下)设计、矿山安......

    采矿工程自我鉴定

    采矿工程自我鉴定 为了提高自己的业务水平和能力, 我参加了2013 年的成人高考, 考取了中国矿业大学的采矿工程专业。于是开始了三年的学习。通过学习, 本人各方面都有了较大的......

    采矿工程课程设计

    煤矿地质实习报告 院系:中国矿业大学银川学院矿业工程系专业:采矿工程09级四班姓名: 王彪彪学号:120090201243 指导老师:黄利华蒋福兴 高常青徐志平编写日期:2011年6月26日......

    采矿工程实习报告

    2008年07月07日星期一早晨5点就起床准备出发实习基地,六盘水土城矿务局。这次实习是我们进入大学以来的第一次实习,所以同学们都很兴奋,毕竟是第一次,有好多人晚上都没睡得着。......

    采矿工程毕业设计(全文5篇)

    辽宁工程技术大学毕业设计 铁法大平五矿180万吨/年新井设计 摘 要 辽宁省铁法市大平五矿煤矿是一座未建成的新型矿井,通过对其钻孔资料的详细分析,初步探明该地区煤炭工业储......

    采矿工程专业(合集五篇)

    采矿工程专业一.学科发展简史及现状 采矿工程系的历史可以追溯至1909年的焦作路矿学堂时期。1919年,学校开始开办矿冶本科,同时授予采矿科工学学士学位。1981年11月采矿工程获......

    采矿工程专业排名

    采矿工程专业排名 中国矿业大学,东北大学,中南大学,北京科技大学、重庆大学、山东科技大学(原教育部重点学科)、贵州大学(国家级一类示范专业)。 其他开设采矿工程专业的学校:武汉科......