第一篇:采矿工程课程设计
煤矿地质实习报告
院
系:中国矿业大学银川学院
矿业工程系
专
业:采矿工程09级四班
姓
名: 王彪彪
学
号:120090201243
指导老师:黄利华
蒋福兴
高常青
徐志平
编写日期:2011年6月26日
目录 绪言
第一章 岩石
第一节 概述 第二节 沉积岩
第二章
第三章
其它
结束语 第三节 火成岩 第四节 变质岩
地层与化石
第一节 概述
第二节 前寒武纪地层 第三节 古生代地层与化石第四节 中生代地层与化石地质构造
第一节 概述 第二节 褶皱 第三节 断层 第四节 节理
第一节 外力地质作用
绪言
本次实习实在6月21日到6月23日进行的,经过一学期的煤矿地质学习使我们掌握和了解了许多关于地质方面的知识和技能。而这次实习给了我们实地考察的机会,一方面,通过实习理论结合实际加深了我们对课堂知识的理解和巩固,提高了在野外识别地质现象的能力。另一方面,通过这次实习使我们长了见识,也锻炼了体质和吃苦的精神。对我们今后的学习和生活有很大帮助。我们这次实习主要在银川周围的贺兰山和黄河沿岸进行。
贺兰山是中国宁夏回族自治区西北山岭。南北长220公里,东西宽20~40公里。南段山势缓坦,三关口以北的北段山势较高,海拔2,000~3,000公尺。主峰亦称贺兰山,海拔3,556公尺。山地东西不对称,西侧坡度和缓,东侧以断层临银川平原。贺兰山为强烈地震带,1739年银川附近发生8级地震,1561年在中宁、1709年在中卫都发生过7.5级地震。贺兰山北段煤藏丰富,新建有贺兰山煤炭工业基地。包兰铁路有支线由平罗伸至贺兰山的汝箕沟。贺兰山脉海拔2000~3000米,主峰敖包圪垯位于银川西北,海拔3556米,是宁夏与内蒙古的最高峰。贺兰山脉为近南北走向,绵延200多公里,宽约30公里,是中国西北地区的重要地理界线。山体东侧巍峨壮观,峰峦重叠,崖谷险峻。向东俯瞰黄河河套和鄂尔多斯高原。山体西侧地势和缓,没入阿拉善高原。贺兰山植被垂直带变化明显,有高山灌丛草甸、落叶阔叶林、针阔叶混交林、青海云杉林、油松林、山地草原等多种类型。其中分布于海拔2400~3100米的阴坡的青海云杉纯林带郁闭度大,更新良好,是贺兰山区最重要的林带。植物有青海云杉、山杨、白桦、油松、蒙古扁桃等665种。动物有马鹿、獐、盘羊、金钱豹、青羊、石貂、蓝马鸡等180余种。1988年国务院公布贺兰山自然保护区为国家级保护区,面积6.1万公顷。贺兰山自然资源丰富。山前冲积平原上草场辽阔,是宁夏滩羊的重要产区,所产滩羊二毛皮古称“千金裘”,毛色细润,卷曲如云。山区富含优质煤炭,有石嘴山等10座大型矿区。另外还有磷灰岩、石英砂岩、灰岩、粘土岩等矿产,其中小滚钟口生产的粘板岩质地细润,清雅莹柔,用它雕成的贺兰石砚是宁夏“五宝”之一。黄河沿岸主要考察了沙坡头和青铜峡。沙坡头黄河入川口风景区与国家AAAAA级旅游区沙坡头首尾相连、沙水相依,是沙坡头旅游区不可分割的重要组成部分,景区自然风光奇特,规模宏大,交通便捷。景区由3000余亩沙漠和5公里多长的沙漠河岸线组成,东西长4.3公里,南北宽5.2公里。地势呈西高东低,落差166米,这里集大漠、黄河、青山、绿洲、大型沙雕、大型滑沙场、世界上最大的沙生植物园和世界上第一条沙漠铁路为一体。黄河在这里转了个S大湾形成了天然的巨幅太极八卦图。有享誉世界的麦草方格治沙成果,创造了人进沙退的治沙奇迹,让世界属目,被联合国授予“全球环保50 黄河入川口,一面是香山耸立而起的山湾,一面是浩瀚的腾格里大模。古时候,这片沙滩和山湾,是闻名大河上下的黄河渡口,渡口叫黄河九渡。是古丝绸之路,黄河航道、驮盐古道以及胡汉贸易,茶马互市的古码头之一。码头北岸是浩如瀚海的腾格里沙漠,当年那些横走大漠的商队、跋涉沙海的驼队,就从黄河九渡过河,爬上对岸的沙坡,走向大漠深处,在黄沙滚滚的腾格里大漠里,洒下一路驼铃声,远走蒙古大草原,远走中亚和西亚。
君不见黄河之水天上来,东流到海不复回。从青藏高原到东海海口,屹立在青山大漠间的黄河入川口,与黄河的源头、黄河入海口并列成黄河水系的三颗星座,成为黄河上游、中游和下游的三颗明珠,照亮了大河万里奔流的航程。从高原峡谷到一马平川绿州,从夺腾急流到温柔缠绵,千里而来的黄河水在黄河入川口上,唱响了母亲河“横流千川,育我中华”的千古绝唱!奔流的黄河、巍峨的香山、葱郁的绿洲,广阔的卫宁平原、浩瀚的大沙漠形成了独特的塞上景观,不仅国内唯一,而且世界罕见。如梦如幻的大漠日出、壮丽如画的沙海夕阳、幻如魔境的月夜星空、梦魅般神秘的海市蜃楼景观,被誉为腾格里大沙漠“四绝景”。腾格里沙漠还具有沙层最厚、沙粒最细、沙质金黄、观赏性最强、沙漠野生动植物资源最丰富(植物453种,动物40多种)等特点。说起青铜峡,当然离不开黄河,黄河这条中华民族的母亲河,自青藏高原奔流而下,从甘肃省的黑山峡进入宁夏境内,婉蜒地穿过了牛首山,便形成了8公里长,高出水面数十米的陡壁,这就是青铜峡。峡谷两岸的高山峻岭上,奇岩怪石,姿态万千,古木森森,映蔽江面。然而从前这里却因为地势险峻,成了兵家必争之地。相传汉代名将马贤和唐代名将李靖都曾在此作战,古人有诗吟道:“青铜峡里韦州路,十去从军九不回。” 青铜峡峡谷的形成离不开大禹的功劳。相传远古时候,这里是由黄河水形成的大湖,由于贺兰山的阻挡而水流不畅。大禹来到此地,看到上游因湖水受阻而形成水涝,下游无水又旱情肆虐。为解救百姓苦难,这位治水英雄举起神斧,奋力开山,只听一声巨响,中间豁然出现一道峡谷,黄河之水得以疏通,下游旱情得到解除,上游也不再形成涝灾,农田滋润肥沃。就在大禹劈开贺兰山的时候,满天的夕阳把牛首山青色的岩石染成了迷人的古铜色,大禹见此情景,兴致勃勃地提笔在山岩上写下了“青铜峡”三个大字,从此这段峡谷便有了青铜峡的美名。人们为了纪念大禹的功绩,就在他住过的山洞旁,修建了一座禹王庙,并写诗赞道:”河流九曲汇青铜,峭壁凝晖夕阳红。疏凿传闻留禹迹,安澜名载庆朝宗.”
第一章 岩石
第一节概述
岩石,是固态矿物或矿物的混合物,其中海面下的岩石称为礁、暗礁及暗沙,由一种或多种矿物组成的,具有一定结构构造的集合体,也有少数包含有生物的遗骸或遗迹(即化石)。岩石有三态:固态、气态(如天然气)、液态(如石油),但主要是固态物质,是组成地壳的物质之一,是构成地球岩石圈的主要成分。基本解释: 由一种或通常由两种以上矿物所组成的固结或不固结的矿物体,其一部分是生物成因的(如煤),在自然界大量存在,构成地壳的很大一部分。基本定义: 石是天然产出的具稳定外型的矿物或玻璃集合体[1],按照一定的方式结合而成。是构成地壳和上地幔的物质基础。按成因分为岩浆岩、沉积岩和变质岩。其中岩浆岩是由高温熔融的岩浆在地表或地下冷凝所形成的岩石,也称火成岩或喷出岩。沉积岩是在地表条件下由风化作用、生物作用和火山作用的产物经水、空气和冰川等外力的搬运、沉积和成岩固结而形成的岩石;变质岩是由先成的岩浆岩、沉积岩或变质岩,由于其所处地质环境的改变经变质作用而形成的岩石。地壳深处和上地幔的上部主要由火成岩和变质岩组成。从地表向下16公里范围内火成岩和变质岩的体积占95%。地壳表面以沉积岩为主,它们约占大陆面积的75%,洋底几乎全部为沉积物所覆盖。岩石学主要研究岩石的物质成分、结构、构造、分类命名、形成条件、分布规律、成因、成矿关系以及岩石的演化过程等。它属地质科学中的重要的基础学科。性质
岩石工程性质无怪乎就是物质成分(颗粒本身的性)、结构(颗粒之间的联结)、构造(成生环境及改造、建造)、现今赋存环境(应力、温度、水)这几个方面的因素。如果是岩体,则取决于结构面和岩块两个方面,在大多数情况下,结构面起着控制性作用。
第二节 沉积岩
在地表常温、常压条件下,由风化物质、火山碎屑、有机物及少量宇宙物质经搬运、沉积和成岩作用形成的层状岩石。按成因可分为 碎屑岩、粘土岩 和化学岩(包括生物化学岩)。常见的沉积岩有 砂岩、凝灰质砂岩、砾岩、粘土岩、页岩、石灰岩、白云岩、硅质岩、铁质岩、磷质岩 等。沉积岩占地壳体积的7.9%,但在地壳表层分布则甚广,约占陆地面积的75%,而海底几乎全部为沉积物所覆盖。
沉积岩有两个突出特征:一是具有层次,称为层理构造。层与层的界面叫层面,通常下面的岩层比上面的岩层年龄古老。二是许多沉积岩中有“石质化”的古代生物的遗体或生存、活动的痕迹-----化石,它是判定地质年龄和研究古地理环境的珍贵资料,被称作是纪录地球历史的“书页”和“文字”。
第三节 火成岩
也成岩浆岩,当熔浆由火山通道喷溢出地表凝固形成的岩石,称喷出岩或称火山岩。常见的火山岩有玄武岩、安山岩和流纹岩等。当熔岩上升未达地表而在地壳一定深度凝结而形成的岩石称侵入岩,按侵入部位不同又分为深成岩和浅成岩。花岗岩、辉长岩、闪长岩是典型的深成岩。花岗斑岩、辉长玢岩和闪长玢岩是常 也称岩浆岩。来自地球内部的熔融物质,在不同地质条件下冷凝固结而见的浅成岩。根据化学组分又可将火成岩分为 超基性岩(SiO2,小于45%)、基性岩(SiO2,45%~52%)、中性岩(SiO2,52%~65%)、酸性岩(SiO 2、大于65%)和 碱性岩(含有特殊碱性矿物,SiO 2,52%~66%)。火成岩占地壳体积的64.7%。
第四节 变质岩
原有岩石经变质作用而形成的岩石。根据变质作用类型的不同,可将变质岩分为5类:动力变质岩、接触变质岩、区域变质岩、混合岩和交代变质岩。常见的变质岩有 糜棱岩、碎裂岩、角岩、板岩、千枚岩、片岩、片麻岩、大理岩、石英岩、角闪岩、片粒岩、榴辉岩、混合岩等。变质岩占地壳体积的27.4%。
岩石具有特定的比重、孔隙度、抗压强度和抗拉强度等物理性质,是建筑、钻探、掘进等工程需要考虑的因素,也是各种矿产资源赋存的载体,不同种类的岩石含有不同的矿产。以火成岩为例,基性超基性岩与亲铁元素,如铬、镍、铂族元素、钛、钒、铁等有关;酸性岩与亲石原素如钨、锡、钼、铍、锂、铌、钽、铀有关;金刚石仅产于金伯利岩和钾镁煌斑岩中;铬铁矿多产于纯橄榄岩中;中国华南燕山早期花岗岩中盛产钨锡矿床;燕山晚期花岗岩中常形成独立的锡矿及铌、钽、铍矿床。石油和煤只生于沉积岩中。前寒武纪变质岩石中的铁矿具有世界性。许多岩石本身也是重要的工业原料,如北京的汉白玉(一种白色大理岩)是闻名中外建筑装饰材料,南京的雨花石、福建的寿山石、浙江的青田石是良好的工艺美术石材,即使那些不被人注意的河沙和卵石也是非常有用的建筑材料。许多岩石还是重要的中药用原料,如麦饭石(一种中酸性脉岩)就是十分流行的药用岩石。岩石还是构成旅游资源的重要因素,世界上的名山、大川、奇峰异洞都与岩石有关。我们祖先从石器时代起就开始利用岩石,在科学技术高度发展的今天,人们的衣、食、住、行、游、医„„无一能离开岩石。研究岩石、利用岩石、藏石、玩石、爱石已不再是科学家的专利,而逐渐变成广大群众生活的组成部分。
第二章地层与化石
第一节 概述
构成地球表层成层的岩石,叫做地层,地层本来是一层一层地沉积而成的,一般来说,先沉积的地层在下面,后沉积的地层在上面,所以下层地层的年代比上层的古老。但是,由于地球表面不断地运动,地层也会随着上升、下降、扭曲等,使地层的顺序发生某些变化。化石在地层中出现的顺序,是人们研究生物进化的一个重要的方面。不同生物化石的出现和地层的形成,有着平行的关系。也就是说,在越古老的地层中,挖掘出的化石所代表的生物,结构越简单,分类地位越低等。在距今越近的地层中,挖掘出的化石所代表的生物,结构越复杂,分类地位越高等。
地层一层层地重叠,像书页一样,保存着地球上生命世界的历史记录,化石就像这巨大历史书中的文字。人们根据地层中的岩石,可以分析出地层形成的年代,而其中的化石,就是推断当时生命世界的根据。
第二节 前寒武纪地层 我们这次实习所看到的寒武纪以前的地层是在贺兰山2600米的悬崖上,这里的地层属于震旦纪时期,这里主要有贺兰石岩层,这种紫绿色夹杂的岩石只有贺兰山有,它属于泥沙砂岩变质岩。
贺兰石产于海拔2600米左右的贺兰山悬崖上,形成于18亿年前中元古代早期(长城纪),是地层中染色沙质极岩在自然应力作用下形成的块状岩体,构成贺兰石的矿物非常微细,只有头发丝的几十之一,而相互聚结又特别紧密。就在这般细腻基底上,均匀散布着许多比较坚硬的石英粉和铁矿物微粒,它们恰似在贺兰石中嵌入了“硬质合金”,刚柔相宜,是一种十分难得的石料。它质地细密、古雅莹润、紫绿相间、交错辉映、刚柔相宜、叩之有声,石料结构均匀、呈天然深紫和豆绿两色,经能工巧匠雕刻制成的贺兰砚具有发墨、存墨、护毫、耐用的特点,加盖后砚内余墨数日不干不臭,雕刻艺人因石制宜、精心用料,雕出千姿百态的砚,历史上贺兰砚曾与端砚、歙砚齐名,素有“一端二歙三贺兰”之说,贺兰砚发墨迅速,不郁结,又耐用,带盖的贺兰砚如同密封器一般,素有“存墨过三天”之誉,它不仅是文房四宝的实用品,而且是珍贵的工艺收藏品,深受历代书法家、画家的喜爱。
第三节 古生代地层与化石
这次实习中主要见到的古生代地层有:奥陶纪地层、泥盆纪地层、石炭纪和二叠纪地层。
在沙坡头看到了奥陶纪和泥盆纪地层。奥陶纪(Ordovician)是地质学上,古生代中五亿五百万到四亿三千八百万年前这段时间,可分为三个时期-奥陶纪早期(五亿五百万到四亿七千八百万年前),奥陶纪中期(四亿七千八百万到四亿五千三百万年前)和奥陶纪晚期(四亿五千三百万到四亿三千八百万年前泥盆纪(距今4-3.6亿年前)是晚古生代的第一个纪,从距今4亿年前开始,延续了4000万年之久。泥盆纪(距今4-3.6亿年前)是晚古生代的第一个纪,从距今4亿年前开始,延续了4000万年之久。由于早古生代加里东运动影响的结果,同时,从泥盆纪开始,地球又开始发生了海西运动。因此,泥盆纪时许多地区升起,露出海面成为陆地,古地理面貌与早古生代相比有很大的变化。在泥盆纪里蕨类植物繁盛,昆虫和两栖类兴起。脊椎动物进入飞跃发展时期,鱼形动物数量和种类增多,现代鱼类——硬骨鱼开始发展。泥盆纪常被称为“鱼类时代”。
在石炭井看到了石炭纪地层及化石。石炭纪(Carboniferous)约处于地质年代两亿八千六百万至三亿六千万年前,它可以区分为两个时期:始石炭纪(又叫密西西比纪,三亿两千至三亿六千万前)、和后石炭纪(又叫宾夕法尼亚纪,两亿八千六百至三亿两千万年前)。石炭纪(Carboniferous period)是古生代的第5个纪,开始于距今约3.55亿年至2.95亿年,延续了6500万年。石炭纪时陆地面积不断增加,陆生生物空前发展。当时气候温暖、湿润,沼泽遍布。大陆上出现了大规模的森林,给煤的形成创造了有利条件。石炭纪是地壳运动非常活跃的时期,因而古地理的面貌有着极大的变化。这个时期气候分异现象又十分明显,北方古大陆为温暖潮湿的聚煤区,冈瓦纳大陆却为寒冷的大陆冰川沉积环境。气候分带导致了动、植物地理分区的形成。
石炭纪含煤地层
中生代地层中我们只看到了三叠纪地层,其他新生代地层没有注意到。
第三章 地质构造
第一节 概述
组成地壳的岩层和岩体,在内外地质作用下(多为构造运动),发生变形和变位后,形成的几何体,或残留下的形迹。
地质构造因此可依其生成时间分为原生构造(primary structures)与
地质构造
次生构造(secondary structures或tectonic structures)。次生构造是构造地质学研究的主要对象,而原生构造一般是用来判断岩石有无变形及变形方式的基准。构造也可分为水平构造、倾斜构造、断裂和褶皱。
地壳或岩石圈各个组成部分的形态及其相互结合方式和面貌特征的总称。地质构造的规模,大的上千公里,需要通过地质和地球物理资料的综合分析和遥感资料的解译才能识别,如岩石圈板块构造。小的以毫米甚至微米计,需要借助于光学显微镜或电子显微镜才能观察到,如矿物晶粒变形、晶格的位错等。
类型:
地质遗迹依其形成原因、自然属性等可分为下列6种类型:
(1)标准地质剖面:如中国最古老的岩石——辽宁鞍山白家坟花岗岩;天津蓟县中、上元古界地层剖面等。
(2)著名古生物化石遗址:如北京周口店北京猿人遗址;世界奇观——河南西峡恐龙蛋化石等。
(3)地质构造形迹:如西藏雅鲁藏布江缝合带;河南嵩山前寒武纪地层及三个整合遗迹等。
(4)典型地质与地貌景观:如安徽黄山奇峰;澎湖列岛的地形景观等。第二节褶皱
1、定义:简言之,岩石受力发生的弯曲就称为褶皱。
2、特征:它在层状岩层中表现的最为明显;是地壳上最常见的一种地质构造形式;规模差别很大,手标本-几百公里。
3、意义:
褶皱是最重要的构造现象,因而是构造地质学研究的重要内容; 与矿产的关系:大向斜就是盆地,形成沉积矿床,虎睛形成于热液充填矿床; 与石油:背斜圈闭,过去发现的石油绝大多数与此有关; 工程地质,水文地质。旅游地质; 构造地质。
4、基本类型
背斜:向上弯曲; 向斜,向下弯曲。
分类 :方式多种多样,一般按产状、形态和组合形态分类。
1、根据褶皱轴面产状,结合两侧产状特点分:
直立褶皱:轴面近于直立,两翼倾向相反,倾角近于相等;
斜立褶皱:轴面倾斜,两翼倾向相反,倾角不相等;
倒转褶皱:轴面倾斜,两翼倾向相同,倾角可以相等,也可以不相同;
平卧褶皱:轴面近于水平,一翼地层正常,另一翼地层倒转;
翻卷褶皱:轴面弯曲的平卧褶皱。
2、根据枢纽产状,褶皱可分为:
水平褶皱:枢纽近于水平,两翼的走向基本平行;
倾伏褶皱:枢纽倾伏(倾伏角介于10度-80度之间),两翼走向不平行;
倾坚褶皱:枢纽近于直立。形态分类 :
(1)褶皱岩层的弯曲形态:
圆弧褶皱:岩层是圆弧形弯曲;
尖棱褶皱:两翼岩层平整相交,转折端呈棱角状;
箱状褶皱:两翼近直立,到转折端转为水平;
扇形褶皱:两翼均为倒转,以致整个褶皱呈扇形;
挠曲褶皱:缓倾斜岩层中的一段突然变陡,形成台阶状弯曲;
(2)根据同一褶皱岩层的厚度在褶皱不同部位的变化特点:等厚褶皱;顶厚褶皱;顶薄褶皱。
褶皱形态的空间组合分类
1、平面上的组合类型:
平行褶皱群;雁行褶皱群;帚状褶皱群; 弧形褶皱群;
2、剖面上的组合类型
复背斜和复向斜,系指褶皱两翼被一系列次一级的褶皱所复杂化的大背斜或大向斜;
第三节断层
岩体在构造应力作用下发生破裂,沿破裂面两侧的岩体发生显著的位移或失去连续性和完整性而形成的一种构造形迹 断层是构造运动中广泛发育的构造形态。它大小不
一、规模不等,小的不足一米,大到数百、上千千米。但都破坏了岩层的连续性和完整性。在断层带上往往岩石破碎,易被风化侵蚀。沿断层线常常发育为沟谷,有时出现泉或湖泊。破裂面两侧岩块发生显著相对位移的断裂构造。规模大小不等,大者沿走向延伸数百千米,常由许多断层组成,可称为断裂带;小者可见于手标本。几何要素 断层由断层面和断盘构成。断层面是岩块沿之发生相对位移的破裂面。断盘指断层面两侧的岩块,位于断层面之上的称为上盘,断层面之下的称为下盘,如断层面直立,则按岩块相对于断层走向的方位来描述。断层两侧错开的距离统称位移。按测量位移的参考物的不同,有真位移和视位移之分,真位移是断层两侧相当点错开的距离,即断层面上错断前的一点,错断后分成的两个对应点之间的距离,称为总滑距;视位移是断层两侧相当层错开的距离,即错动前的某一岩层,错断后分成两对应层之间的距离,统称断距。
通常按断层的位移性质分为:①上盘相对下降的正断层。②上盘相对上升的逆断层。断层面倾角小于30°的逆断层又称冲断层。正断层和逆断层的两盘相对运动方向均大致平行于断层面倾斜方向,故又统称为倾向滑动断层。③两盘沿断层走向作相对水平运动的平移断层,又称走向滑动断层(简称走滑断层)。
第四节 节理
节理:岩石中的裂隙,其两侧岩石没有明显的位移。地壳上部岩石中最广泛发育的一种断裂构造。节理是地壳上部岩石中最广泛发育的一种断裂构造。按成因节理可分为:
①原生节理,成岩过程中形成,如沉积岩中因缩水而造成的泥裂或火成岩冷却收缩而成的柱状节理;②构造节理,由构造变形而成;③非构造节理,由外动力作用形成的,如风化作用、山崩或地滑等引起的节理,常局限于地表浅处。按节理的成因,节理包括原生节理和
次生节理两大类。
原生节理是指成岩过程中形成的节理。例如沉积岩中的泥裂,火花熔岩冷凝收缩形 成的柱状节理,岩浆入侵过程中由于流动作用及冷凝收缩产生的各种原生节理等。
次生节理是指岩石成岩后形成的节理,包括非构造节理 通常,以节理与岩层的产状要素的关系而划分为四种节理:
走 向 节 理:节理的走向与岩层的走向一致或大体一致。
倾向节理:节理的走向大致与岩层的走向垂直,即与岩层的倾向一致。
斜向节理:节理的走向与岩层的走向既非平行,亦非垂直,而是斜交。
顺层节理:节理面大致平行于岩层层面。
前三种最为常见。
其次,节理的分类还可以节理的走向与区域褶皱主要方向、断层的主要走向或其他线形构造的延伸方向等关系而进行,可划分为三种:
纵节理:两者的关系大致平行。横节理:二者大致垂直。
斜节理:二者大致斜交。
第五节 波痕
波痕是浅海、河湖的一种小型地形特征,由尖波峰、圆波谷,坡度对称组成连绵波浪状。
沉积环境分析的重要标志,是典型的沉积构造之一。非粘性的物质(陆源砂、碳酸盐砂)在波浪、水流或风的作用下,在其表面形成的波状起伏的痕迹,如沙漠中的沙丘、海滩的沙坡等。一个波痕由一个波脊和一个波谷组成,同一种波痕一般成组出现。通常按波痕形成的动力将波痕分为水流波痕、波浪波痕、干涉波痕和风成波痕等;然后再根据其大小,形态或对称性作进一步的划分。出现于岩层的顶面.并可在上覆岩层的底面上留下印痕.因此可以利用波痕来决定岩层的顶面和底面。
不对称波痕:波痕的波谷一侧坡度较陡(背水面),另一侧较缓(迎水面)。波脊线连续,大致与海岸线平行,波峰较尖,波谷较平滑。通常由一个较强方向的水流改造沉积物而成,主要分布在三角洲的后方和前方,得它们的缓坡方向不同。
平顶波痕:波痕的波峰形态呈较连续的窄平面,好像整齐地被切平过,波谷为较开宽的圆滑谷。其成因与平行波脊线方向的水流有关,是先成波痕被平行于波脊线方向的水流冲刷改造而成。反映了一种水流方向明显发生改变的沉积环境,通常出现在地形起伏较明显、水流方向易变的潮间带地区。槽状波痕:波痕的波峰形态呈较连续的宽平面,波谷为较窄的细沟。其成因一般认为与平顶波痕进一步改造有关,也可能与动荡的海水冲刷波峰,导致波峰变平,波保呈槽状有关。槽状波痕主要分布在潮间带地区。
第四章其他
外力作用: 所谓外力(exogeneous)地质作用指以太阳能以及日月引力能为能源并通过大气,水,生物等因素引起的地质作用,包括风化作用,剥蚀作用,搬运作用,沉积作用,固结成岩作用。
球状风化 结束语
大学的第一次野外实习很快结束了,我们这次的“笃行”尽管只有短短三天,不过我们从中实在学到了不少东西,能把所学的知识运用到实习中更使我们提高了继续学习的热情。本次实习令我们加深了对地质地貌学的了解,更深刻认识到了学习地质地貌学的意义,巩固了学习成果,体会到“学以致用”的道理,并且学会了一定的考察地质地貌的方法要领和细节。例如,出外实习要对考察对象做一定的了解,合理安排考察路程和考察内容,注意研究的方法和工具的使用,一些考察的细节如做笔记应该用铅笔等等,学会基本的考察报告的写法,充分认识到地质地貌考察的必要性和艰苦性,激发了我们自己考察家乡和各地的典型地质地貌的兴趣,这些都将对我们日后的学习乃至工作起到积极的作用。
第二篇:080101 采矿工程
业务培养目标:本专业培养具备固体(煤、金属及非金属)矿床开采的基本理论和方法,具备采矿工程师的基本能力,能在采矿领域等方面从事矿区开发规划、矿山(露天、井下)设计、矿山安全技术及工程设计、监察、生产技术管理科学研究的高等工程技术人才。
业务培养要求:本专业学生主要学习岩体工程力学、采矿及矿山安全及工程方面的基本理论和基本技术,受到采矿工程师的基本训练,具有矿区规划、矿山开采设计、岩层控制技术、矿山安全技术及工程设计方面的基本能力。
毕业生应获得以下几方面的知识和能力:
1.掌握采矿学科的基本理论和基本知识;
2.掌握矿区开发、矿井开采、巷道开拓的设计方法;
3.掌握矿山压力及岩体工程监测、矿井通风与空调、矿山安全及矿井灾害预防等技术;
4.具有先进的生产组织和技术管理基本能力以及新工艺、新技术研究和开发的初步能力;
5.熟悉国家有关采矿工业的基本方针、政策和法规;
6.了解采矿学科的发展动态;
7.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。主干学科:力学、矿业工程
主要课程:岩体力学、工程力学、采矿学、矿井通风与安全、电工与电子技术、采矿机械、矿山企业管理与技术经济分析等
主要实践性教学环节:包括地质与测量实习、采矿认识、生产及毕业实习、计算机应用及上机操作、课程设计(机械零件、采矿、矿井通风与安全等)、毕业设计。
主要专业实验:采矿模型、岩体控制实验、矿山通风与安全实验
修业年限:四年
授予学位:工学学士
开设院校:西南工学院 贵州工业大学 昆明理工大学 西安建筑科技大学 西安矿业学院 宁夏大学 河北建筑科技学院 河北理工学院 太原理工大学 内蒙古科技大学 辽宁工程技术大学 黑龙江矿业学院 安徽理工大学 南方冶金学院 山东矿业学院 淄博学院 焦作工学院 武汉化工学院 武汉科技大学 湖南科技大学 中国矿业大学 东北大学 武汉理工大学 中南大学 重庆大学等
第三篇:采矿工程复习题
采矿工程复习题 一 填空 1.矿井井巷按其作用和服务范围不同
可分为三类,分别是开拓巷道,准备巷道,回采巷道
2.放顶煤开采中工作面内煤炭损失主
要在有初采损失,末采损失,端头12.13.14.任务的水平
水平垂高:是开采水平服务范围上下边界之间的垂直距离
井底车场:是连接井筒和井下主要运输巷道的一组巷道和硐室的总称 采煤工艺:采煤工作面各种工序所用方法、设备极其在时间空间上的或水文情况比较复杂、井筒需用特殊法施损失
3、减少放煤工艺损失
4、改善工,或多水平开采急斜煤层的矿井,一般巷道布置减少区段煤柱损失 都应采用立井开拓。
五、绘图说明题(20分)2.简述采区内采煤工作面各种开采顺序的结合图1说明巷道掘进顺序和生产系特点 统。
答:1,工作面后退式:回采巷道先 开掘出来,工作面由采区边界附近图为:倾斜分层走向长壁下行垮落采煤法分层同采采区损失,采煤工艺损失
3.盘区式准备方式的有上山盘区 下
山盘区 石门盘区 单翼盘区 跨多石门盘区
4.综采工作面端部斜切进刀有两种
方式分别是不留三角煤端部斜切进刀和留三角煤端部斜切进刀
5.柱式体系采煤法包括房式采煤法,房柱式采煤法和巷柱式采煤
6.我国按实际应用情况,准备方式可
归纳为采区式,盘区式及带区式三种
7.井巷式煤仓分类的是垂直式,倾斜
式,混合式
8.矿井生产的主要系统是运煤系统
通风系统 运料排矸系统 排水系统
9.综采工作面的主要设备有双滚筒
采煤机,可弯曲刮板输送机,液压支架
10.采区下部车场形式按装车站位置不
同有大巷装车式,石门装车式,绕道装车式
11.回采巷道的护巷方式有沿空留巷和
沿空掘巷
12.采区上部车场的基本形式有平车
场和甩车场
13.影响顶煤冒放性的主要因素的是
煤层赋存条件,煤层厚度,工作面长度
14.长壁采煤工艺包括破煤,装煤,运
煤,支护,采空区处理工序过程
15.三下一上是:建筑物下 铁路下 水
体下 和承压水上
16.工作面超前支护不小于:20m采煤
工作面最大风速为4m|s
17.井田开拓的发展方向:开采水平内
准备方式的多样化;采(盘、带)区的大型化;开采水平内生产的高产高效集中化;水平内开采布置的单层化和全煤巷化等。
18.三带:跨落带、裂隙带和缓慢下沉
带。煤层底板的下三带为:破坏带、完整岩层带(或保护带)、地下水导升带。
19.煤层按厚度分为:薄厚煤层、中厚
煤层、厚煤层。按倾角分为:近水平煤层、缓倾斜煤层、中倾斜煤层、急倾斜煤层。按稳定性分为:稳定煤层、中等稳定煤层、不稳定煤层。
20.采区的主要参数有:采区倾斜长度,采区走向长度,采区生产能力,采区采出率及采区煤柱尺寸。
二 名词解释 1.阶段 在井田范围内,沿着煤层的倾斜方向,按一定标高把煤层划分为若干个平行于走向的具有独立生产系统的长条,每个长条成为一个阶段
2.水平通常将设有井底车场,阶段运
输大巷并且担负全阶段运输任务的水平称为开采水平
3.井田 划分给一个矿井或露天开采的那一部分煤
4.在地质历史发展过程中,由含碳物
质沉积形成的大面积含煤地带称为煤田
5.在井田范围内,经过地质勘探,煤
层厚度和质量均合乎开采要求,地质构造比较清楚,目前可供利用的可列入平衡表内的储量称为矿井工业储量
6.正规循环:在规定的时间内保质保
量地完成了循环作业图中规定任务的循环
7.采煤方法:采煤工艺与回采巷道布
置及其在时间上、空间上的相互配合。
8.采区车场:采区上(下)山与区段
平巷或阶段大巷连接处的一组巷道及硐室。
9.上山:位于开采水平以上,为本水
平或采区服务的倾斜巷道
10.下山:位于开采水平以下,为本水平
或采区服务的倾斜巷道
11.采放比:通常将布置有井底车场和
阶段运输大巷并且担负全阶段运输
相互配合。
15.采区:在阶段范围内,沿走向把阶段划分为若干具有独立生产系统的块段,每一块段称为采区。
16.回采巷道:仅为采煤工作面生产服务的巷道,如区段运输平巷、区段回风平巷、开切眼(形成初始采场的巷道)
17.矿井生产能力:指矿井的设计生产能力,以“Mt/a”(或万t/a,1Mt/a=100万t/a)表示。根据矿井生产能力不同,我国把矿井划分为大、中、小三种类型的井型。mm
18.DK615-4-12:单开道岔,600
轨距,轨型为15,辙叉号码为4,道岔曲线半径为12m三.简答
1.简述井筒(硐)形式的比较和选择? 答:平硐开拓
优点:井下出煤不需提升转载即可由平硐直接外运,因而运输环节和运输设备少、系统简单、费用低;
平硐的地面工业建筑较简单,不需结构复杂的井架和绞车房;
不需设井底车场,更无需在平硐内设水泵房、水仓等硐室,减少许多井巷工程量;
平硐施工条件较好,掘进速度较快,可加快矿井建设;
平硐无需排水设备,对预防井下水灾也较有利。
适用范围:在地形条件合适、煤层赋存较高的山岭、丘陵或沟谷地区,只要上山部分煤的储量大致能满足同类井型的水平服务年限的要求时,都应采用平硐开拓。
斜井:优点:斜井与立井相比,井筒掘进技术和施工设备比较简单,掘进速度快,地面工业建筑、井筒装备、井底车场及硐室都比立井简单,一般无需大型提升设备,同类井型的斜井提升绞车也较立井需用的绞车型号小,因而初期投资较少,建井其较短;
在多水平开采时,斜井的石门总长度较用立井开拓时为短,因而掘进石门的工程量和沿石门的运输工作量较少;
延深斜井井筒的施工比较方便,对生产的干扰少;
我国研制和使用新型强力胶带输送机,增加了斜井开拓的优越性,扩大了其应用范围。
缺点(与立井相比):在自然条件相同时,斜井要比立井长得多;
围岩不稳固时,斜井井筒维护费用高;采用绞车提升时,提升速度较低、能力较小、钢丝绳磨损严重、动力消耗大、提升费用较高,当井田斜长较大时,采用多段绞车提升,转载环节多、系统复杂,更要多占用设备的人力;
由于斜井较长,沿井向敷设管路、电缆所需的管线长度较大,有条件时可采用钻孔下管路排水供电,但要为此留保安煤柱,增加煤柱损失;
对生产能力特大的斜井,辅助提升的工作量很大,甚至需增开副斜井;
斜井的通风风路较长,对瓦斯涌出量大的大型矿井,斜井井筒断面小,通风阻力过大,可能满足不了通风的要求,不得不另开专用进风或回风的立井并兼做辅助提升;当表土为富含水的冲积层或流沙层时,斜井井筒掘进技术复杂,有时难以通过。
适用范围:当井田内煤层埋藏不深、表土层不厚、水文地质情况简单、井筒不需特殊法施工的缓斜和倾斜煤层,一般可采用斜井开拓。
立井:优点:井筒短、提升速度快、提升能力大,对辅助提升特别有利;
对井型特大的矿井,可采用大断面的立井井筒,装备两套提升设备;
井筒的断面很大,可满足大风量的要求;
由于井筒短,通风阻力较小,对深井更为有利。
适用范围:当井田的地形地质条件不利于采用平硐或斜井时,都可考虑采用立井开拓。对于煤层赋存较深、表土层厚,向采区上山方向推进采煤,准备时间长,采掘无干扰,漏风少,巷道容易维护,我国广泛使用2,工作面前进式:工作面由采区上山附近向采区边界方向回采,区段平巷沿空留巷,减少了平巷掘进的工程量并提高了采出率,但得采取有效地支护手段及放漏风措施3,工作面往复式:上采面前进式,实质是前两种回采方式的结合,兼有上述两种方式的优缺点,特点:上区段采煤结束时采煤工作面设备可直接搬迁到其下面的工作面,缩短了设备的搬运距离,节省搬运时间,得到加强设备的维护 3.简答综采放顶煤技术的主要优缺点及适用条件 答:优点;有利于合理集中生产,对煤层及地质条件具有较强的适应性3,具有显著的经济效应。缺点1,采出率较低,工作面粉尘大,自然发火,瓦斯积聚隐患大。适用条件(1)、煤层厚度。M = 5 12m为佳,过小易超前冒顶,过大破坏不充分。(2)、煤层的可放性(即煤层硬度)煤质松软,层理节理发育容易放出;煤质中硬,f 2最好;个别f = 3.1 3.9,层理节理发育亦可。(3)、煤层倾角不宜太大,缓倾斜煤层中一般<15 o,太大影响支架的稳定性,25 o 30o
煤层中也试验成功,支架要加防倒防滑装备。(4)、煤层结构过厚、过硬的夹矸影响顶煤放落,单层夹矸厚度大于0.5m或f大于 3要采取措施。顶煤中的夹矸总厚度不宜大于顶煤厚度的10 15%(5)、顶板条件顶板岩性最理想的条件是基本顶I、II级,直接顶有一定厚度,采空区不悬顶,冒落后松散体基本能充满采空区。(6)、地质构造煤层厚度变化大,地质构造复杂,断层切割块段,阶段煤柱等,无法应用分层长壁采煤法时,可放顶煤。采面短,亦可放顶煤。如:回采鸡窝煤。(7)、自然发火、瓦斯及水文地质条件。对于自然发火期较短、瓦斯量大,以及水文地质条件复杂的煤层,先要调查清楚,并有相应的措施后才能采用放顶煤开采。4.简述倾斜长臂采煤法的优点,问题和适用条件 答:倾斜长壁采煤法的优点:1,巷道布置简单,巷道掘进工程量及维护费用低,投产快2运输系统简单,占用设备少,运输费低3,回采巷道沿煤层掘进,易固定方向,采面可等长布置,利于生产管理4,通风线路短,风流方向转折少,通风构筑物少5,对淋水和瓦斯大的某些地质条件适应性强6,技术经济效益显著,单产,巷道掘进率,采出率和工效指标好倾斜长臂采煤法的问题:1,长距离倾斜巷道铺运和行人困难2,当前采掘机械设备不完全适应倾斜长壁工作面开采的要求3,大巷装车点较多倾斜长壁采煤法的适用条件:1,煤层倾角小于12时,效果最好2,采取一定技术措施,可适用于12~17的煤层 5.道岔:使车辆由一线路转运到另一线路的装置单开道岔 — DK 对称道岔 — DC 渡线道岔 — DX
DX918 — 5 — 2016第一段数:
6、9-分别表600mm、900mm轨距;15、18、24 — 分别表示轨型;第二段数字(4、3、5)为辙叉号码;后四位数 — 前两位数:表示曲线
半径,后两位数:表示轨中心距
6.工作面正规循环作业图表
采煤机进刀方式:割三角煤斜切进刀。组织形式:四六制。液压支架支护方式:滞后支护。割煤-移架-推溜。——|||——(推移输送机)—<—<——(割煤)—︵︵—(检修)—□—(移架)
经济定购批量=根号下2x每次定购的采购费x物资年需量/单位物资的年管费用
7.提高采出率的措施?
答:1.减少初采损失
2、减少端头
巷道布置图 巷道掘进顺序: 在采区沿走向的中部位置,由运输大巷1开掘采区下部车场3,并由此在底板岩层中掘进轨道上山5和运输上山4。两条上山掘至采区上部边界后,轨道上山5以采区上部车场6与回风大巷2相通,而运输上山则直接与回风大巷2连通,形成通风回路。然后,在第一区段下部掘进中部车场的甩车场
7、区段回风石门8,并由此向采区边界掘进区段集中平巷9(沿下区段顶分层回风平巷位置开掘)和10。在巷道10和巷道9中分别每隔一定距离掘溜煤眼12和联络巷11。当巷道10和巷道9掘至采区边界附近时,由近边界的一个溜煤眼和联
络巷进入煤上分层,并开始掘上分层第一区段的超前分层运输平巷14和开切眼。与此同时,在第一区段上部,利用阶段回风大巷2兼做区段回风集中平巷,并由此每隔一定间距掘回风小石门13与分层回风平巷相连通。同样,从靠近采区边界的回风小石门掘上分层的超前回风平巷15与开切眼相连通。这样第一区段上分层的采煤工作面就准备完毕。在掘进上述巷道的过程中,要将下部的采区煤仓
19、采区变电所
16、绞车房
17、区段溜煤眼18等硐室及有关的联络巷道掘
完,并完善各车场。
生产系统:
(一)运煤系统 运煤路线:分层工作面→分层区段超前运输平巷14(或20)→溜煤眼12→区段运输集中平巷10→区段溜煤眼18→运输上山4→采区煤仓19→大巷装车外运。
(二)材料运输系统 采煤工作面所需的材料运输路线为:材料和设备自采区下部车场3→轨道上山5→上部车场6→回风大巷2→回风小石门13→区段超前回风平巷15(或21)送至分层工作面。区段分层超前运输平巷14和20掘进时所需的材料,自轨道上山5→中部车场7→轨道集中平巷道9→联络斜巷11运至掘进工作面。区段运输集中平巷10所需的材料,由轨道上山5经中部甩车场7运入。
(三)排矸系统及掘进出煤系统 分层超前运输平巷14及20在掘进时所出的煤,经溜煤眼12和运输集中平巷10与工作面回采出煤一道运出。分层回风平巷15和21超前掘进时所出的煤在装入矿车后,经上部车场
6、轨道上山5至下部车场3运出。
(四)通风系统 新鲜风流:运输大巷1→下部车场3→轨道上山5→中部车场7→运输集中平巷10和轨道集中平巷9→联络斜巷11(有两个溜眼12与分层运输平巷14相通,其中一个溜煤眼可进风)→分层运输平巷14(或20)→采煤工作面。污风:采煤工作面→分层回风平巷15(或21)→回风小石门13→至回风大巷2排入大气。
上山盘区集中上山联合准备 巷道掘进顺序:
自岩石运输大巷1开掘盘区材料斜巷3和甩车道16,进入m
1后,掘进盘区无极绳运输的轨道上山4,同时从运输大巷1开掘进风斜巷7和盘区煤仓9,通达m
2。
沿
m2掘进盘区运输上山5,并开掘回风斜巷8到m1。自轨道上山4分别开掘m1一二区段的进风巷10和运输巷11。自运输上山5开掘m2区段进风巷12,并从12向上掘区段材料斜巷14与m1区段
进风巷10连通,开掘区段溜煤眼15通达运输上山。区段平巷掘至盘区边界后掘进工作面开切眼。
第四篇:采矿工程毕业设计
只要记分牌上的时间还跳动,就不能轻言放弃。目录
前言 1 1 矿区概述及井田特征 2 1.1 概述 2 1.1.1 矿区的地理位置及行政隶属关系 2 1.1.2 地形、地貌、交通等情况 2 1.1.3 气候地震等情况 3 1.2 井田及其附近的地质特征 3 1.2.1 井田的地层层位关系及地质构造 3 1.2.2 含煤系及地层特征 4 1.2.3 水文地质 5 1.3 煤质及煤层特征 5 1.3.1 井田内煤层及埋藏条件 5 1.3.2 煤层的含瓦斯性、自燃性、爆炸性 7 1.3.3 井田的勘探程度及进一步勘探要求 7 2 井田境界及储量 8 2.1 井田境界 8 2.1.1 井田范围 8 2.1.2 边界煤柱留设 8 2.1.3工业广场保护煤柱留设 8 2.1.4 边界的合理性 9 2.2 井田的储量 9 2.2.1 井田储量的计算原则 9 2.2.2 矿井工业储量 10 3 矿井的年产量、服务年限及一般工作制度 12 3.1 矿井年产量及服务年限 12 3.1.1 矿井的年产量 12 3.1.2 服务年限 12 3.1.3 矿井的增产期和减产期 产量增加的可能性 13 3.2 矿井的工作制度 13 4 井田开拓 14 4.1 井筒形式、位置和数目的确定 14 4.1.1 井筒形式的确定 14 4.1.2 井筒位置及数目的确定 15 4.2 开采水平的设计 19 4.2.1 水平划分的原则 19 4.2.2 开采水平的划分 20 4.2.3 设计水平储量及服务年限 23 4.2.4 设计水平的巷道布置 23 4.2.5 大巷的位置、数目、用途和规格 23 4.3 采区划分及开采顺序 24 4.3.1 采区形式及尺寸的确定 24 4.3.2 开采顺序 25 4.4 开采水平井底车场形式的选择 26 4.4.1 开采水平井底车场选择的依据 26 4.4.2 井底车场主要硐室 27 4.5 开拓系统综述 30 4.5.1 系统概况 30 4.5.2 移交生产时井巷的开凿位置、初期工程量 31 5 采准巷道布置 33 5.1 设计采区的地质概况及煤层特征 33 5.1.1 采区概况 33 5.1.2 煤层地质特征及工业储量 33 5.1.3 采区生产能力及服务年限 33 5.2 采区形式、采区主要参数的确定 34 5.2.1 采区形式 34 5.2.2 采区上山数目、位置及用途 34 5.2.3 区段划分 34 5.3 采区车场及硐室 35 5.3.1 车场形式 35 5.3.2 采区煤仓 35 5.4 采准系统、通风系统、运输系统 36 5.4.1 采准系统 36 5.4.2 通风系统 36 5.4.3 运输系统 36 5.5 采区开采顺序 36 5.6 采区巷道断面 37 6 采煤方法 39 6.1 采煤方法的选择 39 6.1.1 选择的要求 39 6.1.2 采煤方法 39 6.2 开采技术条件 39 6.3 工作面长度的确定 40 6.3.1 按通风能力确定工作面长度 40 6.3.2 根据采煤机能力确定工作面长度 41 6.3.3 按刮板输送机能力校验工作面长度 6.4 采煤机械选择和回采工艺确定 42 6.4.1 采煤机械的选择 42 6.4.2 配套设备选型 44 6.4.3 回采工艺方式的确定 44 6.5 循环方式选择及循环图表的编制 47 6.5.1 确定循环方式 47 6.5.2 劳动组织表 48 6.5.3 机电设备表 49 6.5.4 技术经济指标表 50 7 建井工期及开采计划 51
7.1 建井工期及施工组织 51 7.1.1 建井工期 51 7.1.2 工程排队及施工组织排队 52 7.2 开采计划 53 7.2.1 开采顺序及配产原则 53 7.2.2 开采计划 53 8 矿井通风 55 8.1 概述 55 8.2 矿井通风系统的选择 55 8.2.1 通风方式的选择 56 8.2.2 通风方法的选择 57 8.3 矿井风量的计算与风量分配 57 8.3.1 矿井总进风量 57 8.3.2 回采工作面所需风量的计算 58 8.3.3 掘进工作面所需风量 59 8.3.4 硐室所需风量的∑Qd的计算 60 8.3.5 其他巷道所需风量 61 8.3.6 风量的分配[17] 62 8.4 矿井总风压及等积孔的计算 62 8.4.1 计算原则 62 8.4.2 计算方法 64 8.4.3 计算等积孔 65 8.5 通风设备的选择 66 8.5.1 矿井主要扇风机选型计算 66 8.5.2 电动机选型计算 68 8.5.3 耗电量 68 8.6 灾害防治综述[13] 69 8.6.1 井底火灾及煤层自然发火的防治措施 69 8.6.2 预防煤尘爆炸措施 70 8.6.3 预防瓦斯爆炸的措施 70 8.6.4 避灾路线 70 9 矿井运输与提升 71 9.1 概述 71 9.2 采区运输设备的选择 71 9.2.1 采区运输上山皮带的选择 71 9.2.2 采区轨道上山运输设备的选择 72 9.2.3 运输顺槽转载机和皮带机选择 72 9.2.4 回风顺槽中运输设备的选择 73 9.2.5 工作面刮板输送机的选择 73 9.3 主要巷道运输设备的选择 74 9.4 提升 74 9.4.1 提升系统的合理确定 74 9.4.2 主井提升设备的选择 75 9.4.3 副井提升设备的选择 76 10 矿井排水 77 10.1 矿井涌水 77 10.1.1 概述 77 10.1.2 矿山技术条件 78 10.2 排水设备的选型计算 78 10.2.1 水泵选型 78 10.3 水泵房的设计 80 10.3.1 水泵房支护方式和起重设备 80 10.3.2 水泵房的位置 80 10.3.3 水泵房规格尺寸的计算 80 10.4 水仓设计 81 10.4.1 水仓的位置及作用 81 10.4.2 水仓容量计算 81 11 技术经济指标 83 11.1 全矿人员编制 83 11.1.1 井下工人定员 83 11.1.2 井上工人定员 83 11.1.3 管理人员 83 11.1.4 全矿人员 84 11.2 劳动生产率 84 11.2.1 采煤工效 84 11.2.2 井下工效 84 11.2.3 生产工效 84 11.2.4 全员工效 84 11.3 成本 85 11.4 全矿主要技术经济指标 86 结论 92 参考文献 93 附录A 94 附录B 97 前言
中国是世界最大产煤国
煤炭在中国经济社会发展中占有极重要的地位 煤炭是工业的粮食 我国一次能量消费中 煤炭占75%以上 煤炭发展的快慢
将直接关系到国计民生 作为采矿专业的一名学生
我很荣幸能够为祖国煤炭事业尽一份力
毕业设计是毕业生把大学所学专业理论知识和实践相结合的重要环节 使所学知识一体化
是我们踏入工作岗位的过度环节 设计过程中的所学知识很可能被直接带到马上的工作岗位上 所以显得尤为重要
学生通过设计能够全面系统的运用和巩固所学的知识 掌握矿井设计的方法、步骤及内容
培养实事求是、理论联系实际的工作作风和严谨的工作态度 培养自己的科学研究能力
提高了编写技术文件和运算的能力
同时也提高了计算机应用能力及其他方面的能力
该说明书为刘官屯矿0.90Mt/a井田初步设计说明书 在所收集地质材料的前提下 由指导教师给予指导
并合理运用平时及课堂上积累的知识 查找有关资料
力求设计出一个高产、高效、安全的现代化矿井
本设计说明书从矿井的开拓、开采、运输、通风、提升及工作面的采煤方法等各个环节进行了详细的叙述
并进行了技术和经济比较 论述了本设计的合理性 完成了毕业设计要求的内容 同时说明书图文并茂
使设计的内容更容易被理解和接受 在设计过程中
得到了指导老师的详细指导和同学的悉心帮助 在此表示感谢
由于设计时间和本人能力有限 难免有错误和疏漏之处 望老师给予批评指正矿区概述及井田特征 1.1 概述
1.1.1 矿区的地理位置及行政隶属关系
矿区位于唐山市东北约13km处的荆各庄村附近在开平煤田凤山西北侧 矿井走向长5km 倾斜长2.2km 井田面积11km2 南与马家沟矿业公司相距6km 中间有陡河相隔
北与陡河电厂相距3.5km 行政属开平区管辖
1.1.2 地形、地貌、交通等情况
1)地形地貌
为一平坦的冲积平原 北部山区为燕山山脉的余脉 井田北、东、南三面被低山包围
颇有山前扇状地景观 井田地面标高-100m
2)交通
该矿区的交通十分方便
铁路:一条通往用煤大户陡河电厂的专用线
并与吕陡线在井田上方交汇;另一条经马家沟矿业公司与老京山线的开平站相联 公路:北距10km与京沈高速公路、102国道相联 南距7km经开平与205国道、津秦高速公路相联 形成了比较完整的交通网 四通八达
井田内共有8个自然村 主要从事农业
除东新庄外其它7个村庄已搬迁完毕
图1-1 刘官屯矿交通位置图
Fig.1-1 Liuguantun Mining traffic and location
3)水文
本区东南的陡河 发源于北部山地 下游集入石榴河 向南流入渤海 主流全长100km 河水终年不固 不冻
在双桥村一带有水库
水库大坝距井田东端最近距离2.2km 陡河最高水位+219.5m 低于地面标高40m左右 冬季水位介于+216~+217m
1.1.3 气候地震等情况
本区系于半大陆性气候 夏季炎热多雨
多东南风;冬季严寒凛冽 秋冬多西北风
雨季集中在七、八、九三个月 年平均降雨量648.8毫升 最高气温38.50C 最低气温-22.6℃ 年平均气温10.6℃
冻结期由11月二旬至次年3月上旬 冻结深0.66m 地震烈度六级
1.2 井田及其附近的地质特征
1.2.1 井田的地层层位关系及地质构造
开平煤田位于燕山南麓
在大地构造上位于中朝地台燕山沉降带的东南侧
燕山南麓煤田在地质力学体系上处于天山~阴山纬向构造带、新华夏系构造带和祁吕~贺兰山山字形的三个巨型构造体系的交汇部位 开平煤田受新华夏构造体系的影响 以一系列NNE向的褶曲及逆断层组成
北部受纬向构造的影响逐渐向南弯转成走向近东西向 煤系地层由石炭系中统唐山组
上统开平组、赵各庄组及下二叠系大苗庄组、唐家庄组等组成 岩性以砂岩、泥岩为主
基底地层为中奥陶系马家沟组石灰岩 分布于煤田周边地带 与煤系地层呈不整合接触 见井田地质特征表1-1 煤田向南倾伏
其南部界限可能跨过宝坻~奔城大断层伸入另一个二级构造单元--华北断陷 经钻口和电测曲线对比推断 本区主要断层共有2条 分别为F1 和F2 区内尚未发现有大面积岩浆活动 所见分布于煤田西侧和南侧
区内未发现区域变质或侵入变质现象
说明:据2001全国地层委员会和2004国际地层委员会发布的时代划分方案 石炭纪二分 二叠纪三分
但为了与矿上其他资料吻合方便起见 本次仍沿用旧的时代划分方案
本井田西部以I号勘探线和F1断层为界 东部以VI号勘探线为界 北部以-300m等高线为界 南部以-750等高线
井田内赋存有9、12-2号两个可采煤层
表1-1 井田地质特征表
Tab.1-1 Well field geological feature table
界
系
统
年代
组
厚度/m
新生界 第四系
Q
~~~~~~不整合~~~~~~
洼里组
0~890
上
古
生
界 二叠系
上统
P22
2800
P21
古冶组
346
下统
P12
唐家庄组
180
P11
大苗庄组
石 炭 系 上统 C32 赵各庄组 74
C31 开平组 70
中统 C2 唐山组
-------平行不整合------马家沟组 65 下 古 生 界 奥 陶 系 中统 O2 345
下统 O12 亮甲山组 115
O11
冶里组 203 寒 武 系 上统 ?33 凤山组 68
?32 长山组 48
?31 崮山组 82
中统 ?2 张夏组 120
下统 ?12 馒头组 150
?11 景儿峪组 263 元 古 界 震
旦
系
上统
Z2W
迷雾山组
1200
Z2Y
杨庄组
400
下统
Z1K
高于庄组
600
Z1T+H
大红峪黄崖关组
~~~~~~不整合~~~~~~
五台群
450
太古界
前震旦
Ar
1.2.2 含煤系及地层特征
开平煤田构造形式以褶皱为主 线型排列比较明显
向斜背斜多呈相间平行排列
区内由西至东有:蓟玉向斜及其两侧的窝洛沽向斜、丰登坞背斜、车轴山向斜、卑子院背斜、弯道山~西缸窑向斜、凤山~缸窑背斜、开平向斜 本设计的十组煤分四个分层 走向中部厚
沿走向往两侧逐渐变薄 但从钻孔看 变化不大
整个十组煤厚度均匀 从全矿井看
煤层角度东部较小 西部边界偏大 深部角度小 浅部角度大
1)表土层及风化层的深度
矿井田内地势平坦 为第四系冲积层所覆盖 冲 积层较厚
井田浅部以风积细粉砂岩为主 颗粒细而均匀
表土层厚度平均在100m 且有流沙
2)煤层总数及可采层数
本区煤层岩性变化不大 煤层结构相对简单 有少量夹矸 共含十一个煤组
本设计的十组煤全区发育 9、12-2均为可采煤层
1.2.3 水文地质
荆东四矿的水文地质条件属一般型 有八个含水层 自下而上分别为:
1)奥陶系石灰岩岩溶裂隙承压含水层(Ⅰ)
2)K2~K6砂岩裂隙承压含水层(Ⅱ)
3)K6~煤12砂岩裂隙承压含水层(Ⅲ)
4)煤9~煤7砂岩裂隙承压含水层(Ⅳ)
5)煤5以上砂岩裂隙承压含水层(Ⅴ)
6)风化带裂隙、孔隙承压含水层(Ⅵ)
7)第四系底部卵石孔隙承压含水层(Ⅶ)
8)第四系中上部砂卵砾孔隙承压和孔隙潜水含水层(Ⅷ)
其中与矿井生产较密切的为Ⅰ、Ⅳ、Ⅶ
全矿预测涌水量:
最大涌水量 419.6 m3/h
正常涌水量 256.3 m3/h 1.3 煤质及煤层特征
1.3.1 井田内煤层及埋藏条件
煤层走向主体为东西走向 整体近似于长方形 煤层赋存比较稳定 全区发育
平均倾角为14°左右 可采煤层间距见表1-2
表 1-2 煤层间距见表
Tab.1-2 Seam pitch table
煤层
平均厚度(m)
煤层间距(m)
12-2 3
煤层赋存状态十煤组共分9、12-2分层 全区发育 见煤层柱状图 如图1-2
图1-2 综合柱状图
Fig.1-2 Synthesis column map
本区煤层中夹石在井田中部最薄 往南北两翼逐渐变厚 沿倾向方向变化小
沿走向方向向南北变化稍大 本组地层一般厚度72.60m 以粉砂岩为主 粘土岩含量减少
各种岩石所占的百分比为:粘土岩10.1% 粉砂岩类占52.6% 砂岩类占31.4% 石灰岩占2.9%
岩相组合上为浅海相薄层泥质碳酸盐岩和泻湖海湾相粉砂岩及砂岩沉积物的交替沉积 煤的容重见表1-3
表 1-3 煤的容重
Tab.1-3 Bulk density of coal
容重
最小
最大
平均
t/m3
1.19
1.46
1.30
本组内赋存三层石灰岩 由下而上命名为K4、K5、K6 其中K5石灰岩为深灰色泥质生物碎屑岩 时而接近钙质粘土岩
特点是含灰白色的动物介壳 富集成层
与深灰色泥质灰岩交替成细带状 形成明显的水平层理和水平波状层理 极易区别于其它石灰岩 厚度薄但比较稳定
本组比较突出的特点是出现了含煤沉积 是典型的海陆交互相沉积序列
井田内各煤层的伪顶多为薄层泥岩 直接顶一般为粘土岩或粉砂岩 底板多为粉砂岩次之 区内虽然岩性变化大 但有一定规律 即由东往西
由下向上岩性逐渐由细变粗 北部和中部较稳定 各类砂岩层理不甚发育 破碎易风化
具有较强的膨胀性 遇水后即软化
断裂带附近层间滑动发育 其内的巷道围岩不稳定 易冒落变形
位于煤层间的巷道有不同程度的移动和破坏
1.3.2 煤层的含瓦斯性、自燃性、爆炸性
本井田煤层瓦斯含量均很低 属低沼矿井 据化验资料
瓦斯绝对涌出量为:1.27~5.56m3/min平均4.75 m3/min 相对涌出量为:0.39~3.38m3/t平均1.17 m3/t 煤尘爆炸指数为:为38.42%~64.20%;本区由于煤燃点低 易自燃发火
煤尘试验结果为火焰长度40mm 岩粉量55% 具有爆炸性
自燃发火期为3-6个月
1.3.3 井田的勘探程度及进一步勘探要求
目前
勘探程度已达到精查
确定了高级储量为50%以上 但为了满足以后生产要求 应提高一水平的勘探程度 使高级储量达到70%以上井田境界及储量 2.1 井田境界 2.1.1 井田范围
本井田西部以I号勘探线和F1断层为界 东部以VI号勘探线为界 北部以-300等高线为界 南部以-750等高线为界
井田内赋存有9、12-2号两个可采煤层
2.1.2 边界煤柱留设
矿井走向长5km 倾斜长2.2km 井田面积11km2 井田内地形比较完整
井田四周依据相关规定和安全考虑分别留设20m的边界煤柱 由于井田西面和南面为断层所包围
故西部和南部的井田边界即为断层保护煤柱和井田境界保护煤柱 按《煤矿安全规程》[2]规定 边界煤柱的留法及尺寸:
1)井田边界煤柱留30m;
2)阶段煤柱斜长60m 若在两阶段留设
则上下阶段各留30m;
3)断层煤柱每侧各为20m;
4)采区边界煤柱留10m
根据参考《煤炭工业设计规范》[1]和《矿井安全规程》[2]的相关数据要求和规定 本井田所留的各种保护煤柱均合理 符合规定
2.1.3工业广场保护煤柱留设
由《设计规范》规定:工业场地占地面积:45-90万t/年 1.2~1.3公顷/10万t;120-180万t/年 0.9~1.0公顷/10万t;240-300万t/年 0.7~0.8公顷/10万t 400-600万t/年
0.45-0.6公顷/10万t 本矿井设计年产90万t 则工业广场占地面积为S=(90/10)*1.2=10.8公顷=108000m2 则工业广场设计成长380m 宽290m的矩形
在确定地面保护面积后 用移动角圈定煤柱范围
工业场地地面受保护面积应包括保护对象及宽度15m的围护带
在工业场地内的井筒 圈定保护煤柱时
地面受保护对象应包括绞车房、井口房或通风机房、风道等 围护带宽度为15m
2.1.4 边界的合理性
在本井田的划分中 充分的利用到现有条件 既降低了煤柱的损失
也减少了开采技术上的困难 使工作面的部署较为简易 同时
本井田的划分使储量与生产相适应
矿井生产能力与煤层赋存条件、开采技术装备条件相适应 井田有合理的尺寸
条带尺寸满足《煤炭工业设计规范》[1]的要求 走向长度划分合理
使矿井的开采有足够的储量和足够的服务年限 避免矿井生产接替紧张
根据《煤炭工业设计规范》[1]的规定 采区开采顺序必须遵守先近后远 逐步向边界扩展的原则 并应符合下列规定:
1)首采采区应布置在构造简单 储量可靠
开采条件好的块段
并宜靠近工业广场保护煤柱边界线
2)开采煤层群时 采区宜集中或分组布置 有煤和瓦斯突出的危险煤层
突然涌水威胁的煤层或煤层间距大的煤层 单独布置采区
3)开采多种煤类的煤层 应合理搭配开采
综上所述
矿井首采区定在靠近工业广场的西北部 采区储量丰富
有利于运输的集中和减少巷道的开拓费用 所以井田划分是合理的 因此 综上来看
本井田的划分是合理的
也就是说本井田设计的边界是合理的
2.2 井田的储量
2.2.1 井田储量的计算原则
1)按照地下实际埋藏的煤炭储量计算 不考虑开采、选矿及加工时的损失;
2)储量计算的最大垂深与勘探深度一致 对于大、中型矿井 一般不超过1000m;
3)精查阶段的煤炭储量计算范围 应与所划定的井田边界范围相一致;
4)凡是分水平开采的井田 在计算储量时
也应该分水平计算储量;
5)由于某种技术条件的限制不能采出的煤炭 如在铁路、大河流、重要建筑物等两侧的保安煤柱 要分别计算储量;
6)煤层倾角不大于15度时
可用煤层的伪厚度和水平投影面积计算储量;
7)煤层中所夹的大于0.05m厚的高灰煤(夹矸)不参与储量的计算;
8)参与储量计算的各煤层原煤干燥时的灰分不大于40%
2.2.2 矿井工业储量
矿井的工业储量:勘探地质报告中提供的能利用储量中的A、B、C三级储量 本井田的工业储量的计算:
1)工业储量
井田煤层埋藏深度为-300~--750标高之间
工业储量为:
Eg=11000000×(4+3)×1.3/cos14=103195876.3t
2)井田永久煤柱
井田永久煤柱损失包括铁路、井田境界、断层防护煤柱 和浅部矿井水下开采防水煤柱
a断层煤柱损失
断层的两侧各留20m的保护煤柱 此断层的面积为1188×40=47520m2
故此断层保护煤柱损失为:47520×(3+4)×1.3=43.2万t
b井田境界煤柱损失
井田境界留设30m的边界煤柱
总长为13528m;井田境界保护煤柱所占面积为405840m2 经计算
故境界保护煤柱损失为:405840×7×1.3=369.31万t
P1=43.2+369.31=412.51万t
3)矿井设计储量
Es= Eg-P1=10319.58-412.51=9907.07万t
4)采区回采率
矿井采区回采率
应该符合下列规定:厚煤层不应小于75﹪;中厚煤层不应小于80﹪;薄煤层不应小于85﹪ 全矿采区回采率按下式计算:
==0.77
5)矿井设计可采储量
Ek=(Es-Pz)×(2-1)
式中
Ek--设计可采储量
Es--井田设计储量
Pz--煤柱损失
--采区平均回采率
煤柱损失Pz主要包括工业广场压煤、阶段间煤柱等
工业广场压煤Y
9煤层压煤量=(828+905)×683÷2×4×1.3=307.75万t
12-2煤层压煤量=(840+926)×704÷2×3×1.3=242.44万t
Y=307.75+242.44=550.19万t
阶段煤柱=(2851 +1861)×(4+3)×1.3÷cos14= 4.42 t
Pz=550.19+4.42=554.61
设计可采储量:Ek =(Es-Pz)
=(9907.07-554.61)0.77= 7201.4万t 矿井的年产量、服务年限及一般工作制度 3.1 矿井年产量及服务年限 3.1.1 矿井的年产量
矿井的年产量(生产能力)确定的合理与否
对保证矿井能否迅速投产、达产和产生效益至关重要
而矿井生产能力与井田地质构造、水文地质条件、煤炭储量及质量、煤层赋存条件、建井条件、采掘机械化装备水平及市场销售量等许多因素有关 经分析比较
设计矿井的生产能力确定为0.9 Mt/a 合理可行 理由如下:
1)储量丰富
煤炭储量是决定矿井生产能力的主要因素之一 本井田内可采的煤层达到2层 保有工业储量为1.03亿t 按照0.9Mt/a的生产能力 能够满足矿井服务年限的要求
而且投入少、效率高、成本低、效益好
2)开采技术条件好
本井田煤层赋存稳定 井田面积大 煤层埋藏适中 倾角小 结构简单
水文地质条件及地质构造简单 煤层结构单一
适宜综合机械化开采 可采煤层均为厚煤层
3)建井及外运条件
本井田内良好的煤层赋存条件为提高建井速度、缩短建井工期提供了良好的地质条件 本井田内交通十分便利
刘官屯矿井田大部位于河北省丰南市境内 地处交通要塞
是华北通往东北的咽喉地带
京沈、京秦、大秦三大铁路横贯全境 津山、京沈干线km横跨东西 东有秦皇岛港 西邻天津港
新建的唐山港位于津秦两港之间 境内铁路公路交织成网 交通发达
为煤炭资源的运输提供了便利条件
综上所述
由于矿井优越的条件及外部运输条件
矿井的生产能力为90万t是可行的、合理的
并且符合《煤矿安全规程》和《设计规范》的相关要求
3.1.2 服务年限
矿井保有工业储量1.03亿t 设计可采储量7201.4万t 按0.9Mt/a的生产能力 考虑1.4的储量备用系数 则
式中: K--矿井备用系数 取1.4
A--矿井生产能力 0.9Mt/a
Zk--矿井可采储量 万t
P--矿井服务年限 年
代入数据得
P= 7201.4 /(90×1.4)=57.15年
因为服务年限大于45年 所以符合《设计规范》要求
3.1.3 矿井的增产期和减产期 产量增加的可能性
建井后产量出现变化 其可能性为:
3-1)(1)地质条件勘探存在一定的误差 有可能出现新的断层
2)由于国民经济发展对煤炭的需求变化 导致矿井产量增减
3)矿井的各个生产环节有一定的储备能力 矿井投产后
迅速突破设计能力 提高了工作面生产能力
4)工作面的回采率提高 导致在相同的条件下 矿井服务年限增加
5)采区地质构造简单 储量可靠
因此投产后有可靠的储量及较好的开采条件
3.2 矿井的工作制度
结合本矿井煤层条件、储量情况、以及达成产量所需要的时间;同时考虑设备检修以及工人工作时间等实际的因素
在满足《煤矿安全规程》的条件之下 本矿井工作制度安排如下:
矿井工作日为330天
本矿井工作制度采用“三八”制 两班采煤 一班检修
日提升工作时间为16小时井田开拓
井田开拓方式应该通过对矿井设计生产能力 地形地貌条件 井田地质条件 煤层赋存条件
开采技术及装备设施等综合因素进行方案比较以及系统优化之后确定 因此
在解决井田开拓问题时 应遵循以下原则:
1)贯彻执行有关煤炭工业的技术政策
为多出煤、早出煤、出好煤、投资少、成本低效率高创造条件 要使生产系统完善、有效、可靠
在保证生产可高和安全的条件下减少开拓工程量;尤其是初期建设工程量 节约基建投资 加快矿井建设
2)合理集中开拓部署 简化生产系统 避免生产分散
为集中生产创造条件
3)合理开发国家资源 减少煤炭损失
4)必须贯彻执行有关煤矿安全生产的有关规定 要建立完善的通风系统 创造良好的生产条件 减少巷道维护量
使主要巷道经常保持良好状态
5)要适应当前国家的技术水平和设备供应情况
并为采用新技术、新工艺、发展采煤机械化、综合机械化、自动化创造条件
6)根据用户需要
应照顾到不同煤质、煤种的煤层分别开采 以及其他有益矿物的综合开采
4.1 井筒形式、位置和数目的确定 4.1.1 井筒形式的确定
井筒是联系地面与井下的咽喉 是全矿的枢纽
井筒选择应综合考虑建井期限 基建投资
矿井劳动生产率及煤的生产成本 并结合开拓的具体条件选择井筒
矿井开拓 就其井筒形式来说
一般有以下几种形式:平硐、斜井、立井和混合式 下面就几种形式进行技术分析 然后进行确定采用哪种开拓方式
平硐:一般就是适合于煤层埋藏较浅 而且要有适合于开掘平硐的高地势 例如山地或丘陵 也就是要有高于工业广场以上具有一定煤炭储量 本井田地势比较平缓
高低地的最大高差也不过几十米 而且煤层埋藏较深 很显然
利用平硐开拓对于本井田来说是没有可行性的
斜井:利用斜井开拓首先要求煤层埋藏较浅、倾角较大的倾斜煤层 且当地地表冲积层较厚 利用竖井开拓困难时 即便是煤层埋藏较深
不惜打较长的斜井井峒的条件下才可能使用 而本井田的条件却不尽如此
全部的可采煤层均赋存于-50m以下 最深达-500m 这样一来
如果按照皮带斜井设计时 倾角不超过17度的话
此时斜井的井筒长度将是很大的 太长的斜井提升几乎是不可能的 而且工程量也是非常巨大的
跟着相关的维护和运输等费用也会大幅度的增加
以上种种因素决定了本井田使用斜井开拓也是不可行的
立井:适用于开采煤层埋藏较深且地表附近冲积层不厚的情况 而且越是这种情况就越显示出立井的优越性
混合式:对于本矿井来说 由于利用平硐和斜井都是不可行的 所以混合式也就不予考虑
本井田的煤层埋藏较深 地表附近的冲积层又比较薄 它对井筒的开凿将不会造成影响 而且立井开拓的一大好处就是 如果基岩赋存较稳定时 开凿以后
其维护费用几乎为零 本井田采用立井开拓时 对于煤炭的提升也较合适
根据《煤炭工业设计规范》[1]规定:煤层埋藏较深、表土层较厚、水文地质条件复杂及主要可采煤层赋存比较稳定.储量比较丰富等特点.本设计采用立井开拓. 4.1.2 井筒位置及数目的确定
1)井筒的数目
a 根据本矿区煤层的埋藏的具体条件 各井筒均采用立井
b主井、副井、风井各一个(见图4-
1、4-
2、4-3)
c井筒参数 表4-1井筒参数
Tab.4-7 Well chamber parameter 井筒名称
用途 井筒长度/m 提升方法
断面尺寸
直径/m 净断面积/㎡
主井 提升煤炭
520 箕斗提升
5.5
23.75
副井
进风、进人、运料排矸
480 罐笼提升
7.0
34.46
风井
回风兼作
安全出口
200
6.0
28.30
该设计采用三个井筒的井田开拓方式:主井、副井、风井 通风方式为中央边界式通风
2)井筒的位置
选择井筒位置的原则:
a 有利于第一开采水平的开采 并兼顾其它水平
有利于井底车场的布置和主要运输大巷位置的选择 石门工程量小
b有利于首采采区不只在井筒附近的富煤块段 首采采区少迁村或不迁村
井田两翼储量基本平衡
c 井筒不易穿过厚表土层、厚含水层、断层破碎带、煤与瓦斯突出煤层或较弱岩层
d 工业广场应充分利用地形 有良好的工程地质条件 且避开高山 低洼地和采空区 不受滑坡和洪水威胁
e工业广场宜少占农田少压煤
f 水源 电源较近
矿井设在铁路专用线路短 道路布置合理点
便于布置工业场地的位置 主要是根据以下一些原则:
a有足够的场地
便于布置矿井地面生产系统及其工业建筑物和构筑物
b有较好的工程、水文地质条件
尽可能避开滑坡、崩岩、溶洞、流沙层等不良地段 这样既便于施工
又可以防止自然灾害的侵袭
c便于矿井供电、给水、运输
并使附近有便于建设居住区、排矸设施的地点
d避免井筒和工业场地遭受水患、井筒位置要高于当地最高洪水位
e充分利用地形、使地面生产系统 工业场地总平面布置及其地面运输合理 并尽可能是平整场地的工程量少
对井田开采有利的井筒位置 确定依据:
倾斜方向的位置:
从保护井筒和工业场地繁荣煤柱损失看 愈靠近浅部
煤柱的尺寸愈小;愈靠近深部 煤柱的损失愈大 因此
井筒沿倾斜方向位于井田中上
走向的位置
a)井筒沿井田走向的位置应在井田中央 当井田储量不均匀分布时 应在储量分布的中央
以次形成两翼储量比较均衡的双翼井田
应该避免井筒偏于一侧造成单翼开采的不利局面
b)井筒设在井田中央时 可以使沿井田走向运输工作量小
而井田偏于一侧的相应井下运输工作量比前者要大
c)井筒设在井田中央时 两翼分配产量比较均衡
两翼开采结束的时间比较接近
d)井筒设在井田中央时 两翼风量分配比较均衡 通风线路短 通风阻力小
综合考虑
主副井筒位置选在井田走向中央位置 位于倾向中上部
风井井口位置的选择:
风井井口位置的选择 应在满足通风要求的前提下 与提升井筒的贯通距离较短 并应利用各种煤柱
有条件时风井的井口也可以布置在煤层露头以后
综合考虑
本矿井的风井沿走向布置在井田的边界中部
图4-1主井断面图
Fig.4-1 Main shaft cross-section fig
主井净直径5.5m 提升容器为9t箕斗一对
采用Jkm4×4(Ⅱ)型多绳磨擦轮提升机 配JRZ170/49-16型绕线式异步电动机两台 每台1000KW 最大提升速度为7.38m/s 该提升设备担负本矿全部煤炭提升
图 4-2副井断面图
Fig.4-2 Auxiliary shaft cross-section fig
副井净直径7.0m 提升容器为一吨双层四车多绳罐笼一对(一宽一窄)采用Jk.25×4(Ⅱ)型多磨擦轮提升机 配JRZ500-12型绕线异步电动机两台 每台500KW 最大提升速度8.02m/s
副井每次提升或下放四辆重车时 另一侧必须配四辆空车
下放液压支架时其重量限制在10.5t以内(包括平板车重)另一侧必须配两辆重车
图4-3风井断面图
Fig.4-3Air shaft cross-section fig
风井位于井田上部边界中部 净直径6.0m用于排风 同时做为安全出口
4.2 开采水平的设计 4.2.1 水平划分的原则
确定原则:
1)根据《煤炭工业设计规范》规定:
(1)90万t的矿井第一水平服务年限不得小于20年 缓倾斜煤层的阶段垂高为200-350m;
(2)条件适宜的缓倾斜煤层 宜采用上下山开采相结合的方式;
(3)近水平多煤层开采 当层间距不大时 宜采用单一水平开拓
2)根据煤层赋存条件及地质构造
煤层的倾角不同对阶段高度的影响较大 本井田的属于缓倾斜煤层 其平均倾角为14°
煤层标高从-750m标高到-300m标高
根据《煤炭工业设计规范》规定缓倾斜煤层的阶段垂高为200~350m 故划分为两个阶段
再结合本井田的煤层标高差较小 阶段斜长较短的实际情况 宜采用单水平上下山开采
3)根据生产成本
阶段高度增大 全矿井水平数目减少 水平储量增加
分配到每t煤的折旧费减少
但阶段长度大会使一部分经营费相应增加
其中随着阶段增大而减少的费用有:井底车场及硐室、运输大巷、回风大巷、石门及采区车场掘进费、设备购置及安装费用等;相应增加的费用有:沿上山的运输费、通风费、提升费、倾斜巷道的维修费
此外还延长生产时间、增加初期投资
因此要针对矿井的具体条件提出几个方案进行经济技术比较 选择经济上合理的方案
4)根据水平接替关系
在上一水平减产前 新水平即作好准备
因此一个水平从投产到减产为止的时间 必须大于新水平的准备时间 正常情况下
大型矿井的准备时间要1.5~2年
井底车场、石门及主要运输大巷亦需要1.5~2年 延伸井筒需要1年
合计需要4~5年的时间
开拓延伸加上水平过渡需要7~9年 所以每个矿井在确定水平高度时
必须使开采时间大于开拓延伸加上水平过渡所需要的时间
根据《煤炭工业矿井设计规范》:当煤层倾角大于12度时 宜采用走向长壁采煤法
本矿井煤层倾角平均为14度 故采用走向长壁采煤法
4.2.2 开采水平的划分
根据本井田的实际情况 以及煤层赋存的条件
提出两个在技术上可行的方案 :
方案一:采用立井单水平上下山开采
总的来说
两个方案再在技术术上均可行 各有优缺点
需要通过经济比较 才能确定其优劣
首先对下阶段的巷道布置在技术上比较两方案的优缺点 详见表4-2
表4-2两种开拓方案的技术分析表
Tab.4-2 two kind of development plan technical analytical table
方案
方案一:采用立井单水平上下山开采
方案二:采用立井双水平加暗斜井上山开采
优
点
(1)开拓巷道工程量小 两阶段共用一组大巷和平巷 掘进率较低
(2)提升运输距离较短(3)保护煤柱损失少 可以提高回采率
(4)下山阶段辅助运输容易
(1)采准巷道施工容易 工艺简单
(2)对工作面通风有利 可以避免下行风带来的缺点 通风费用较少
(3)对于煤炭的回采有利
(4)延伸井筒的施工比较方便
缺
点
(1)施工技术复杂 设备要求多
(2)掘进速度慢 掘进费用高(3)下山开采
工作面生产难度增加 排水困难
(4)顺槽内运输费用较高 生产费用较高
(5)两顺槽间风压差别较大 通风困难
(1)开拓巷道工程量大 增加准备时间
(2)提升能力小 动力消耗大 提升费用高
(3)风路长 风阻大 通风费用高
(4)暗斜井的维护较为困难 维护费用高
对于两个方案进行经济比较:
因两个方案划分的采区基本相同 所以采区上山的经济比较可以忽略不计 具体比较如下:
图4-4立井开拓方案一
Fig.4-4 vertical shaft development planNo.1
图4-5立井开拓方案二
Fig.4-5 Vertical shaft development plan No.2
表4-3案一 单水平上下山开采
Table 4-3 pioneering single-level downhill
项目
工程量
单价
费用
运输提升 万t
1520万t
0.669元/t
1016.8万元
排水 万m3
404.3万m3
0.1525元/m3
61.65万元
合计
1078.4万元
表4-4方案二:暗斜井延伸 两水平开采
Table 4-4 Option 2: Inclined Shaft extension the two levels of exploitation
名 称
掘 进 费 用
长度
(m)
费用
(元/m)
总费用
(万元)
运输暗
斜 井
922
3000
276.6
回风暗
斜 井
922
3000
276.6
井底车场
1100
3000
330
运输大巷
1269
3000
380.7
合计
1263.9万元
通过两个方案进行经济比较 很显而易见
方案二比方案一明显增加两条912m的暗斜井 以及增加相应的采准巷道 掘进费用明显高于方案一
而且相应的运煤、提升费用尚未计入表中 使得方案一的优势更加突出 所以方案一为最优方案
综上所述
本设计采用单水平上下山联合的方式
4.2.3 设计水平储量及服务年限
本井田设计水平为-580水平
第一阶段的设计可采储量为3900.5万t 设计水平的服务年限为34.1年
表4-5 水平储量及服务年限
Tab.4-5 Horizontal reserves and service life
水平序号
可采储量/万t
服务年限/年
第一阶段
3900.5
30.96
第二阶段
3300.9
26.19 4.2.4 设计水平的巷道布置
由于本井田煤层间距较近层间距<80m 故采用集中大巷布置 为便于维护
将大巷布置到12-2煤层底板岩层中 又由于设计中通风方式为边界式 所以采用两条大巷布置
大巷距煤层底板间距一般30m
大巷支护方式掘进时期及时支护采用锚杆支护 后期采用混凝土砌碹 巷道断面特征见图4-6
4.2.5 大巷的位置、数目、用途和规格
1)大巷的位置
选择大巷位置的原则:掘进量少 费用少 维护条件好 煤柱损失少
有利于通风和防火 运输方便
本矿井的可采煤层有两层
双轨大巷布置在12-2号煤层底板岩层的-580m水平处 距煤层底板30m
2)大巷的数目和用途
根据运输和通风条件 本矿井共布置一条双轨大巷
承担整个水平运煤、进风、运料、排水、排矸、行人等任务
3)大巷的规格
因为大巷的服务年限都较长 所以都采用锚喷支护 各大巷具体断面如下:
图 4-6 双轨大巷断面图
Fig.4-6 Transport the big lane sectional drawing
大巷运输方式采用矿车运输 轨型为18公斤/m 轨道大巷轨距600 mm 对大巷运输方式选择的依据是:
1)由于设计生产能力小 采用此种运输方式能满足要求
2)吨公里运输费较低
3)运输能力大 机动性强
随着运距和运量的变化可以增加列车数
4)矿车运煤可同时统一解决煤炭、矸石、物料和人员的运输问题
5)对巷道直线度要求不高 能适应长距离运输 4.3 采区划分及开采顺序 4.3.1 采区形式及尺寸的确定
根据井田地质情况 煤层赋存较稳定 煤层厚度在4左右 井田走向长度5km 井田内两条大的断层构造
以上条件很适合布置综合机械化采煤
而设计规范规定综采工作面双翼采区走向长度应超过1500~2000m 因此将井田共划分四个采区 其中一阶段两个上山采区 北一采区和北二采区 均为双翼采区
二阶段两个下上采区:南一采区 南二采区
表4-6 井田各采区技术特征表
Table 4-6 Mine technical characteristics of the mining area Table 采区
走向长度/m 倾斜长度/m 工业储量/万t 采煤方式 落煤方式 准备方式 N1 2416 1197 2869.2 走向长壁 综采
双翼上山采区 N2 1846 1038 1720.2 走向长壁 综采
双翼上山采区 S1 2281 756 2043.6 走向长壁 综采
双翼下山采区 S2 2226 904 1686.6 走向长壁 综采
双翼下山采区 合计 8769 3895 8319.6
4.3.2 开采顺序
合理的开采顺序是在考虑煤层采动影响的前提下 有步骤、有计划的按照一定的顺序进行 保证采区、工作面的正常接替 以保证安全、均衡、高效的生产 并且有利于提高技术经济指标
合理的开采顺序可以保证开采水平、采区、回采工作面的正常接替 保证矿井持续稳定生产 最大限度地采出煤炭资源
减少巷道掘进率及维护工程量;合理的集中生产 充分发挥设备能力 提高技术经济效益 便于防止灾害 保证生产安全可靠
根据《矿井设计规范》规定
新建矿井采区开采顺序必须遵循先近后远 逐步向井田边界扩展的前进式开采 多煤层开采时 一般先采上层
后采下层的下行式开采
还应厚、薄煤层合理搭配开采;开采有煤与瓦斯突出煤层时 应按开采保护层、抽放瓦斯及单独开采等技术措施要求 顺序开采
为保证均衡生产 一个采区开始减产
另一个采区即应投入生产 为此
必须准备好一个新的采区 所以
一个采区的服务年限应大于一个采区的开拓准备时间
由于双翼两个采区条件相近大巷长度又大致相等
所以采区开采顺序可任选一个先采 本设计开采顺序为:N1采区 S1采区 N2采区 S2采区
煤层间下行式 区段内后退式回采
4.4 开采水平井底车场形式的选择 4.4.1 开采水平井底车场选择的依据
井底车场是连接井筒和井下主要运输巷道的一组巷道和硐室的总称 是连接井下运输和提升的枢纽 是矿井生产的咽喉 因此
井底车场设计是否合理
直接影响着矿井的安全和生产
根据《矿井设计规范》规定
井底车场布置形式应根据大巷运输方式、通过井底车场的货载运量、井筒提升方式、井筒与主要运输大巷的相互位置、地面生产系统布置和井底车场巷道及主要硐室处围岩条件等因素 经技术经济比较确定
由于本设计中主井提升方式为箕斗提升 大巷采用矿车运输
井底车场与大巷距离较远且需用石门联系 从主副井井底车场到大巷均与石门联系 所以井底车场型式选为立式车场 如图4-7
1――主井
2――副井
3――井底煤仓
4――水仓
5――水泵房 6――中央变电所 7――清煤斜巷 图 4-7 井底车场示意图
Fig.4-7 Shaft station abridged general view cross-section distinction 4.4.2 井底车场主要硐室
根据《矿井设计规范》规定 井下硐室应根据设备安装尺寸进行布置 并应便于操作、检修和设备更换 符合防水、防火等安全要求 井下主要硐室位置的选择 应符合下列规定:
a应选择在稳定坚硬岩层中 应避开断层、破碎带、含水岩层;
b井下硐室不布置在煤与瓦斯突出危险煤层中和冲击地压煤层中
井底车场的主要硐室包括煤仓、箕斗装载硐室、中央变电所、中央水泵房及火药库
1)井底煤仓及装载硐室
井底煤仓位置应根据大巷运输方式、装载硐室位置、围岩条件及装载胶带机巷与装载硐室相互联系等因素比较确定
井底煤仓宜选用圆形直仓 井底煤仓的有效容量按下式计算:
(4-1)
式中:
Qmc--井底煤仓有效容量(t)
Amc--矿井日产量(t)
0.15~0.25--系数 大型矿井取大值 小型矿井取小值 本设计取0.15
则井底煤仓容量为:
Qmc=0.15×900000/330=410t
煤仓为圆形垂直煤仓 见图4-8
图4-8垂直煤仓结构图
Fig.4-8 The diagram of coal Depot
1--上部收口;2--仓身;3--下口漏斗及溜口闸门基础;4--溜口及闸门
2)中央变电所、中央水泵房和水仓
中央变电所和中央水泵房联合布置
以便使中央变电所向中央水泵房供电距离最短 一般布置在副井井筒与井底车场连接处附近当矿井突然发生火灾时 仍能继续供电、照明和排水 为便于设备的检修及运输 水泵房应靠近副井空车线一侧
水泵房与变电所之间用耐火材料砌筑隔墙 并设置铁板门为防止井下突然涌水淹没矿井 变电所与水泵房的底板标高应高出井筒与井底车场连接处巷道轨面标高0.5m 水泵房及变电所通往井底车场的通道应设置密闭门 水仓入口
一般设在空车线 井底车场标高最低处 确定水仓入口时 应注意水仓装满水
中央变电所和中央水泵房建成联合硐室 具体见图4-9:
图 4-9 中央变电所和中央水泵房联合硐室
Fig.4-9 Substation capacity and water pump house union booth
3)火药库
由于本矿井采用全部机械化采煤 所以相对用火药较少
选用储量较小的壁槽式火药库就可以满足井下正常工作的需要
库房与巷道的关系:
a库房距井筒、井底车场、主要运输巷道、主要硐室和影响全矿井大部分采区通风的风门的直线距离应不小于80m;
b库房距地面或上下巷道的直线距离不小于15m
根据本设计井底车场的实际位置 采用容重2400kg壁槽式标准爆破材料库 该材料库具有独立的通风系统
打一条通风钻孔直接与地面直接相连 火药库的具体结构见图4-10:
图 4-10 壁槽式爆破材料库
Fig.4-10 Blast material storage
序号
巷道名称
序号
巷道名称
1
轨道大巷 2
库房巷道
3
炸药壁槽
4
雷管壁槽
5
电气壁槽
6
消防器材
7
放炮工具室
8
发炮室
9
防火门 10
回风立眼
4.5 开拓系统综述 4.5.1 系统概况 1)开拓方式
本设计矿井采用“立井多水平、集中运输大巷、走向长壁相结合”的开拓方式 采用立井开拓 共3个井筒
主箕斗立井、副罐笼立井、边界风井 采用中央边界式通风方式
矿井开采水平在-580m标高位置 矿井正常生产时
一个采区一个综采工作面保证年产量
2)生产系统:
a 通风系统:由副井进风 主回风井回风
一采区通风路线是:副井 轨道石门 轨道大巷 采区轨道上山 区段轨道石门 区段运输平巷 工作面
区段回风平巷 区段回风石门 采区运输上山 回风大巷 最后由主回风井排出地面
火药库通风:副井入风 采用钻孔立眼回风
b 运煤系统:工作面落煤 区段运输平巷 区段运输石门 溜煤眼下溜 采区运输上山 采区煤仓 运输大巷 运输石门 井底煤仓
最后由主井箕斗提升至地面
c 运矸系统:掘进工作面 区段轨道平巷 采区回风石门 采区轨道上山 轨道大巷 副井 地面
d 运料运人系统:地面 副井 轨道大巷 采区轨道上山 区段回风石门 区段轨道平巷 直至工作面
e 排水系统:采掘工作面 区段平巷 区段轨道石门 采区轨道上山 轨道大巷 井底车场 水仓 副井 地面
4.5.2 移交生产时井巷的开凿位置、初期工程量
1)矿井移交生产时的标准
a 井上、下各生产系统基本完成 并能进行正常的安全的生产;
b “三个煤量”达到规定标准;
c 回采工作面长度一般不少于设计回采工作面长度的50﹪;
d 工业广场内的行政、公共设施基本完成;
e 居住区及其设施基本完成
根据以上标准确定井巷的开凿位置
2)移交生产时井巷开凿的位置
在矿井设计中
全矿年产量由一个综采工作面保证达产 移交生产时
运输上山、轨道上山已经掘进到开采位置
煤层运输平巷、回风平巷已掘完并通过区段石门与上山相连 然后掘开切眼 贯通上下顺槽
3)初期工程量
初期移交工程量是指移交时掘进的各类巷道硐室、井筒等为生产服务的设施的总的掘进体积
初期移交开拓工程量见表4-7:
表4-7交初期工程量表
Tab.4-7 Erealy transfer engineering amount table
名称
长度/m
掘进断面面积/ m2
掘进体积/
主井
520
23.75
12350
副井
480
34.46
16540..8
风井
200
28.30
5660
井底车场
1100
18.4 20240 主要运输石门 130 16.9 2197 主要轨道石门 130 16.9 2197 运输大巷 1600 16.9 27040 运输上山 1170 16.9 19773 轨道上山 1170 16.9 19773 轨道石门 80 16.9 1352 回风石门 259 16.9 4377.1 运输顺槽 1430 16.1 24167 回风顺槽 1430 12.6 18018 回风大巷 1170 16.4 19188 开切眼 180
12.6
2268
总计
195320.9 采准巷道布置
5.1 设计采区的地质概况及煤层特征 5.1.1 采区概况
设计采区为一采区 该采区位于井田西翼 西至井田勘探线
东部边界到工业广场保护煤柱线 大巷布置在-580水平采区平均走向长2416m 倾斜长1256m 采区内共发育两个个可采煤层 煤厚分别为3m、4m 煤层赋存简单
无断层及火成岩侵入等地质构造 煤层倾角平均为14度 煤变质程度高 煤质好
绝对涌出量为10.5m3/min 发火期短
煤层直接顶较厚并且软弱
5.1.2 煤层地质特征及工业储量
一采区做为首采区 是上山开采 采区开采两层煤
煤层平均倾角为14° 属于缓倾斜煤层 采区内地质构造简单 无断层 煤质较好
水分含量0.56~15.54% 瓦斯相对涌出量为10.5m3/t 煤尘无爆炸性危险自然发火期为3-6个月 煤层顶底板较为稳定
采区工业储量为3369.2万t
5.1.3 采区生产能力及服务年限
采区生产能力的基础是采煤工作面生产能力
而采煤工作面的产量取决于煤层厚度、工作面长度及推进度
1)采区生产能力A:
(5-1)
式中:L-回采工作面长度 取180m
V-工作面年推进度 工作面每日进4刀 截深0.8m 因此年推度为1056m
M-采高 4m
r-煤的容重 1.3t/
C-工作面回采率 厚煤层0.93
则: A=180×1188×4×1.3×0.93
=90.92万t/a
同时考虑5%的掘进出煤 则采区的生产能力为:
A总= A×(1+5%)=103.4×1.05=95.47万t/a;
再将上面计算出来的生产能力通过通风能力、风速和风量限制要求计算式中检验 得出符合要求
2)采区服务年限T:
(5-2)
式中: Z-本采区设计可采储量 2351.16万t
A-本区生产能力 90万t/a
=2351.16/90×1.4=18.65年
5.2 采区形式、采区主要参数的确定 5.2.1 采区形式
按照煤层群开采的联系为联合准备 即各煤层共用两个岩石上山和区段石门 煤层倾角平均为14°
瓦斯量低、顶底板均无较大涌水 根据煤层赋存条件
本设计采用走向长壁采煤法
5.2.2 采区上山数目、位置及用途
设计的上山在最下部煤层的底板开掘 运输上山作为采区的主运输 其内铺设皮带
运输采区工作面的出煤
轨道上山铺设轨道作为采区的辅助运输 运送矸石、设备、材料、兼作行人
5.2.3 区段划分
采区倾向长1256m 其中留4m的区段平巷 区段间保护煤柱留10m宽 井田境界煤柱30m 阶段煤柱30m 则本采区可以划分为6个区段 工作面长180m
5.3 采区车场及硐室 5.3.1 车场形式
区段上部车场为顺向平车场 中部为单向甩车场 下部为直向平车场
每个采区只有一个综采工作面 运输量不大
所以只设材料绕道车场 运料斜巷在大巷入口处取平由大巷进入车场绕道存车线 然后直接进入轨道上山 这种布置方式使用方便 运行可靠
1)上部车场:车场形式为顺向平车场(与回风道在同一水平)矿车或材料车经轨道上山提至平车场平台
然后沿着矿车行进方向经回风石门运至工作面或所需材料地点
2)车场:车场形式为石门甩车场形式 单道起坡方式
由轨道上山提升上来的矿车 通过甩车道甩到中部轨道石门中 再进到区段轨道平巷
3)下部车场:本下部车场的绕道属于顶板绕道 从上山来看
通过竖曲线落平后摘钩
沿车场的高道自动滑行到下部车场存车线 由井底来车
则进入车场的底道
自动滑行到下部车场的低道存车线后 挂钩由绞车房提升上去
根据轨道上山起坡点到大巷的距离 本车场属于斜式顶板绕道 [8] 5.3.2 采区煤仓
在采区煤仓的尺寸确定之前 首先对煤仓的容量进行确定:
按循环产量计算煤仓容量Q
Q=L×l×h×r
式中:L--工作面长度 m
l--截深 m
h--采高 m
r--煤的容重 1.3t/ m3
所以Q =180×0.8×4×1.3=748.8t
由以上计算作为依据 选择煤仓容量为800t
由经验
R=2.96≈3 h=25m
采区煤仓用混凝土收口 在煤仓上口设铁箅子 煤仓溜口与装车方向相同 闸门的形式为单扇闸门 开启方式为气动
5.4 采准系统、通风系统、运输系统 5.4.1 采准系统
由运输大巷开掘采区下部车场 向上开掘采区岩石集中运输上山 采区集中轨道上山 与回风大巷贯通 形成通风系统后
在区段上部开掘采区回风石门
在区段下部开掘区段运输石门与区段轨道石门分别与上层煤贯通
在上层煤开掘区段运输平巷
5-4)5-3)((区段回风平巷至采区边界开掘开切眼 形成工作面即可回采
掘进过程中同时开掘中部车场 上部车场及采区各种硐室
5.4.2 通风系统
新鲜风流副井→井底车场→轨道大巷→轨道上山→区段运输平巷→工作面→污风→区段回风平巷→采区回风石门→回风大巷→风井排出地面
5.4.3 运输系统
运煤系统:工作面出煤→区段运输平巷→运煤上山→采区煤仓→运输大巷→井底煤仓→从主井提到地面;
排矸系统:掘进巷道时所出的矸石由轨道上山运到轨道大巷之后到井底车场 然后从副井提至地面;
运料系统:副井→井底车场→轨道大巷→轨道上山→区段回风平巷→使用地点 [6] 5.5 采区开采顺序
本设计采区同一煤层采用区段顺序依次开采 工作面沿走向推进 采区内共有四个煤层 分别都是由远及近开采 由于顶底板岩性较好
受采动影响较小.先采上层煤 再采下层煤
工作面沿走向推进
5.6 采区巷道断面
根据《设计规范》规定
综采工作面胶带输送机顺槽巷道净断面不宜小于12㎡ 回风顺槽净断面不宜小于10㎡
输送机上下山的净断面不宜小于12㎡ 运料、通风、和行人上山的净断面 不宜小于10㎡
采区准备巷道工程量是指从区段石门起的所有巷道和硐室的工程量总和 具体见下表5-1:
表5-1采区准备工程量
Tab.5-1 Ready engineering amount of mining section 巷道 支护形式 断面大小 长度/m 体积
净/m2 掘/m2
净/m3 掘/m3 运输上山 锚喷 16.4 20.2 1170 19188 23634 轨道上山 锚喷 15.3 19.0 1170 17901 22230 绞车房 锚喷 13.5 15 35 472.5 525 采区下部车场 锚喷 13.1 14.9 150 1965 2235 采区煤仓 混凝土 15.9 19.6 21 333.9 411.6 区段运输石门 锚喷 16.4 20.2 145 2378 2929 区段回风石门 锚喷 15.3 19.0 145 2218.5 2755 运输顺槽 梯形棚子 12.3 13.7 1430 17589 19591 回风顺槽 梯形棚子 11.6 13.1 1430 16588 18733 开切眼 锚网 10.1 10.1 180 1848.3 1848.3
图5-1.运输顺槽巷道断面图
Fig.5-1 Transport trough tunnel section
图5-2 回风顺槽断面及特征
Fig.5-2 Returns to the wind to break the chart along the trough and charactic 6 采煤方法
6.1 采煤方法的选择 6.1.1 选择的要求
1)煤炭资源损失少 采用正规采煤方法
2)安全及劳动条件好
3)便于生产管理
4)材料消耗少
5)尽可能采用机械化采煤 达到工作面高产高效
6.1.2 采煤方法
本矿井的两层煤均属于缓倾斜煤层 根据本采区的形状特点
采用走向长壁后退垮落采煤法
表6-1 全井田各采区采煤方法
Table 6-1 entire mining area of the mine mining method
采区
采煤方法
落煤方式
顶板管理
一采区
走向长壁采煤法
综采局部普采
全部垮落法
二采区
走向长壁采煤法
综采局部普采
全部垮落法
三采区
走向长壁采煤法
综采局部炮采
全部垮落法
四采区
走向长壁采煤法
综采局部炮采
全部垮落法
第五篇:采矿工程毕业论文
采矿工程本科毕业论文
题 目: ___________________
专 业: ___________________
姓 名: ___________________
日期:
摘要
随着社会不断的发展和进步,我们人类跨入21世纪之后,信息技术已经被应用到了多个领域之中,以高科技为科学发展观已经成为了社会发展的重要方向,以此同时,资源和环境问题已经成为了世界性所有面临和解决的问题,煤矿开采行业,是非常传统的重工业,为了能够适应社会发展,实现新世纪的发展目标和要求,这些就成为了我们煤矿工作者需要关注和重视的问题了,在煤矿开采中,其最重要的核心技术就是煤矿开采技术,为此,为了能够提高其开采的效率和开采过程中的安全性,我们必须对其煤矿开采技术进行不断的完善和创新,本文就通过从煤矿开采技术的发展以及在煤矿开采过程中存在的问题,进行了简单的阐述和分析,希望能够在论述过程中,对煤矿开采技术的发展以及解决存在的问题提供可行性思路。分析了当前煤矿开采中开采技术的重要性,探讨矿井开采的关键技术问题以及对矿井开采技术的发展方向进行了展望。
关键词: 煤矿开采技术;发展方向;存在问题;分析应用
ABSTRACT
With the continuous development and progress of society , then we humans enter the 21st century, information technology has been applied to many areas being in the high-tech scientific concept of development has become an important direction of social development , thus the same time, resources and has become a worldwide environmental problem facing all the problems and solutions , the coal mining industry is very traditional heavy industry , in order to be able to adapt to social development , to achieve a new century of development objectives and requirements , which became mine workers we need to focus on and the importance of the problem, in the coal mining , its most important core technology is coal mining technology , therefore , in order to improve the efficiency of its mining and extraction processes of security, we must keep to its coal mining technology improvement and innovation , this article through from coal mining technology and development issues in the coal mining process exists for a simple exposition and analysis, hopes to discuss the process of the development of coal mining technology and problem-solving existing offer the feasibility of the idea.Analyzes the importance of
coal mining in the current mining technology to explore underground mining of key technical issues and the direction of development of underground mining techniques were discussed.Keywords:Coal Development direction;Problems;
mining technologyAnalysis ;
目录
1.前言.....................................................................2.我国煤
矿
开
采
技
术
发
展
现状...................................................2.1 煤炭工业呈现多层次的生产技术结构.....................................2.2 煤矿
开
采
技
术
取
得
重
大
进展.............................................2.2.1综采放顶煤技术.................................................2.2.2引进大功率综采设备日产万吨以上.................................2.2.3大采高综采技术.................................................2.3 煤矿井工开采技术面临的主要问题.......................................2.3.1深井开采技术...................................................2.3.2“三下”采煤....................................................2.3.3困难条件下综采放顶煤技术.......................................2.3.4缓倾斜薄煤层单一长壁综采技术...................................2.3.5乡镇煤矿开采技术水平低
.........................................3.开采技术发展的方向.........................................................3.1 采煤方法和工艺.......................................................3.2深矿井开采技术...................................................3.3优化巷道布里,减少矸石排放的开采技术.................................3.5 矿山压力控制.........................................................3.6煤炭地下气化技术.....................................................3.7小煤矿技术改造和机械化开采技术.......................................4.结论.....................................................................致
谢......................................................................参考文献....................................................................1.前言
煤矿开采方法及技术对煤矿的安全生产、采煤设备能力的发挥、生产成本、经济效益具有十分重要的作用。一个煤矿的生产经营状况,除了自然地质条件和管理水平外,主要取决于开采方法的先进性和适应性。我国从炮采-普通机械化采煤-高档普采-综合机械化采煤-综采放顶煤-强力综采技术的发展,使采煤工作面的年单产由几万吨、几十万吨、几百万吨到上千万吨。事实充分证明了煤矿开采技术的发展对煤矿产量、经济效益的重要作用。同时,煤矿开采是一个传统的工业,高新技术的含量较低,如何适应科学技术的发展,在竞争中求生存与发展,煤矿的开采技术正是其核心问题。
因此,从战略上确定好开采技术的创新方向,从战术上搞好开采技术创新,对煤炭工业的持续健康发展具有重要意义。
2.我国煤矿开采技术发展现状
2.1 煤炭工业呈现多层次的生产技术结构
我国煤矿按所有制分为国有重点煤矿、地方国有煤矿和
乡镇煤矿。这3类煤矿分别处于机械化、半机械化和基本为手工劳动的生产技术水平。在2001年全国煤炭产量中,5916%来自原国有重点煤矿,21%来自地方国有煤矿,1914%来自乡镇集体煤矿。2000年国有重点煤矿采煤机械化和综合机械化程度分别达到74143%和56173%,掘进装载机械化和综掘程度分别达到73129%和12181%。
我国煤矿的开采方法既有世界先进水平的综合机械化高产高效矿井,又有原始落后的人工开采方法。如神华集团大柳塔煤矿在2000年实现“一井一面”生产原煤920158万吨的基础上,2001年计划生产原煤1000万吨,3月份月产创100158万吨,综采工作面月产90107万吨的好成绩。而我国的乡镇、个体小煤矿井型规模小,平均年产量不到1万吨,资源回收率一般只有10%~15%;伤亡事故多,1988~1997年10年间,小煤矿死亡人数占全国煤矿死亡总人数的7312%,死亡率高达1017人/Mt;开采方法落后,生产效率低。
多层次的煤炭生产结构决定了煤炭工业生产技术结构的多层次化,而且这种多层次的生产技术结构将会持续相当的时间。保障安全生产、减少手工作业和笨重体力劳动是数万个乡镇集体煤矿急需解决的问题,集约化成为大型企业的发展方向。
2.2 煤矿开采技术取得重大进展
经过“七五”、“八五”、“九五”科技攻关,我国在综合机械化放顶煤、坚硬顶板条件下的长壁综采、大 采高综采技术及工艺方面均取得重大进展。
2.2.1综采放顶煤技术
20世纪80年代初我国开始试验,90年代以来,有了很大发展,出现了兖州、潞安、阳泉等以放顶煤开采为主的大型高产高效矿区。对较好条件下的综放成套装备进行了完善提高,采用900kW电牵引采煤机,设计了低位大插板新型支架,开发应用快速移架系统,并采取加大采煤机截深、加大后部输送机溜槽宽度等措施,取得了很大成功。综放队创年产510万t的好成绩,达到世界先进水平。
我国研制出近20种放顶煤液压支架,并对放顶煤工作面矿压显现规律、顶煤破碎规律、顶煤冒放性、支架-围岩关系进行了深入的研究,对安全、高效生产起到了重要指导作用。我国在放顶煤支架架型、结构功能、参数、理论研究及使用效果方面居国际领先水平。综放生产工艺技术研究取得了实质进展,初步解决了有夹矸、顶煤硬等特殊情况下的综放技术难题,进一步提高了回收率。
1996~2000年兖州集团公司与煤炭科学研究总院开采所等科研机构和厂家合作完成的煤炭行业“九五”重点科技攻关项目“缓倾斜特厚煤层高产高效综放开采成套技术与
装备研究”,围绕综放开采成套装备与工艺、综合降尘技术、综合防灭火技术和提高回采率相关技术等4个专题15个子专题,联合攻关,项目总体技术达到了国际领先水平,初步形成了具有自主知识产权的综采放顶煤核心技术,并逐步实现了主要综采设备的国产化,极大地提高了矿井的集中生产能力和经济效益,基本实现了“一矿一面”或“一矿两面”的高产高效生产格局。2000年,兖矿综采队全部达到300万吨以上水平,其中2个综采队单产突破500万吨,最高达到512161万吨;原煤生产效率达到141787t/工,是1990年的8185倍。目前,兖矿又与开采所等单位合作,开展了国家技术创新项目/年产600万t综放工作面设备配套与技术研究0及/高效集约化综放开采技术及关键装备0的研究与实施工作,项目完成后可基本实现集采煤、放煤、运输等生产环节的智能化、自动化,对主要生产设备工况进行实时在线监测,工作面单产水平已达600万t以上,可在全国率先实现准无人综放采煤工作面。
2.2.2引进大功率综采设备日产万吨以上
我国神华集团神东公司在全国煤炭行业率先全套引进国外先进技术和装备,实现了采掘工作面生产集中化,主要运输系统胶带化,辅助运输无轨胶轮化的机械化作业方式。神东矿区一般都采用条带式开采,工作面长度为
225~245m,推进长度为2500~5000m,装备美国JOY公司生产的6LS-5型直流电牵引双滚筒采煤机,总装机功率为1600kW,采高212~510m,牵引速度为0~15m/s,生产能力在2000~2800t/h;液压支架选用美国JOY公司和德国DBT公司生产的JOY8670-214/510和DBT7640-212/415液压支架;三泵一箱乳化液泵站每台供液流量达到270L/min;大功率的JOY和DBT刮板输送机、转载机和破碎机采用集中控制联动操作,总功率达2030kW,过煤能力为21500t/h;顺槽胶带机选用美国公司和澳大利亚公司的B1400-3*375-410型胶带输送机,带速为4m/s;采区供电采用采区钻孔,移动箱式变电所,10kV电压通过钻孔直接供到工作面顺槽移动变电所。除胶带输送机以外综采工作面其它设备的总重量约6000t,总装机功率4500kW。这些先进的大功率重型机械化设备,为实现高产高效矿井建设提供了可靠保障。
综采设备自动化控制的实现,为减人增效提供了广阔空间。一个生产班的员工数由上百人、几十人减 到6~8名,班产原煤在1万t左右,日开机时间一般在83%左右,日产原煤在213万t以上,创出全国第一、世界一流水平。
国产装备日产7000t高产高效综采在综采工作面电压不升级(1140V)的情况下,我国已研制出日产7000t综采成套设备,并在铁法矿务局晓南矿成功应用,最高日产达9206
万t。实际生产表明,若全矿运输系统配套完善后,具有日产万吨的潜力。
2.2.3大采高综采技术
以邢台矿业集团东庞矿415~5m厚煤层一次采全高综采设备及工艺项目的成功为标志,我国引进德国和采用国产液压支架,分别在开滦范各庄矿、林南苍矿和邢台东庞矿取得了明显成效。邢台矿业集团东庞矿一次采全厚长壁综采,单产与工效比同一煤层条件下的分层综采分别高出1118~2162和0158~112倍,1995年最高月产24万t/月,1996年产量达220万吨。
2.2.4“两硬”条件下综采和综放技术
1979年,由北京开采所等单位与大同矿务局协同开展的坚硬顶板条件下的综合机械化采煤课题,通过对顶板进行高压注水软化压裂、强制放顶、强力支架相结合的综合顶板控制技术,有效地软化了顶板,减少了来压强度,实现了厚层砂岩坚硬顶板条件下的高产高效矿井综合机械化采煤,解决了顶板的安全隐患,解放了下部煤层,提高了生产效率和资源回收率。
“八五”期间,通过引进关键设备结合自主开发,开展了“大同两硬条件万吨级双高工作面研究”和“大同两
硬条件115m厚煤层七千吨级双高工作面研究”,引进日本MCLE600-DR102102型和美国4LS大功率电牵引采煤机,英国LX(2A)2000-100型和LX(3B)1500-830型工作面输送机;与煤炭科学研究总院太原分院合作研制的ZZS6000/17/37和ZZ5200/11/18型液压支架,与上海分院合作研制的SSJ1200/3@200M和SSJ1200/3@250型胶带机,在两个试验工作面日产分别达到12537t和7000t。“九五”攻关项目“两硬厚煤层综放开采关键技术与装备研究”,通过对顶煤弱化、顶板控制、特种低位放顶煤支架与总体配套,以及放煤工艺等方面的攻关,在忻州窑矿11-12合并煤层的8909、8911两个工作面试验成功,工作面平均煤厚7106m,采高218m,放煤厚412m,顶煤回收率76%,工作面回采率8216%,最高月产121 368t,提高单产近2倍,成本降低5.5元/t。
2.3 煤矿井工开采技术面临的主要问题
2.3.1深井开采技术
据统计,国有重点煤矿平均采深年增加9m,采深大于700m的矿井有50多处,最深矿井已超过1000m;最终采深超过800m的矿井有171处,总设计能力16221万t/a,预计煤炭资源总量的53%埋深大于1000m。由于深井开采采掘工作面的围岩应力场、温度场等与浅部开采有很大变化,浅部开采理论已不完全适用。
2.3.2“三下”采煤
“三下”压煤是制约我国许多煤矿发展的重要问题。据不完全统计,我国仅统配煤矿“三下”压煤量就达13719亿吨,其中建筑物下压煤量占60%左右。在人口密集、工业发达的8个省建筑物下压煤达6417亿吨,占全国“三下”压煤量的近一半。如大屯煤电公司截止2000年年底,可采储量合计6163818万t,“三下”压煤及其它非经济可采储量为4286118万吨,占可采储量的69%。随着我国经济发展对煤炭需求的增加,解决/三下0压煤呆滞储量的开采技术已成为亟待解决的问题。
2.3.3困难条件下综采放顶煤技术
随着综采放顶煤开采技术的发展,以平朔矿区、陕西矿区、灵武矿区等埋藏较浅(H<200m),煤层厚(h>7m),煤质硬(f>310),顶板硬(f>10)的一类煤层的综放开采问题日益突出,这类地质条件下的煤层综放开采存在如下技术难题:
(1)埋藏浅(H<200m),地压小,使顶煤变形破坏的支承压力小,煤质硬,顶煤冒放性差。
(2)顶板厚、强度大,难以随工作面的推进及时冒落,影响顶煤回收率,同时,如果顶板控制不好,顶板突然垮落将对支架产生冲击,威胁工作面的安全。
(3)煤层厚,煤质硬,煤层破断角小且滞后垮落,冒落的煤块大,难以放出,对顶煤回收率影响很大。
2.3.4缓倾斜薄煤层单一长壁综采技术
我国77个重点矿务局的424个矿井赋存765个薄煤层,占可采总储量的19%。但从薄煤层中采出的煤量逐年下降,1996年仅占7132%,并有进一步下降的趋势。薄煤层开采机械化程度低,采高小,工作条件差,设备移动维修困难;存在投入多,产出少的问题。
2.3.5乡镇煤矿开采技术水平低
乡镇煤矿开采工艺落后,安全生产条件差,资源回收率低,也是需要解决的问题。
3.开采技术发展的方向
在当今科技经济发展的新形势下,煤炭开采技术的研究必须面向国内国外两个市场、面向经济建设主战场,立足于煤炭开采技术的前沿,立足于中国煤炭发展战略所必要的技术储备,立足于煤炭工业中长期发展战略所必须的关键技术的攻关,立足于煤炭工业工程实际问题的解决,重点从事中长期研究开发和技术储备,跟踪产业科技前沿,开发有自主知识产权的以煤矿开采技术及配套装备为主导的核心技术,占领技术制高点。
3.1 采煤方法和工艺
采煤方法和工艺的进步和完善始终是采矿学科发展的主题和中心。采煤工艺的发展将带动煤矿开采各环节的变革,现代采煤工艺正在向高产、高效、高安全性和高可靠性方向发展,基本途径是使采煤技术与现代高新技术相结合。研制和使用强力、高效、可靠、耐用及智能化的采煤设备及监控系统,改进和完善采煤工艺在发展现代采煤工艺的同时,继续发展,改进多层次、多样化的采煤工艺,通过科学总结实践经验,建立我国系统的采煤工艺理论。
3.2深矿井开采技术
随着社会对煤炭需求量的日益增加,开采能力不断提高,开采深度不断增加是煤矿开采技术发展的必然趋势。我国采矿工作者一般把采深等于及大于800m的矿井称深井。深部矿井开采是我国煤矿开采面临的重大技术课题之一。深矿井开采的关键技术是:煤层开采的矿压控制、冲击矿压防
治、瓦斯和热害治理及深井通风、井巷布置等。
3.3优化巷道布里,减少矸石排放的开采技术
改进、完善现有采煤方法和开采布置,以实现开采效益最大化为目标,研究开发煤矿地质条件开采巷道布置及工艺技术评价体系,实现开采方法、开采布置与煤层地质条件的最优匹配。重点研究高产高效矿井开拓部署与巷道布置系统的优化,简化巷道布置,优化采区及工作面参数,研究单一煤层集中开拓,集中准备、集中回采的关键技术,大幅度降低岩巷掘进率; 多开煤巷,减少出矸率; 研究矸石在井下直接处理,作为充填材料的技术。
3.4三下采煤技术
提高数值模拟计算和相似材料模拟等技术的水平,深入研究开采上覆岩层运动和地表沉陷规律,研究满足地表、建筑物、地下水资源保护需要的合理的开采系统和优化参数,发展沉降控制理论和关键技术,包括用地表废料向垮落法工作面采空区充填的系统;研究与应用各种充填技术和组合充填技术,村庄房屋加固改造重建技术,适于村庄保护的开采技术;研究近水体开采的开采设计、工艺参数优化和装备,提出煤炭开采与煤矿城市和谐统一的开采沉陷控制、开采村庄下压煤、土地复垦和矿井水资源化等关键技术。
3.5 矿山压力控制
寻求矿山压力控制实际问题的完好解决与科学解答仍是采矿学科的基本任务。对于性质不同、类型繁多的矿山压力显现与控制问题,通过研制和改进测试仪器、完善监测手段、掌握不同条件下的矿山压力显现规律,并据此研究、改进控制的手段和方法,采取恰当的技术与安全措施,实现矿山压力的适时有效控制。因此我们需要继续研究的问题有:(1)进一步完善来场围岩控制理论;
(2)研究坚硬顶板与破碎顶板条件下应用高技术低成本岩层拉制技术;
(3)放顶煤开采岩层和支架—围岩相互作用机理;(4)支护质量与顶板动态监测技术;(5)冲击矿压的预测和防治;(6)研究开发新型的支护设备。
3.6煤炭地下气化技术
煤炭地下气化是实现高效安全开采的一项新工艺,属于一种特殊的采煤方法,它集建井、采煤、气化。种工艺为一体,取消了庞大笨重的井下采煤设备和地面气化设备,变传统的物理采煤为化学采煤,是多学科开发洁净能源和化 工原料的高新技术。它克服了现有井工采煤的安全问题等弊
端,也趁免了传统采煤和地面气化过程中的废气、废水、废渣等的污染,其关键技术是实现气化生产的连续、稳定(煤气量、煤气成份、煤气热值的稳定)和充分就地监测、控制。
3.7小煤矿技术改造和机械化开采技术
实施国家关闭小煤矿,淘汰落后生产技术和生产设备,提高平均单井规模的技术政策,开发小型机械化、半机械化开采技术和装备,改进小煤矿的采煤方法和开采工艺,提高采煤工作面的单产和工效;提高小煤矿的顶底板控制技术水平,最大限度地减少顶底板事故率。
4.结 论
综上所述,从上述过程中,笔者认为当今煤矿开采技术的发展主要方向应该是围绕高科技技术应用和保护环境两个方面,一定要坚持可持续发展的路线,来进行的煤矿开采技术的应用,在这一过程中,主要还是需要我们相关的煤矿工作者在实践工作中不断的完善和创新方法,为煤矿开采技术的创新多提宝贵意见,为煤矿事业发展做出贡献,在浅谈煤矿开采技术的发展和存在的问题过程中,可能还存在很多不足的地方,希望可以得到广大煤矿开采工作者的广泛意见,通过相关的建议,虚心接受和思考,来不断完善自身不足之处,争取为煤矿开采技术的发展做出更多贡献。应用现代科学理论新方法与高新技术,研究解决采矿问题,探求采矿规律; 采矿科学与其它科学(计算机科学、材料科学等)的相互结合,丰富和扩展了煤矿开采技术,是当今煤矿开采技术的发展方向。
致 谢
本论文在导师的悉心指导下完成的。本次论文从选题到完成,每一步都是在导师的悉心的指导下完成的,倾注了导师的大量心血,在写论文的过程中,遇到了很多的问题,在老师的耐心的指导下,问题都得以顺利解决,在此,我向我的导师表达我由衷的敬意,谢谢导师在这段时间给我无微不至的关心和爱护。在毕业论文设计这段时间里,导师的渊 博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,而且平易近人的人格魅力对本人都产生了深远的影响,而且,在这期间对于基本研究方向的把握,资料的搜集,期刊论文的学习等方面都对我有很大的帮助,对我今后的学习和工作都产生了深远的影响,为我今后前进指明了方向,在此我再次感谢导师在这段时间对我的帮助。
参考文献
[1]杨晋渊.世纪初煤矿开采技术的发展及对策[J].山西焦煤科技,2001,21(2).[2]李全生.我国井工煤矿开采技术现状和成展展望[J].煤矿开采,2002,7(3).[3]曹胜根,缪协兴.超长综放工作面采场矿山压力控制[J].煤炭学报,2001,26(6).[4]魏同,张先尘,王玉浚.中国煤炭开发战略研究[M].太原:山西科学技术出版社, 19951.[5]钱鸣高,何富连,李全生,等.综采工作面矿压显现与支护质量监控[J].煤炭学报, 1995,(7): 48-511.[6]中国经济导报社,北京中经通投资咨询有限责任公司.中国煤炭产业国际化发展战略研讨报告[R]120011.[7]魏学贵.现代采煤工艺探析[J].中国集体经济(下半月),2007(5).[8]高家礼.浅析小煤矿采煤方法[J].价值工程,2011(8).[9]付崇禹,高海涛.生产矿井采煤方法选择及影响因素分析[J].知识经济,2008(1).[10]郑炎荣.关于采煤方法的选择及应用[J].中小企业管理与科技(上旬刊),2011(5).[11]王相怀.井下采煤生产技术及采煤方法的选择[J].中
国高新技术企业,2011(4).