二项分布的期望与方差的证明

时间:2019-05-14 11:30:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二项分布的期望与方差的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二项分布的期望与方差的证明》。

第一篇:二项分布的期望与方差的证明

二项分布的期望与方差的证明

二项分布是概率统计里面常见的分布,是指相互独立事件n次试验发生x次的概率分布,比较常见的例子。种子萌发试验,有n颗种子,每颗种子萌发的概率是p,发芽了x颗的概率就服从二项分布。

如果还是迷茫,就听我说说故事,在古代,大概明末清初的时候,瑞士有个家族,叫伯努利家族,出了很多数学家,有一位叫詹姆斯·伯努利(James Bernoulli)的,比较喜欢做试验,他的试验有特点,是一系列的试验,没发生就是失败,而且每次的成功概率都是p,若果失败了就是q=(1-p),只有这两种情况,后来人们给了这除了成功就是失败的性质一个比较抽象的名称,叫相互对立事件。在这些试验中,每次得出的结果与其他次试验都不发生关系,同样人们也给了这种不发生关系的性质一个比较抽象的名称,叫相互独立事件,同时把这种试验叫做伯努利试验。在n次伯努利试验中,发生x次的概率满足二项分布。

如果令q=(1-p),那么很容易得出发生x次的概率为C{x,n}*p^x*q^(n-x),因为决定该分布的只有n、p,所以为了简单起见,人们把x服从n,p的二项分布记做x~B(n,p)。

现在的目标是计算二项分布的期望和方差,在网上寻找二项分布的期望和方差大都给一个结果,np、npq,很难找到它是怎么来的。好不容易查到,还是花钱才能看的,就那几步过程,有必要藏着盖着吗?今天我把过程写出来,让大家都了解了解,都是原创,互相学习,希望支持。

首先,不厌其烦地说一下期望与方差的关系,以便清晰思路。期望用E表示,方差用D表示,一般把自变量记做ξ,如果对于结果为ξ的概率为Pξ那么,其期望为Eξ=∑ξ*Pξ,方差为Dξ=∑(ξ-Eξ)^2*Pξ,另外还有一个常见的量叫做标准差,一般用σ表示,σξ=√Dξ,根据方差的概念,可知: Dξ=∑(ξ-Eξ)^2*Pξ

=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ

=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)

=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ 因为∑Pξ=1而且Eξ=∑ξ*Pξ 所以Dξ=∑ξ^2*Pξ-Eξ^2 而∑ξ^2*Pξ,表示E(ξ^2)所以Dξ =E(ξ^2)-Eξ^2 下面计算数学期望, Eξ=∑{ξ =0,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)

=∑{ξ =0,n}ξ*n!/ξ!/(n-ξ)!*p^ξ *q^(n-ξ)

=∑{ξ =1,n}n!/(ξ-1)!/(n-ξ)!*p^ξ *q^(n-ξ)

=n*p*∑{ξ =1,n}C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)

=n*p*(p+q)^(n-1)=n*p

如果要计算方差,根据公式Dξ =E(ξ^2)-Eξ^2可得出结果,过程如下,Dξ =E(ξ^2)-Eξ^2

=∑{ξ =0,n}ξ^2*C{ξ,n}*p^ξ *q^(n-ξ)- n*p*∑{ξ =0,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)

=n*p*∑{ξ =1,n}ξ*(n-1)!/(ξ-1)!/(n-ξ)!*p^(ξ-1)*q^(n-ξ)- n*p*∑{ξ =1,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)

=n*p*∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*(C{ξ-1,n-1}-C{ξ,n}+C{ξ,n}*q)

=n*p*∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*[C{ξ,n}*q-(C{ξ,n}-C{ξ-1,n-1})]

=n*p*[∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n}*q-∑{ξ =1,n-1}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n-1}]

=n*p*[∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*n!/(ξ-1)!/(n-ξ)!*q-∑{ξ =1,n-1}p^(ξ-1)*q^(n-ξ)*(n-1)!/(ξ-1)!/(n-1-ξ)!]

=n*p*[∑{ξ =1,n}n*q*C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)- ∑{ξ =1,n-1}(n-1)*q*C{ξ-1,n-2}*p^(ξ-1)*q^(n-ξ-1)]

=n*p*[n*q*(p+q)^(n-1)-(n-1)*q*(p+q)^(n-2)]

=n*p*[n*q-(n-1)*q]

=n*p*q

以上就是二项分布的期望与方差的证明,过程比较简单,就是一个思路,要想更深入的领悟,就须要自己亲自地证明一遍了,也许你的方法将会更简单……

第二篇:二项分布的期望和方差的详细证明

二项分布的期望的方差的证明

山西大学附属中学韩永权

离散型随机变量的二项分布:

在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是Pn(k)Cnkpkqnk,(k0,1,2n q1p)

称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记Cnkpkqnk=b(k;n,p).求证:服从二项分布的随机变量的期望Enp.kk1证明如下:预备公式:kcnncn1

00n10n220n2k1k1(n1)(nk)n1n10(pq)n1(cnc1cn...cnq...cnq)1pqn1pq1pq1p1p

kkkknk因为p(k)cnp(1p)nkcnpq,00n1n122n2kknkn0n所以 E0cnpq1c12cnpq...kcnpq...ncnpq npq

00n110n220n2k1k1(n1)(nk)n1n10=np(cnpqcpqcpq...cpq...cq)1n1n1n1n1p

=np(pq)n1np

所以Enp

方法二:

证明:若 X~B(n,p),则X表示n重贝努里试验中的“成功” 次数,现在我们来求X的数学期望。

若设Xi1如第i次试验成功i1,2,0如第i次试验失败n

则XX1X2...Xn,因为 P(Xi1)P,P(Xi0)1Pq

所以E(Xi)0q1pp,则E(X)E[Xi]E(Xi)np

i1i1nn

可见,服从参数为n和p的二项分布的随机变量X的数学期望是np 需要指出,不是所有的随机变量都存在数学期望。求证:服从二项分布的随机变量的方差公式Dnpq(q1p)

1k2预备公式:k2CnknCnk1n(n1)Cn2

kk1k1k2CnknCn)1]Cn1n[(k11

k1k12kk1k2k1k2nCn)Cn1n(k1)Cn1nCn1n(n12 kCnnCn1n(n1)Cn2

22方法一:证明:DE(E)

iiniEi2Cnpq 2

i0

nnn

Cpq1

nn1nC

i2

ni1n1pqinii2inin(n1)Cn 2pqi2

npqn1npC

i1i1n1pqi1ninpCq0n1n1n(n1)p2Ci2ni2n2pi2qni

npqn1np(pq)n1npqn1n(n1)p2(pq)n2

npqn1npnpqn1n(n1)p2npn2p2np2np(1p)n2p2npqn2p2

22由公式D(X)E(X2)[E(X)]2知,DE(E)

npqn2p2(np)2np(1p)

方法二: 设~B(n,p), 则X表示n重贝努里试验中的“成功” 次数。

若设Xi

n1如第i次试验成功i1,2,0如第i次试验失败n 则i是n次试验中“成功”的次数,E(i)0q1pp,i1

故 D(i)E(i2)[E(i)]2pp2p(1p),i1,2,n 由于1,2,...,n相互独立,于是

nD()D(i)np(1p)i1

第三篇:样本方差证明

一弛,你好!

样本方差有2种表达方式:

S2

n1n(Xi)2-----(1)ni1

1n

Sn1(Xi)2-----(2)n1i12

从理论上说这2种定义都是可行的,现实生活中更经常使用方程(2),是因为方程(2)是总体方差真实值2的无偏估计量,而(1)是有偏估计量。无偏性在应用中非常重要,估计量只有无偏才能保证在样本数目足够大时无限趋近于真实值,估计才有意义。证明方程(2)的无偏性如下,思路是对估计量求期望,看是否等于总体方差:

n1E(Sn1)E[(Xi)2]n1i1

n1E{[(Xi)()]2}n1i1

nn12E{[(Xi)2(Xi)()n()2}n1i1i12

n1{E(Xi)22nE()2nE()2}n1i1

n1{E(Xi)2nE()2}n1i1

212{nn()}n1n

2

证毕。

如果有问题,可随时联系我。

祝好!

陈谢晟

第四篇:n次方差的证明

n次方差公式的证明方法

n次方差公式:

anbn(ab)(an1an2ban3b2abn2bn1),nN

证法一:

anbnanan1ban1ban2b2an2b2.....abn1bn

an1(ab)an2b(ab).....bn1(ab)(ab)(a

证法二: n1an2b.....bn1)

b设等比数列an的通项公式为an,则其前n项和为:

a

nbnbb1b123n1nabbbaab(anbn)bb......nbaaaaba(ab)aa1a23n1n na(ab)bbbbb故:anbn......baaaaan (ab)an1an2ban3b2......abn2bn1

第五篇:随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明

姜堰市励才实验学校姜近芳

组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。

预备知识: 1.kCnkn1!nCk1 kn!nn1k1!nk!k!nk!

k1k1k1k1k2k2.k2Cn=nkCn1nCn1nk1Cn1=nCn1nn1Cn2

3.N个球中有M个红色的,其余均为白色的,从中取出n个球,不同的取法有: 0n1n12n2lnlnn,M.CMCNMCMCNMCMCNMCMCNMCNlmin

公式证明:

1.X~Bn,p1EXnp.2VXnp1p.证明:EXx1p1x2p2x3p3xnpn

0010Cnp1pCnp1pn

0nCn1p1pn1222Cnp1pn2n2nnnCnp n112Cn1p1pn1nCn1p 

np1pp

np.n1

VXx1p1x2p2xnpn 222

x1p1x2p2x3p3xnpn

2x1p1x2p2x3p3xnpn

22222p1p2p3pn

n12222Cnp1p

n1n2nnn2Cnp222 n1n1 Cn1p

n3n2n2Cn2 2p1Cnp1p0npCn1p11Cn1p1pn2n20nn1p2Cn1p21Cn1p2p

np1pp

np1p.n1nn1p21ppn2n2p2

2.X~Hn,M,N1EX =nMnMNMNn.2VX.NN2N1证明:EXx1p1x2p2x3p3xnpnlminn,M10n1n12n2lnl0CCCC2CClCCMNMMNMMNMMNM nCN

M0n11n2l1nlCCCCCCM1NMM1NMM1NM nCN

=Mn1CN1 nCNnM.N

222VXx1p1x2p2xnpn

2222x1p1x2p2x3p3xnpn

2x1p1x2p2x3p3xnpn

2p1p2p3pn

120n21n122n22lnl20CC1CC2CClCC MNMMNMMNMMNMnCN

=10n11n2l1nl〔MCM1CNMCM1CNMCM1CNM nCN

MM1CM2CNMCM2CNMCM2CNM〕 0n21n3l2nl2

1nMn1n2nMCNMM1C 1N2NCN2

nMnn1nMMM1 NNN1N2

nMNMNn.N2N1

下载二项分布的期望与方差的证明word格式文档
下载二项分布的期望与方差的证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    计量经济学随机项方差无偏估计量的证明

    ˆi,是完全可以计因为,样本残差可以看作是总体随机项的估计量,而样本残差iyiy算的,因此,可以用样本残差的方差来估计总体随机项的方差。我们目的是得到的无偏估计量,因此,我们需要......

    证明样本方差的期望值=总体的方差,即E(S2)=DX

    证明样本方差的期望值=总体的方差,即E(S2)=DX设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为 Y = (X1+X2+...+Xn)/n 其样本方差为 S =( (Y-X1)^2 + (Y-X2)^2 + ... +......

    家长的评语与期望

    天下所有的家长都希望自己的孩子有能力、有本事,将来能够好好的生活,甚至能够比父辈们生活得更好。很多情况下,家长的殷殷期望化作了孩子向上奋进的动力。而有时,过高的期望会化......

    幼儿园开学寄语:开学寄语与期望

    幼儿园开学寄语:开学寄语与期望 亲爱的家长朋友: 我们也感谢家长一如既往对幼儿园的支持与帮助,望我们能一如既往地合作,随时交流孩子的成长点滴,共同关注孩子的成功与失败。最后......

    统计学教案习题07二项分布与Poisson分布及其应用

    第七章二项分布与Poisson分布及其应用 一、教学大纲要求 (一)掌握内容 1.二项分布 (1)分布参数; (2)各项统计指标(均数、标准差等)的计算方法; (3)二项分布的分布特征,近似分布及其应用条......

    七年级下册《方差》小结与复习学案湘教版

    七年级下册《方差》小结与复习学案湘教版 方差 目的要求: 认识极差、方差的概念 2能正确计算一组数据的极差、方差 3极差、方差对一组数据的意义 重点: 极差、方差对一组数据......

    回顾与期望作文300字(合集5篇)

    回顾与期望作文300字 三年级过去了,它是美好的,但不是十全十美的;它有不足的地方,但仍是美丽的。 回顾三年级的时光,啊!我取得的成绩还真不少呢!我在广州市的英语极速阅读大赛中获......

    对高考孩子的期望与祝福[大全]

    对高考孩子的期望与祝福鼓励与期望往往可以给高三学子带来很大的动力,下面小编整理了一些对高考孩子的期望与祝福,供大家参考!对高考孩子的期望与祝福11、希望你一生平安,幸福,像......