第一篇:五轴联动数控加工中心仿真系统开发应用
五轴联动数控加工中心仿真系统开发应用
2010-11-03 21:16:01 作者:□沈阳飞机工业集团 郑 鑫 来源:智造网—助力中国制造业创新—idnovo.com.cn
分享到
0
本文所涉及的数控加工仿真系统是基于 CATIA V5 的功能模块建立的,通过对动龙门五轴联动数控机床的实体测量、建模、组装和整机模拟,实现数控加工过程的仿真。同时根据本行业实际生产技术需要,结合 VER-ICUTR 软件零件切削过程仿真验证优势,建立 CATIA 与 VERICUT 两软件平台之间的宏联结,实现将机床运行数控程序过程中的过切、干涉、碰撞和欠切等错误消除在设计阶段的目的,提高数控加工过程的可靠性。
目前大型数控五轴联动加工中心在科研生产过程中,主要用于进行大型复杂航空零部件与工艺装备制造加工,因空间结构复杂,外形体积大,常出现零件首件过切,未加工到位,机床与零件或工装夹具干涉,模锻件装夹定位不准确和加工超行程等问题,仅凭借数控编程技术人员个人经验,工作量庞大且复杂,难以克服。
针对五坐标数控加工机床控制系统不具有数控加工过程的动态模拟仿真功能,笔者结合虚拟制造技术,在计算机辅助制造软件(VERICUT 5.4)平台基础上,开发了数控加工机床仿真系统模块。该仿真系统可以在NC代码的驱动下运行,用以观察数控机床部件运动和零件的加工成形过程中空间运动状况,验证加工程序G代码的正确性,防止实际加工过程中干涉和碰撞等故障发生。
该系统旨在以五坐标数控机床为验证工作机,研究FIDIA C20控制系统的驱动工作原理,建立数控加工中心仿真工作平台,进行典型回转曲轮轴和蒙皮钣金工艺装备五轴联动铣切的加工过程模拟。涉及到仿真工作环境下的大型工艺装备装夹定位,确定数控刀具参数库,模拟数控加工程序的运行 过程等。
一、开发研究过程
1.五坐标数控加工中心加工仿真系统技术研究
比较同类型仿真系统现状,目前技术能力可以建立几何仿真系统,模拟计算刀具切削速度、切削量和切削时间等。
(1)软件系统研究方案制定与基础工作调试准备。
①方案制定:首先将 VERICUT 与 CATIA 软件功能模块测试验证联接;然后建立五轴联动数控加工中心机床结构与运动关系分析;最后生成五轴联动数控加工中心模拟系统。
②基础工作调试准备。首先建立 VERICUT 与 CATIA 机床模拟器软件模块数据转换接口,在CATIA V5R15
{' Entry point for CATIA V5
Sub CatMain()CATIA.SystemService.ExecuteBackgroundProcessus “C:cgtech54windowscommandsCATV.bat”
End Sub)}
运行宏与 VERICUT 数控仿真平台联接,其中示毛坯数模(包括复杂模段件),而
表示加工元素数模,表
环境模块内建立宏编辑器,文本文件如下:
表示夹具数模联接至 VERICUT 数控仿真系统。
(2)建立机床主结构框架模型装配结构。
机床模型的构建要依据以下几个步骤:
① 通过测量真实部件的尺寸来获得相应尺寸;
② 根据尺寸对机床各个部件进行实体造型;
③ 根据所建立的机床部件实体在 NC 机床构建模块里进行组装;
④ 进行机床模型运动参数的设置。
以CATIA V5的“NC机器工具构建模块”为基础,进行复杂几何实体造型,弥补 VERICUT 5.4 系统几何造型设计功能不足问题,建立机床框架模型装配主结构。机床框架主结构模型建立说明如图1 所示。
以工作台上顶面几何中心为设计基准,建立工作台(Base)尺寸(6000mm×2500mm×400mm)。带双侧导轨、X轴部件、Y轴部件、Z轴部件、C轴部件、A轴部件、主轴部件和电主轴存储箱,所有这些机床机构部件构成机床装配结构,机床各部件的三维数模文件分别单独保存。
机床框架模型主结构模型装配关系为:以上顶面端面轴中心为数学模型基准原点,保证其与A轴旋转中心距为230mm(机床手册查取后现场测量验证)。其中,X 轴部件、Y 轴部件和Z 轴部件为线性运动,C 轴部件为旋转运动,A 轴部件为±110°摆动,工作台和主轴存储箱为固定基准主体。
(3)机床主机构模型文件联接导入 VERICUT 系统环境。
以机床工作台(Base)主参考体测量,按(图2)结构树顺序采用相对运动约束关系,建立机床原点静止装配数据模型,完善后转化为*.STL文件。数据分别联接入真控制系统结构树,形成五轴联动机构(图3)。
仿
编制数控控制指令系统文件(fidia20.ctl 文件)与数控机床构造文件(FOREST-LINE.mch文件),模拟FIDIA C20 数控指令系统,翻译识别检查FIDIA C20系统(GM)指令,驱动结构树内X轴部件、Y 轴部件、Z轴部件(线性运动)、C轴部件(旋转运动)和A轴部件(摆动)同步联合运动。
(4)机床主机构模型运动关系设置。
机床框架主结构模型运动关系说明:以工作台和主轴存储箱为固定基准,其中X轴部件、Y轴部件和Z轴部件为线性运动,C轴部件为旋转运动±360°,A 轴部件为±110° 摆动,建立运动约束关系。同时按编制的FOREST-LINE五坐标数控机床文件(FOREST-LINE.mch 文件),模拟机床实体机构运动过程,机床的空间运行状态同步显示如图4。
设置机床仿真系统工作行程软边界:X 轴、Y 轴、Z 轴、C 轴和 A 轴工作行程的上下边界如图 5 所示。
其中,图5所示为在执行蒙皮成型工艺装备五轴联动划线时,Z向超过行程,则仿真系统显示机床 Z 向运动机构为红色报警。执行蒙皮五轴联动划线和钻孔加工时,工艺实施要考虑到空间位置的 X 轴、Y 轴和 Z 轴,包括 A 轴和 C 轴的角度运动行程状态,此时仿真系统可显示机床 X 轴、Y 轴、Z 轴、A 轴和 C 轴中任意运动机构过行程红色报警提示。
(5)零件模型、模锻件模型与夹具模型定位仿真加工。
在仿真控制系统结构树
内填加夹具(Fixture)和毛坯(Stock)联接树结构接口,分别定义空间位置并进行位置装配约束,进行调用拼装组合夹具定位(图6)或模锻件定位(图7)加工。
应用说明:夹具(Fixture)联接结构树接口可以直接读取,其中专用工装夹具可以与公司产品相应工艺装备文件连接。标准组合夹具可以直接调用拼装夹具标准件库,然后在仿真系统内组合装配应用。
(6)机床附件数学模型定义。
在刀具库(图8)当中建立读入功能,这样有利于多人模板化应用,从而经过积累形成刀具参数库(GYTOOL.tls 文件),仿真系统内存有的刀具参数库需按实际刀具几何特征添加。刀具的分类一般按功能定义:铣刀、中心钻、钻和镗刀。
仿真加工中心刀具数据参数库可以按加工工件材料和刀具几何结构功能特征分类,采用数据库优化管理所使用的刀具。
2.五坐标数控仿真系统技术应用研究
(1)五坐标数控加工G代码程序与数控控制系统连接设置调试。
由于实际数控机床选用的是FIDIA20数控指令系统,因此五轴联动加工过程中为便于系统空间几何运算,采用绝对坐标和刀具中心端点为转心的模式进行后置处理程序G代码指令的过程模拟,FIDIA20数控指令系统的设置应与机床控制系统选项匹配。
(2)五坐标数控仿真系统应用测试。
图9所示为蒙皮零件成型工装五轴联动加工投产前,在五坐标数控仿真系统内模拟应用。该零件的工艺装备最大外形10 500mm×2 535mm×545mm,其中成型面为复杂双曲面,采用长度方向两侧局部拼接加工。在五轴联动加工时,边界为:X-2 227.081,Y 679.116,Z553.417。位置主轴角度为:A-16.333°,C-173.124°,工装定位未超出机床工作行程。通过仿真系统分析两次定位模拟加工,显示零件加工过程的直观状态,C 轴部件和 A 轴部件大角度联动空间状态可以在不同视角观测,以验证工艺过程合理性,避免装夹定位不准确导致超程重复工作。
模拟调用五轴联动加工数控程序如下。
N1 G96 G90
N2 G00 X0.0 Y0.0 Z100.0 A0 C0
N3 G40 M08
N4 T0M06
N5 G00 X2947.902 Y1068.768 Z506.928 A9.599 C6.887 S70 M03
N6 G01 X2951.861 Y1078.168 Z508.439 A9.761 C6.881 F1000
N7 X2955.135 Y1087.657 Z510.006 A9.928 C6.875
N8 X2957.726 Y1097.173 Z511.619 A10.098 C6.868
N9 X2959.657 Y1106.654 Z513.269 A10.271 C6.861
N10 X2960.957 Y1116.051 Z514.945 A10.446 C6.854
N11 X2961.652 Y1125.324 Z516.642 A10.621 C6.847
N12 X2961.751 Y1134.44 Z518.351 A10.798 C6.84
N13 X2961.188 Y1145.135 Z520.41 A11.009 C6.832
N14 X2959.884 Y1155.53 Z522.468 A11.218 C6.825
N15 X2957.918 Y1165.602 Z524.517 A11.425 C6.82
N16 X2955.336 Y1175.335 Z526.55 A11.628 C6.815
N17 X2952.165 Y1184.713 Z528.561 A11.828 C6.812
N18 X2948.428 Y1193.717 Z530.543 A12.025
N19 X2944.203 Y1202.356 Z532.493 A12.218
N20 X2939.488 Y1210.611 Z534.404 A12.408 C6.814
N21 X2933.417 Y1219.752 Z536.579 A12.625 C6.818
N22 X2927.727 Y1227.143 Z538.387 A12.806 C6.823
N23 X2921.653 Y1234.148 Z540.145 A12.982 C6.829
N24 X2914.075 Y1241.802 Z542.12 A13.181 C6.837
N25 X2907.149 Y1247.876 Z543.736 A13.345 C6.845
N26 X2899.895 Y1253.546 Z545.286 A13.504 C6.852
N27 X2890.995 Y1259.597 Z546.996 A13.68 C6.861
N28 X2882.992 Y1264.256 Z548.362 A13.821 C6.868
N29 X2874.69 Y1268.464 Z549.64 A13.952 C6.873
N30 X2866.079 Y1272.173 Z550.816 A14.073 C6.878
N31 X2857.17 Y1275.354 Z551.88 A14.182 C6.882
N32 X2847.984 Y1278.009 Z552.827 A14.278 C6.886
N33 X2838.53 Y1280.104 Z553.648 A14.362 C6.888
N34 X2828.82 Y1281.598 Z554.328 A14.431 C6.89
N35 X2818.873 Y1282.453 Z554.854 A14.485
N36 X2808.713 Y1282.648 Z555.22 A14.523
N37 X2798.364 Y1282.143 Z555.411 A14.544
N38 X1954.551 Y1183.258 Z555.976 A14.738 C6.776
N39 X238.175 Y981.947 Z556.221 A15.351 C6.705
N40 M05
N41 M02
二、试验件加工验证
仿真系统可以根据零件加工程序驱动机床运动,计算模拟零件、刀具系统、夹具系统和机床系统的切削工作过程。当程序执行时,仿真系统模拟出所加工零件的即时状态,准确反映出机构干涉发生位置和相应程序位置。数控程序执行结束后,系统将准确直观地显示零件切削结果和毛坯切削残留状况,同时计算模拟出零件过切或未切到位量,并生成模拟数值报表。
在图10所示的实际测试切削应用过程中,拼装夹具装 夹结构略有变动,装夹方式一致,圆柱曲面导向槽五轴联动加工按轮轴曲线槽数据检测,符合设计要求。
三、结论
通过上述研究试用的证明,利用该系统可以有效预防首件过切、未加工到位、机床与零件干涉、模锻件装夹定位,以及由于加工超行程和毛坯定义不准等因素带来的加工余量不均匀、空行程,以及打刀等问题,提高加工效率,保证数控编程质量,减少数控技术人员与操作人员的工作量和劳动强度,提高五坐标数控编程制造加工一次成功率,缩短产品设计和加工周期,提高生产效率。
第二篇:五轴联动
教程目录列表:
第一周 五轴理论讲解 机床结构 工作原理 典型零件的工艺方案
第一节 五轴机床结构特点与工作原理 36min
1.五轴的定义:一台机床上至少有5个坐标,分别为3个直线坐标和两个旋转坐标
2.五轴加工特点:
1.三轴加工机床无法加工到的或需要装夹过长2.提高自由空间曲面的精度、质量和效率
2.五轴与三轴的区别;五轴区别与三轴多两个旋转轴,五轴坐标的确立及其代码的表示
Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴
X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向
3.直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴、C轴
A轴:绕X轴旋转为A轴
B轴:绕Y轴旋转为B轴
C轴:绕Z轴旋转为C轴
XYZ+A+B、XYZ+A+C、XYZ+B+C 三种形式五轴
4.五轴按主轴位置关系分为两大类:卧式、立式
5.五轴按旋转主轴和直线运动的关系来判定,五轴联动的结构形式:
1.双旋转转工作台(A+B为例)
在B轴旋转台上叠加一个A轴的旋转台,小型涡轮、叶轮、小型紧密模具
2.一转一摆 A+B B+C刚性 精度高
3.双摆头 工作台大,力度大,适合大型工件加工,龙门式
6.五轴联动的结构的旋转范围:
双旋转转工作台 旋转范围:+20A-100 B360 +30A-120 C360 一转一摆
旋转范围:+30B-120 C360 双摆头 旋转范围 :+90A-90 C360 +30A-120 C360 第二节 五轴加工优点 应运典型零件的工艺方案 实际生产加工常发生的问题及其解决方案 32min
1.三轴加工的缺点:1.刀具长度过长,刀具成本过高2.刀具振动引发表粗糙度问题3.工序增加,多次装夹4.刀具易破损5.刀具数量增加6.易过切引起不合格工件7.重复对刀产生累积公差
2.五轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间3.无需夹具4.提高表面质量5.延长刀具寿命6.生产集中化7.有效提高加工效率和生产效率
3.五轴加工主要应运的领域: 航空、造船、医学、汽车工业、模具
4.五轴应运的典型零件:叶轮、涡轮、蜗杆、螺旋桨、鞋模、立体公、人体模型、汽车配件、其他精密零件加工
5.五轴加工工工艺及其实际生产加工常发生的问题及其解决方案:
1.五轴工件坐标系的确立、五轴G代码NC程序表示 2.各种不同机台复杂零件的装夹
3.加工辅助线、辅助面的制作
4.五轴加工刀具与工件点接触,非刀轴中心的补偿
5.加工过程中刀具碰撞问题
6.刀轨的校验及其仿真加工
7.不同五轴机器,不同刀轨和后处理
第二周 结合案例讲解软件的综合使用技巧和UG7.5新增功能的使用
第三节
案例1 五轴加工坐标与刀具补偿装夹及其UG7.5多轴驱动的讲解 116min
1.五轴坐标的设定:
五轴坐标系一般情况下设在工作台回转中心上
2.UG7.5中工件坐标系讲解:刀轴矢量、3轴半开粗、多轴面铣加工
1.局部坐标系设定G52使用举例
格式:G52 X_Y_Z_;
式中:
X、Y、Z: 五轴加工机床局部坐标系原点在当前工件坐标系中的坐标值。
G52 指令能在所有的工件坐标系(G92、G54~G59)内形成子坐标系,即局部坐标系,含有G52 指令的程序段中,绝对值编程方式的指令值就是在该局部坐标系中的坐标值。
设定局部坐标系后,工件坐标系和机床坐标系保持不变。
编程举例:,从A→B→C路线进行,五轴机器加工刀具起点在(20,20,0)处,可编程如下:
N02 G92 X20 Y20 Z0; 设定G92为当前工作坐标系
N04 G90 G00 X10 Y10; 快速定位到G92工作坐标系中的A点
N06 G54; 将G54置为当前坐标系
N08 G90 G00 X10 Y10; 快速定位到G54工作坐标系中的B点
N10 G52 X20 Y20; 在当前工作坐标系G54中建立局部坐标系G52 N12 G90 G00 X10 Y10; 定位到G52中的C点
1.刀具补偿
刀具半径方向补偿 3轴 G41 G42 D 刀具长度方向补偿 3轴 G43 G44 H 3轴平面加工 G16 G17G18 三轴区别五轴加工,刀具半径的补偿、长度补偿都要在三维空间完成!
刀具半径方向补偿:插补程序段中提供的数据信息又仅仅是刀具中心点坐标和刀具轴的方位角,刀具半径补偿实际上不可能进行,因为控制器不知道该往哪个方向进行补偿,而这个方向对于刀具半径补偿非常重要。因此,如果要进行三维空间刀具半径补偿功能,则必须在数控加工程序段中提供补偿方向向量等信息,FANUC控制器采用了IJK码来表示, 将由编程刀具中心位置即指向刀具半径补偿后实际加工刀具中心的矢量称为刀具半径补偿向量IJK 刀具长度方向补偿:坐标和摆角坐标输入插补模块即可使刀具中心按照编程轨迹运行。
程序结构如下:
%
N0100 O0008(程序名)
N0102 M6 T1;(换刀)
N0104 G0 G90 G56 X400 Y200 Z260 B0 C0;(运动到参考点)
N0106 G432 X200 Z150 H1 Bω;(在垂直于斜面的方向加刀长)
N0108 M3 S3000;(主轴正转)
N0110 M8;(打开切削液)
N0112 G68 X188 Y0 Z60 I0J1 K0 Rω;(坐标系转换,ω为主轴从零转到与斜面垂直时所转动过得角度)
… …
N0200 G69;(坐标系旋转取消)
N0202 G492 X200 Z300;(斜面刀具补偿取消,运动到安全位置)
N0204 M9;(切削液关)
N0206 Cα;(C轴旋转,α为所要加工的第n个斜面的垂线与C0位置所夹的最小角度)
N0208 G0 G90 G56 X400 Y200 Z260 B0 C0;(运动到参考点)
N0210 G432 X200 Z150 H1 Bωn;(在垂直于斜面的方向加刀长)
N0212G68 X188 Y0 Z60 I0J1 K0 Rωn;(坐标系转换,ωn为主轴从零转到与斜面垂直时所转动过得角度)
… …
N0200 G69;(坐标系旋转取消)
N0202 G492 X200 Z300;(斜面刀具补偿取消,运动到安全位置)
N0204 M9;(切削液关)
N0204 M30;(程序结束,返回到程序头)
1.五轴加工的装夹及其UG5多轴驱动的讲解
变轴铣 精加工、驱动方式边界、它准许精确控制刀轴和投影矢量
流线加工 按照曲面的趋势产生刀轨
曲面轮廓铣 使用轮廓驱动方式
多层切屑变轴铣 适当条件下可以 采用它来开粗
多层切屑变轴铣(双四轴驱动)边界
多层切屑变轴铣(双四轴驱动)曲面
固定轴曲面轮廓铣 投影矢量(驱动的投影方向)刀轴(刀具方向)
等高变轴铣(新功能)顺序铣削
第四节 案例1五轴几何体9种驱动方法的详细讲解和各参数设置 180min 曲线/点驱动方法加工3D刻字、3D流道
螺旋式、边界加工
曲面加工(重点)曲面必须连续 曲面UV方向一致 辅助面驱动 流线加工(常用)
刀轨、径向切削、外形轮廓加工、用户自定义
第五节 案例2五轴加工13种刀轴方向的控制和复杂零件轴向的判定 80min 远离直线、朝向直线、远离点、朝向点、相对于矢量、(前倾角、后倾角)垂直于部件、相对于部件
插补矢量、插补角度至部件、插补矢量至驱动、(前倾角、后倾角)
优化后驱动、垂直于驱动体、侧刃驱动体、相对于驱动体(前倾角、后倾角)
第六节 案例3五轴加工8种投影矢量使用方法和用途以及与刀轴方向的区别 31min 刀轴
指定矢量
远离点和朝向点
远离直线和朝向直线
垂直与驱动和朝向驱动体
投影矢量和刀轴方向的区别:
投影矢量:使驱动体采用一定的矢量方向投影到部件表面产生的轨迹
刀轴方向:控制刀具在加工中刀具的倾斜或固定方向的
第七节 案例4 UG7.5新增功能在实际生产加工的使用 87min
1.五轴等高:侧倾角
2.五轴外形轮廓铣削:轮廓加工、加工倒扣侧壁、清根、辅助面加工
3.五轴顺序铣加工:驱动、部件、检查体、近侧、远端侧、驱动面移动方向、刀轴矢量方向
第三周 讲解典型零件的程序制作 并结合你公司所要加工的零件
第八节 入门1(烟灰缸五轴加工案例B+C)120min
1.2.3.4.五轴合精加工,开粗尽量采用三轴,或3+1开粗
二次开粗(清角)3+2,注意刀轴矢量方向及其灵活运用
复杂曲面采用边界加工的思路,边界的制作方法
曲面加工驱动,UV方向的判定,投影矢量和刀轴方向
第九节 入门2(奖杯五轴加工案例B+C)350min
1.2.3.4.5.分析倒扣,确定加工方案B+C
抽取最大外形,做片体以便加工使用,减少重复刀轨
补实体避免倒扣位置,复杂图形简单化,减少提刀
曲面驱动五轴加工地面,考虑刀轴方向,刀具过且,刀座碰撞
曲面百分比的灵活运用,1.缩短驱动曲面(负值),避免过且撞刀,减少提刀,2.延伸曲面驱动(正值),避免第一刀接触部件,减轻刀具切入时受力
6.曲面驱动进行光面精加工,曲面驱动UV方向分析,修改、简化以符合曲面加工的UV方向!
7.过切检查,检查刀具夹持碰撞,红色刀轨为过切位置(重要),做出一个列表信息,提示刀轨:刀轨名称、对应的刀轨过切运动、对应的刀具夹持器碰撞
8.干涉不代表刀具路径不能加工,刀轨确认中红色为过切
9.刀轴方向采用远离点,点离到轴越近,刀轴倾斜角度越大,控制刀具倾斜角度避免刀具夹持器的碰撞
10.五轴两种不同刻字,采用三轴半字体加工,字体负余量加工
第十节 提高1(印章五轴加工案例BC)210min
1.分析零件结构特征,确定装夹方向及其加工工艺
2.对称图形可以采用变换刀轨的方法,注意两开粗刀轨之间相接位置的残料
3.给刀具装配夹持器及其夹持器参数的修改,五轴加工刀具夹持器碰撞的验证
4.面对复杂且UV方向不一致曲面加工,做辅助片体,采用其做驱动面产生驱动,然后通过合适的投影方向投影到部件上产生合理的刀路轨迹
5.面对破面产品五轴加工应对的几种方案,参数刀路后的正确判断与验证
6.对于两曲面衔接处的加工方法:1.采用曲面百分比控制,2.采用曲线驱动命令实现两曲面衔接处的加工(重点)
7.面对曲面加工的一些盲区,采用曲面驱动体的加工方向后曲面百分比来弥补这些缺陷
9.面对棱角面,精加工必须逐个分开加工,以保证产品的线条流畅没关
10.对于产品上大小相同,布局有一定规律的曲面,我们可以采用刀轨变换实现多个加工,简单快捷!
第十一节 提高2(模型茄子五轴加工案例B+C)150mion
1.特殊图形加工的定位,考虑外观及其加工中外在因素,比如变形、夹刀,刀长等问题
2.五轴开粗的思路与详细操作步骤
3.控制刀具矢量方向,达到控制刀具夹持器与工作台的避让
4.五轴点线加工驱动的清方式及其思路
第十二节 提高3(玩具枪加五轴加工案例A+C)150min
1.2.3.4.5.6.分析结构特点制作毛胚,设定坐标系位置,考虑补刀点
分析产品的装夹位置,合理、避免刀具夹持器相撞
复杂曲面驱动的设置和选择
特殊机构位置的加工思路
做辅助面产生曲面,实现曲面加工
控制曲面区域:设置检查面、曲面百分比
第十三节 提高4(玩具猪头五轴加工案例B+C)210min
1.2.3.4.5.第十四节 经典1风叶片五轴加工案例B+C 150min
1.2.3.4.5.6.7.叶片加工工艺,分析哪些属于那道工序
考虑到叶片变形,开粗预留量、分两次完成精加工,刀轨变换:镜像、旋转
制作局部毛培,加工倒扣外置,注意刀具的矢量方向
侧刃驱动灵活使用, 侧刃角角度的控制和夹持器的避让
手工制作流线加工操作步骤及其注意事项
五轴产品加工实体仿真操作方法 分析产品结构,确定加工方案
曲面UV方向你不一致如何加工、刀具夹持器与工作台的碰撞
清角位置的处理,采用5轴清角加工(重点)
相对驱动体的使用(侧倾角),避免碰撞
五轴机床的类型详细介绍及其加工特点
第十五节 经典2(人体模型五轴加工案例B+C)120min
1.2.3.4.5.6.7.第十六节 经典3涡轮(多叶片)五轴加工案例(重点)120min
1.涡轮加工环境:
在要创建的 CAM 设置组→选择mill_multi_blade。
复杂曲面的驱动面的选择与设定
对于狭窄位置的清角思路,及其球刀清角的参数设定
流线加工和刀轴的避让问题
采用五轴镜像线驱动清角的方法和刀轴的矢量方向
采用局部投影驱动,达到局部加工
曲面驱动曲面百分比延伸刀轨和缩短刀轨
人体模型五轴仿真加工操作方法
1.UG7.5涡轮加工新操作及其驱动几何体介绍:
叶毂几何体必须能够绕部件轴旋转
包覆几何体必须能够绕部件轴旋转,覆盖整个叶片
主叶片的壁,叶片几何体不包括顶(包覆)面或圆角面
叶跟圆角,定义主叶片与叶毂相连的圆角区域
分流叶片几何体,定义位于主叶片之间的较小叶片。
检查面
前缘和后缘
3.包裹几何体:
a.可由主叶片的顶面组成。
b.可由车削几何体的适当的面组成。
c.由于要驱动切削层的模式,因此它必须光顺。
d.可包含在“部件”几何体内,但不建议采用这种形式。如果使用了车削几何体,指定“部件”几何体时不要选择“包覆”几何体。
4.叶毂具备的特征:
a.必须至少在叶片的前缘和后缘之间延伸。
b.可延伸超出叶片的前缘或后缘。
c.必须能够绕部件的旋转轴回转。
d.可以是单一曲面或一组曲面
e.可环绕叶轮,或仅覆盖叶轮的一部分
5.叶片具备的特征:
a.含顶面或圆角面。
b.跨越至叶毂。
c.入叶毂下方。
d.叶片和叶毂之间留出缝隙。如果部件不包含圆角,叶毂和叶片之间的缝隙不得大于刀具半径。
e.包含延伸至叶片以外的面。.分流叶片几何体有以下特性:
a.壁面和圆角面。
b.于选定主叶片的右侧。
c.含最多五个分流叶片。即使多个分流叶片的几何体相同,每个分流叶片也必须单独进行定义。必须为每个分流叶片创建新集,并按照从左至右的顺序指定多个分流叶片。
7.叶根圆角几何体
8.多叶片检查几何体有以下特性:
a.有被实例化。要包含附加于多叶片或分流叶片的所有面或体,必须单个选择每个面或体。
b.包含定义的叶片、叶根圆角、叶毂或分流叶片。
如果刀具侧倾幅度足以碰撞,定义的几何体以外的叶片,则必须选择该叶片为“检查”几何体。
9.涡轮(多叶片)五轴加工驱动操作
1.多叶片开粗
2.精加工叶毂
3.精加工叶片
4.精加工叶片圆角
10.涡轮五轴加工刀轨变换
第十七节 经典4风叶(多叶片)五轴加工案例)120min
1.五轴开粗(重点),计算刀具半径、叶片余量,制作加工曲面驱动,刀轨过切与夹持器碰撞等问题的分析和避让
2.分析原曲面UV方向,修剪做网格曲面,改变原来的UV曲面的方向,做驱动面加工
3.曲面加工的刀轨轨迹严格按照曲面UV曲线方向产生,控制曲面驱动的UV方向,从而得到合理的刀路轨迹
4.采用UG7.5新驱动涡轮多叶片驱动加工风叶思路和具体操作
第十八节 实战 1维纳斯模型五轴加工案例A+C 300min
1.调整产品基准,以便3+1定轴开粗,分析定轴加工的方向
2.设置加工坐标,确定加工轴向方向,做检查面控制刀轨
3.采用3D,进行残料清角加工
4.采用清跟驱动(参考刀具), 显示残料3D,另存为prt,导入原图档,作为清跟毛坯加工
5.采用曲面驱动加工,曲面百分比的控制,刀轨投影,刀轴的方向
6.UG7.5新功能通过颜色显示残料厚度
7.制作UV曲线方向一致的曲面做驱动面,从而达到我们所需要的刀轨
第十九节实战2涡轮(分流叶片)五轴加工案例A+C 210min
1.涡轮(分流叶片)的加工思路
2.多轴开粗具体操作方法:做曲面驱动、设置刀轴方向、偏置刀轨
做曲面驱动:改变原有曲面的UV曲线方向,控制刀轨路径
设置刀轴方向:避免刀具与部件的碰撞和过切运动
偏置刀轨:实现5轴粗加工操作
1.五轴局部开粗的方法,叶片余量的的计算
1.分流叶片的加工思路,采用插补矢量,相对于驱动、侧倾角、侧刃驱动
2.仿真操作
第五周 机床仿真、五轴后处理的使用及其赠送数富五轴工厂使用后处理
第二十节 五轴程序的机床仿真五轴后处理
1.五轴程序的机床仿真:双转主轴头、双转工作台、一转一摆
2.如何添加自己的后处理,路径:D:UG7.5MACHresourcepostprocessor 3.五轴后处理详细操作及其讲解
4.五轴后处理修改
第一步:进入UG7.5后处理构造器
.def.tcl.pui 文件
第二步:打开我们要修改的程序→描述你的后处理(英文)→此区域 Inches 英制单位 Millimeters 公制设定→轴选项 3-轴 4-轴 或5轴→机床类型设定 Generic 通用的、Library 浏览自带机床、User’s 用户自定义→单击OK 第三步:yesno所输出是否记录选项(圆弧形式、直线形式)→设置行程(左边为机床行程数据 右边为机床原点数据)→精度、G00速度(左边为机床精度小数公差、右边为机床快速进给G00最大速度)→其余默认然后进入下一页面ok 第四步:修改程序头 程序尾 中间换刀程序衔接 道具号
第四步:修后修改钻孔一些参数
5.制作自己的五轴后处理
第一步:新建后置文件确定机床的类型、公/英制、第二步:设定轴的极限、轴向定义。
第三步:设定程序开始部分、刀轨移动部分、程序结束部分。
6.UG7.5常出现的三大问题:
问题一:
“笫一种情况ug7.5安装完 打开ug7.5出现如下壮态
显示如下NX License Error:Invaild(inconsistent)license key or signature.The license key/signature and data for the feature do not match也有时显示:NX 许可证错误:NX 要求正确配置环境变量UGS_LICENSE_SERVER。可将其设置为 NX 许可证服务器的值 port@hostname,或者将其设置为直接指向许可证文件。默认情况下,其格式为 28000@serverName。
解决方法
1、双击launch.exe打开安装界面,选择第二项“install license server”安装,在选择语言时选中文;安装过程中提示你寻找license文件,使用浏览(browse)来找你安装文件中的MAGNiTUDE文件夹下的nx6.lic文件就可以,不用改里面的计算机名,系统安装自动会生成。继续直到结束,目录路径不要改变,默认就行。
2、运行安装页面第三项“install NX”进行主程序安装。直接下一步,选择典型安装,下一步选择语言(选中文,当然英文也行),安装路径可以更改。直到完成推出。
3、打开MAFGNiTUDE文件,把UGS|NX6.0文件夹下的文件复制到安装好的目录NX6.0下,覆盖。就OK了!
问题二:
UG7.5安装后启动ug后出现:
NX Inutualzation Error Initialization error-NX license Error: The license server has not been started yet, or UGII_LICENSE_FILE is set to the wrong port@host.[-15] 解决方法
产生此种错误的原因在ug服务器上面解决方法:在确定。lic文件修改真确的情况下,把服务重新启动就可以了。或者重新安装nxflexlm060(60ugslicensing010)
问题三:
安装后启动UG7.5后出现Initialization error-UGII_TMP_DIR was set to a directory with an invalid(non-ASCII)character 解决方法
这句话意思就是说初始值UGII_TMP_DIR放在了中文目录下,产生此种结果的原因就是系统的变量问题解决方法如下:修改环境变量:右键我的电脑----属性----高级----环境变量
笫四种情况安装后 启动ug后出现Runtime Error!program:UGSNX 4.0UGIIugraf.exe This application has requested the Runtime to terinate it in an unususl way.Please contact the application's support team for more information 解决方法:
许可证服务器是否正确XP与ug不兼容,要求卸载IE7.0,或换成低版本的就可以了。(或者 UGII文件夹下的psapi.dll文件删除 大家试试”
三轴编程薪资高?如今已经不见了。
多轴加工潜力大,指点江山看明朝!
相关教程:UG四轴加工教程
第三篇:数控五轴加工实验感想
数控五轴加工实验感想
数控五轴加工实验早已结束,回头看看却收获颇多。不仅是我对数控机床的认识更加深刻,而且还学到了很多数控方面的专业知识,像Mastercam编程软件、数控机床的硬件装置等。尤其是最后我们对于机床的实际操作,使我对数控知识的理解有了很大的改变,对数控机床的认识不再那么感性,有了很理性的认识。整个实验,十分注重动手能力,对我们的实践能力的提高大有帮助。
在五轴加工实验之前, 徐老师带领我们参观了实验数控机床,重点给我们讲解数控机床的知识,并演示了数控机床的操作。我们所用的机床是双转台固定车身式五轴联动数控机床,机床的数控系统是西门子840D,程序传输介质时U盘,五轴分别是X、Y、Z、A、B。徐老师先讲解了机床的总体布局,以及面板的各个旋钮、按键在机床加工中的作用。首先正确启动机床进入操作界面,初步了解数控操作系统各个参数的意义,以及不同硬件模式下所允许的各种操作,比如修改系统参数时只能在MDI方式下,编辑程序时需要在EDIT状态下等。参观实验机床之后,徐老师带领我们参观了实验室的各种不同型号的机床,并进行了详细的讲解,以前在大学工厂实习时我也接触过一些机床,不过那都是一些很普通的机床,这次可是开了眼界,可参观结束之后心里却很难受,在我们国家那些所谓的很先进加工精度很高的机床原来大多数都是国外淘汰了以高价卖给我们国家的,也就是我们国家的机床技术落后人家十几年甚至更多,作为当代的研究生,对于这些我深感危机,深刻感到我们肩上的重担。
参观之后,我们就要实践了,数控程序的编制和机床的实际操作,经过小组讨论没,我们决定加工发动机叶片模型。数控机床加工程序的编制采用的是自动编程,我们只需要用Mastercam软件做出自己的3D模型,然后根据实际需要,选择不同的刀具及加工方式,编辑加工路径,然后运行,软件自动生成所需要的NC文件,即数控加工程序。刚开始学习Mastercam 软件时,曾经学习过Solidworks三维软件,所以Mastercam三维造型部分的学习比较容易,只需要稍稍适应Mastercam的操作界面及各个快捷键即可。接下来就是自动生成数控加工程序的操作,其实生成数控程序看起来简单,其实也是需要一定的专业知识的,因为每个数控系统能识别的数控代码不一样,所以根据软件生成的数控程序也是有一定差异的,对于生的程序要根据相应的加工机床进行修改。我们所用的程序传输介质是U盘,只要把相应的数控程序用程序介质考到机床里即可。为了防止机床操作系统中毒,我们把程序都拷到徐老师的U盘里在输送到数控系统中。接下来的就是加工过程中的实际操作,像设定绝对坐标系、工件坐标系,对刀等操作。在这期间,也出现了很多错误,像,主要是由于我们经验不足,考虑不周,这也暴露出我们分析问题时缺乏系统思维,对问题估计不足。
在这次五轴加工的实验过程中,我们遇到的最大问题就是在刀具路径生成后总是发现刀具旋转轴与实现预设旋转轴不一致,检查很多次也没找到问题,即使重新建模也没有解决,后来经过老师的悉心指导才发现是在建模是由于选择了右视图作为建模视角,因此才导致旋转轴不是按照X轴旋转。这给我感触很深,使我意识到了实践经验真的很重要,只靠专业知识,而没有理论联系实践是不行的。最后加工出的叶片,其厚度与设计有一定的误差,经过我们分析可能的原因是:叶片再建模时由于毛坯尺寸大于实际毛坯尺寸,因此在加工时空加工了一段时间,为了消除这段空加工,就在加工程序中修改了起始点,但是在后续的加工中依然是使用原始设计的进给,因此导致加工出来的叶片比设计的要薄。
这次的数控实验真的使我受益匪浅,使我对数控机床的理解不再停留在感性认识,又有了理性认识。以前在普通机床上加工零件时,都是先由工艺人员按照设计图样事先制订好零件的加工工艺规程。在工艺规程中制订出零件的加工工序、切削用量、机床的规格及刀具、夹具等内容。操作人员按工艺规程的各个步骤操作机床,加工出图样给定的零件,零件的加工过程是由人来完成。而数控机床则是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数以及辅助功能,按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这程序单中的内容记录在控制介质上,然后输入到数控机床的数控装置中,从而指挥机床加工零件。不仅节约时间而且加工精度还高。
通过这次实验我学到了很多,我们学知识不要只停留在理论上,只有联系实践才能更加深刻;团队之间的合作很重要。最后要真诚的感谢徐老师的悉心教导。
第四篇:五轴加工中心考察报告
五轴加工中心考察报告
为了提高数控技术专业人才培养的水平,也为了更好的满足集团公司高技能培训的需要,机电工程系五轴加工中心的采购计划(载集团公司拨付的2000万计划内)。在项目的评估(审核)过程中,集团公司规划部提出了‚优先考虑国产设备‛的要求,并推荐了南京四开电子企业有限公司(以下简称为南京四开)的产品SK12160。为了确保投资的效益和效果,充分体现‚精益办学‛指导思想,特由李冬松、刘永久、王炜罡三名同志于4月7日-4月10日,通过‘北京国际机床展’对目标设备及潜在供应商进行了考察,通过考察主要掌握的信息包括:目标设备的功能和基本结构,目标设备的规格、性能、技术参数,目标设备的商品化的程度和在‚一汽集团‛的应用情况,潜在供应商的制造水平和资质。
详细情况汇报如下:
一、目标设备的功能和基本结构:RTCP、RPCP、空间斜面预
置等功能均为目前主流五轴加工中心的必备功能,也是常用功能。但据南京四开公司的技术人员介绍此类功能无法在手工编程中使用,也就是说机床未内置上述功能。从机床的结构上看由于SK12160的C轴转台是以附件形式安装在工作台面上的(并以螺栓进行连接),而主流五轴加工中心的工作台则是一体结构。由于结构上的原因,前者的精度保持性要明显要差于后者。
结论:由于常用的五轴联动功能的缺失,因此无法满足
培训和教学的需要,而且精度的保持性的好坏直接影响
未来开出实训(培训)课程的质量和数量。
二、目标设备的规格、性能、技术参数:在规格上南京四开的SK12160(1600×1200×1000)与其他主流设备(700
×500×500)相比要大一些,但受C轴转台规格的限制,因此在进行五轴联动加工时实际行程会受影响。性能指
标上不同设备的定位精度差距较大,主流五轴加工设备的定位精度为0.004-0.006,而SK12160的定位精度为
0.01(三轴)、0.015(五轴)。其他技术参数的差异对
教学和培训影响不大。
在实训或培训教学的过程中,加工精度的不足限制了对
于复杂精密实例的引用。
三、目标设备的商品化的程度和在‚一汽集团‛的应用情况:
南京四开的SK12160机床目前只有三台售出,因此产品的成熟程度有待于进一步验证。目前一汽集团现有的五
轴数控加工中心均为国外(德国、日本、意大利)进口的产品,因此从培训与岗位需求的对应性上来说,小规
格的进口设备更有优势。
四、潜在供应商的资质:德马吉(德国企业、一汽采购平台
供应商)、森精机(日本企业)、菲迪亚(意大利企业、)
上述主流加工中心主要指:
NMV5000DCG由森精机生产的车铣符合五轴高速加工中心DMCmonoBLOCK400 由德马吉生产的高速五轴加工中心
SK12160 南京四开电子企业有限公司生产的五轴加工中心
第五篇:实验五轴加工中心
实验五轴加工中心
实验五轴加工中心顾名思义就是用于实验用的一种五轴加工中心也叫数控机床,可以是教学实验室,可以是企业开发新产品中心等。
现在在高校实训室慢慢被接受的一种实验设备---数控机床,特别是五轴机床,可以异性加工。
随着工业技术更新速度的加快,数控技术在现代工业中的应用越来越广泛,对数控技术应用型人才的需求不断增加。特别是能完成五轴加工等一些数控专业应用人才的需求十分紧迫。星辉数控设计研发和制造的E8 小型龙门五轴加工中心,占地面积小,系统易操作,非常灵活,设备可以五轴联动,针对三维加工及研究很有帮助,提供给广大大专院校、职业学校、创客和DIY爱好者实验使用。
在职业技术院校中,基于教学型五轴联动机床的教学模式,学习者不仅能够建设性地投入到课程中,而且有助于将知识转换为实践,进而不断提高实践能力。通过在教学中的实践,收到很好的效果。
为什么要使用五轴联动机床来加工呢?因为零件的形状很不规则需要从多方位去计算其运行坐标轨迹,所以通常用人工编程方式就完成不了程序的编制工作,这个时候就要借助于计算机软件编程了,也就是通过软件来人工绘制加工零件图形,然后让软件自动生成加工程序再输入进控制系统进行加工的,这是五轴数控机床的优势,也是发展的需要。