利用导数求函数的单调性解读

时间:2019-05-14 13:48:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《利用导数求函数的单调性解读》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《利用导数求函数的单调性解读》。

第一篇:利用导数求函数的单调性解读

清华园教育网

www.xiexiebang.com

利用导数求函数的单调性

例 讨论下列函数的单调性:

1.f(x)axax(a0且a1);

2.f(x)loga(3x25x2)(a0且a1); 3.f(x)bx(1x1,b0). 2x1分析:利用导数可以研究函数的单调性,一般应先确定函数的定义域,再求导数f(x),通过判断函数定义域被导数为零的点所划分的各区间内f(x)的符号,来确定函数f(x)在该区间上的单调性.当给定函数含有字母参数时,分类讨论难于避免,不同的化归方法和运算程序往往使分类方法不同,应注意分类讨论的准确性.

解:

1.函数定义域为R.

f(x)axlnaaxlna(x)lna(axax).当a1时,lna0,axax0,f(x)0.∴函数f(x)在(,)上是增函数. 当0a1时,lna0,aaxx0,f(x)0.∴函数f(x)在(,)上是减函数. 2.函数的定义域是x1或x2.3f(x)logae(6x5)logae2(3x5x2)

3x25x2(3x1)(x2)1时,logae0,6x50,(3x1)(x2)0,3①若a1,则当x∴f(x)0,∴函数f(x)在,上是增函数;

当x2时,f(x)0,∴函数f(x)在,2上是减函数 ②若0a1,则当x131时,f(x)0,3∴函数f(x)在,上是减函数; 13清华园教育网

www.xiexiebang.com

清华园教育网

www.xiexiebang.com 当x2时,f(x)0,∴函数f(x)在,2上是增函数 3.函数f(x)是奇函数,只需讨论函数在(0,1)上的单调性

x(x21)x(x21)当0x1时,f(x)b 22(x1)b(x21)

2

(x1)2若b0,则f(x)0,函数f(x)在(0,1)上是减函数; 若b0,则f(x)0,函数f(x)在(0,1)上是增函数.

又函数f(x)是奇函数,而奇函数在对称的两个区间上有相同的单调性.所以当b0时,函数f(x)在(-1,1)上是减函数,当b0时,函数f(x)在(-1,1)上是增函数. 说明:分类讨论是重要的数学解题方法.它把数学问题划分成若干个局部问题,在每一个局部问题中,原先的“不确定因素”不再影响问题的解决,当这些局部问题都解决完时,整个问题也就解决了.在判断含参数函数的单调性时,不仅要考虑到参数的取值范围,而且要结合函数的定义域来确定f(x)的符号,否则会产生错误判断.

分类讨论必须给予足够的重视,真正发挥数学解题思想作为联系知识与能力中的作用,从而提高简化计算能力.

利用导数求函数的单调区间

求下列函数的单调区间: 1.f(x)x2x3; 2.f(x)2xx2; 3.f(x)x42b(b0).x分析:为了提高解题的准确性,在利用求导的方法确定函数的单调区间时,也必须先求出函数的定义域,然后再求导判断符号,以避免不该出现的失误.

4解:1.函数f(x)的定义域为R,f(x)x4x4(x1)(x1)x

令f(x)0,得1x0或x1.

∴函数f(x)的单调递增区间为(-1,0)和(1,); 令f(x)0,得x1或0x1,清华园教育网

www.xiexiebang.com

清华园教育网

www.xiexiebang.com ∴函数f(x)的单调递减区间为(,1)和(0,1). 2.函数定义域为0x2.f(x)(2xx2)22xx21x2xx2.令f(x)0,得0x1. ∴函数f(x)的递增区间为(0,1); 令f(x)0,得1x2,∴函数f(x)的单调递减区间为(1,2). 3.函数定义域为x0,f(x)1b1(xb)(xb).22xx令f(x)0,得xb或xb.

∴函数f(x)的单调递增区间为(,b)和(b,); 令f(x)0,得bxb且x0,∴函数f(x)的单调递减区间是(b,0)和(0,b).

说明:依据导数在某一区间内的符号来确定函数的单调区间,体现了形象思维的直观性和运动性.解决这类问题,如果利用函数单调性定义来确定函数的单调区间,运算显得繁琐,区间难以找准.学生易犯的错误是将两个以上各自独立单调递增(或递减)区间写成并集的形式,如将例1函数f(x)的单调递增区间和递减区间分别写成(1,0)(1,)和(,1)(0,1)的错误结果.这里我们可以看出,除函数思想方法在本题中的重要作用之外,还要注意转化的思想方法的应用.

求解析式并根据单调性确定参数

已知f(x)xc,且f[f(x)]f(x1).1.设g(x)f[f(x)],求g(x)的解析式;

2.设(x)g(x)f(x),试问:是否存在实数,使(x)在,1内为减函数,且在(-1,0)内是增函数.

分析:根据题设条件可以求出(x)的表达式,对于探索性问题,一般先对结论做肯定

22清华园教育网

www.xiexiebang.com

清华园教育网

www.xiexiebang.com 存在的假设,然后由此肯定的假设出发,结合已知条件进行推理论证,由推证结果是否出现矛盾来作出判断.解题的过程实质是一种转化的过程,由于函数(x)是可导函数,因此选择好解题的突破口,要充分利用函数的单调性构造等价的不等式,确定适合条件的参数的取值范围,使问题获解.

解:1.由题意得f[f(x)]f(x2c)(x2c)2c,f(x21)(x21)2c.f[f(x)]f(x21),∴(x2c)2c(x21)2c,x2cx21,c1.∴f(x)x21,g(x)f[f(x)]f(x21)(x21)21.2.(x)g(x)f(x)x4(2)x2(2). 若满足条件的存在,则(x)4x32(2)x.∵函数(x)在,1内是减函数,∴当x1时,(x)0,即4x32(2)x0对于x(,1)恒成立. ∴2(2)4x2,x1,4x24.∴2(2)4,解得4.

又函数(x)在(-1,0)上是增函数,∴当1x0时,(x)0 即4x2(2)x0对于x(1,0)恒成立,∴2(2)4x,1x0,44x0.∴2(2)4,解得4.

故当4时,(x)在,1上是减函数,在(-1,0)上是增函数,即满足条件的存在.

说明:函数思维实际上是辩证思维的一种特殊表现形式,它包含着运动、变化,也就存在着量与量之间的相互依赖、相互制约的关系.因此挖掘题目中的隐含条件则是打开解题思路的重要途径,具体到解题的过程,学生很大的思维障碍是迷失方向,不知从何处入手去沟通已知与未知的关系,使分散的条件相对集中,促成问题的解决.不善于应用f(x)a恒成立[f(x)]maxa和f(x)a恒成立[f(x)]mina,究其原因是对函数的思想方法理解不深.

清华园教育网

www.xiexiebang.com 223清华园教育网

www.xiexiebang.com

利用导数比较大小

已知a、b为实数,且bae,其中e为自然对数的底,求证:ab. 分析:通过考察函数的单调性证明不等式也是常用的一种方法.根据题目自身的特点,适当的构造函数关系,在建立函数关系时,应尽可能选择求导和判断导数都比较容易的函数,一般地,证明f(x)g(x),x(a,b),可以等价转化为证明F(x)f(x)g(x)0,如果

baF(x)0,则函数F(x)在(a,b)上是增函数,如果F(a)0,由增函数的定义可知,当x(a,b)时,有F(x)0,即f(x)g(x).

解:证法一:

bae,∴要证abba,只要证blnaalnb,设f(b)blnaalnb(be),则f(b)lnaa. bbae,∴lna1,且

a1,∴f(b)0.b∴函数f(b)blnaalnb在(e,)上是增函数. ∴f(b)f(a)alnaalna0,即blnaalnb0,∴blnaalnb,ab.证法二:要证ab,只要证blnaalnb(eab),即证babalnalnblnx1lnx(xe),则f(x)0,设f(x)2abxx∴函数f(x)在(e,)上是减函数. 又eab,f(a)f(b),即

lnalnb,abba.ab说明:“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.解决这种问题常见的思维误区是不善于构造函数或求导之后得出f(x)g(x)f(x)g(x)的错误结论.

判断函数在给定区间上的单调性

函数ylog1121在区间(0,)上是()x清华园教育网

www.xiexiebang.com

清华园教育网

www.xiexiebang.com

A.增函数,且y0

B.减函数,且y0

C.增函数,且y0

D.减函数,且y0

分析:此题要解决两个问题:一是要判断函数值y的大小;二是要判断此函数的单调性. 解:解法一:令u11,且x(0,),u1,x则ylog1u0,排除A、B.

2由复合函数的性质可知,u在(0,)上为减函数.

又ylog1u亦为减函数,故ylog11221排除D,选C. 在(0,)上为增函数,x解法二:利用导数法

y11log1e2log2e0 1xx(1x)21x1(x(0,)),故y在(0,)上是增函数. 由解法一知y0.所以选C.

说明:求函数的值域,是中学教学中的难关.一般可以通过图象观察或利用不等式性质求解,也可以用函数的单调性求出最大、最小值等(包括初等方法和导数法).对于复合函数的单调性问题,简单的复合函数是可以利用复合函数的性质进行判断,但是利用导数法判断一些较复杂的复合函数还是有很大优势的.

清华园教育网

www.xiexiebang.com

第二篇:函数单调性与导数教案

3.3.1函数的单调性与导数

【三维目标】

知识与技能:1.探索函数的单调性与导数的关系

2.会利用导数判断函数的单调性并求函数的单调区间

过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法

2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想。

情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。【教学重点难点】

教学重点:探索并应用函数的单调性与导数的关系求单调区间。教学难点:探索函数的单调性与导数的关系。【教

具】多媒体 【教学方法】问题启发式 【教学过程】 一.复习回顾

复习1:导数的几何意义

复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法)

问题提出:判断y=x的单调性,如何进行?(分别用图像法,定义法完成)2那么如何判断f(x)sinxx,x0,;的单调性呢?引导学生图像法,定义去尝试发觉有困难,引出课题:板书课题:函数的单调性与导数

二.新知探究

探究任务一:函数单调性与其导数的关系:

问题1:如图(1)表示高台跳水运动员的高度h随时间t变化的函数h(t)4.9t6.5t10的图像,图(2)表示高台跳水运动员的速度V(t)h'(t)9.8t6.5h的图像.通过观察图像, 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?此时你能发现h(t)和h'(t)这两个函数图像有什么联系吗?

启发:函数h'(t)在(0,a)上是大于0,函数h(t)在(0,a)上有何特点呢?函数h'(t)在(a,b)上是小于0,那么函数h(t)在(a,b)上有何特点呢?

问题2:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢?

问题3:通过对问题1和问题2的观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?(形成初步结论,板书结论:函数的单调性与导数的关系:在某个区间(a,b)内,如果f'(x)0,那么函数yf(x)在这个区间内单调递增;如果f'(x)0,那么函数yf(x)在这个区间内单调递减.)

问题4:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗?

探究任务二:f'x0与函数单调性的关系:

问题5:若函数fx的导数f'x0,那么fx会是一个什么函数呢?(板书:特别的,如果)f'(x)0,那么函数yf(x)在这个区间内是常值函数.问题6:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢?

例1:已知某函数的导函数的下列信息:

时,f'(x)0;当1x4时,f'(x)0;当x4,或x1时,f'(x)0.试画出函数fx图像的大致形状.当x4,或x

1跟踪练习

1、设yf(x)是函数yf(x)的导数, yf(x)的 图象如图所示, 则yf(x)的图象最有可能是()

问题7:根据我们得到的导数与单调性之间关系的结论,你能否利用此结论来求函数的单调区间呢?

例3:判断下列函数的单调性,并求出单调区间:(1)f(x)sinxx,x0,;(2)f(x)2x33x224x1;(3)f(x)x33x;(4)f(x)x22x3;(5)f(x)=x+ln x

(对于(2)让学生课后探究尝试单调性的定义法和图象法)

问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)

(板书“求解函数yf(x)单调区间的步骤:

(1)确定函数yf(x)的定义域;(2)求导数y'f'(x);(3)解不等式f'(x)0,解集在定义域内的部分为增区间;(4)解不等式f'(x)0,解集在定义域内的部分为减区间.

问题8:导数能帮助我们简洁的求出单调区间,画出大致图象,但我们知道就是递增(递减)也有快与慢的区别,在导数上如何体现呢?下面我们就来看一下下面这个问题

例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图像.

分析:

在导数几何意义那节我们就感受了增加与减少也由快慢之分,那么我们以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.

解:1B,2A,3D,4C

思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?

一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.

如右图, 函数yf(x)的图象,在(0,b)或(a,0)内的图象“陡峭”, 在(b,)或(,a)内的图象平缓.(跟踪练习)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()

三,课堂练习

1.确定下列函数的单调区间

(1)y=ex

(2)y=3x-x3

(3)f(x)3x22lnx x

四,课堂小结

1.函数导数与单调性的关系:若函数y=f(x)在某个区间内可导, ′如果f(x)>0, 则f(x)为增函数;如果f′(x)<0, 则f(x)为减函数.2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.五,作业设计 课本98页,A组1,2

第三篇:函数单调性

函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计

北京教育学院宣武分院 彭 林

函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。

关键点1。学生 学习函数单调性的认知基础是什么?

在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。

就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。

第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。

第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。

第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。

基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。

让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的.

在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数

在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.

关键点2。为什么要用数学的符号语言定义函数的单调性概念?

对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。

所以,在教学中提出类似如下的问题是非常必要的:

右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减

对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性?

从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考?

一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点:

(1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。

用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。

在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战!

因此,在教学中可以提出如下问题2: 如何从解析式的角度说明

在上为增函数?

这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种:

①在给定区间内取两个数,例如1和2,因为函数. ,所以

在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。

对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明

就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。

教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题:

判断题:

①②若函数③若函数满足f(2)

和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.

从而加深学生对定义的理解

北京4中常规备课

【教学目标】

1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

【教学重点】 函数单调性的概念、判断及证明.

【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】

一、创设情境,引入课题 课前布置任务:

(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息?

预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;

(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念

对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知

问题1:

分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函

预案:(1)函数

在整个定义域内 y随x的增大而增大;函数

在整个定义域内 y随x的增大而减小.

(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.

(3)函数 在上 y随x的增大而减小,在上y随x的增大而减小.

引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数

在某个区间上随自变量x的增大,y也越来越大,我们说函数

在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数.

教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识

问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数

学生的困难是难以确定分界点的确切位置.

通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明

在为增函数?

22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数.

(2)仿(1),取很多组验证均满足,所以(3)任取,所以

在,因为

为增函数.

在为增函数.

在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.

【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念

问题:你能用准确的数学符号语言表述出增函数的定义吗?

师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题:

①.

②若函数

③若函数 在区间

和(2,3)上均为增函数,则函数

在区间(1,3)上为增函

④因为函数在区间上是减函数.上都是减函数,所以在

通过判断题,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.

思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展

例 证明函数

在上是增函数.

1.分析解决问题

针对学生可能出现的问题,组织学生讨论、交流.

证明:任取 ,设元

求差

变形,断号

∴函数

2.归纳解题步骤

在上是增函数.

定论

引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.

练习:证明函数

问题:要证明函数

在区间

上是增函数,除了用定义来证,如果可以证得对

在上是增函数.

任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在

〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

1.小结

(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业

书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数

在区间

上是增函数的充要条件是对任意的上是增函数.,且

有.

(2)研究函数的单调性,并结合描点法画出函数的草图.

《函数的单调性》教学设计说明

一、教学内容的分析

函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.

二、教学目标的确定

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.

三、教学过程的设计

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.

(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.

(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.

第四篇:函数的单调性与导数课后反思

课后反思

1.本节课的亮点:

教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也渗透了归纳推理的数学思想方法,培养了学生的探索精神,积累了探究经验。

2.不足之处:

教学引入时间较长,致使整堂课时间安排显得前松后紧; 在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;学生对与数形结合的理解还不是很熟练,今后应多加强训练。

3.改进的思路:

①选取函数时应简单,易懂

②在引导学生提问时,问题要简明扼要 ③多进行公开课,锻炼自己的胆量和语言表达能力。

第五篇:《函数的单调性与导数》评课稿

《函数的单调性与导数》评课稿

恩平一中谭青华

本节课郑凯老师运用多种教学手段,创设了丰富、生动的教学情境,设计了新颖、活泼的学生活动。成功的地激发了学生的学习兴趣。下面我谈谈我的几点看法:

一、教学目标

本节课的教学目标简明扼要、具体,便于实施,便于检测,注重数学思想、能力的培养、兼顾情感态度与价值观的教育。广度和深度都符合数学课程标准和教材的要求,符合学生的实际情况。教师准备的也比较充分,清楚的知道学生应该理解什么、掌握什么、学会什么。本堂课很好的完成了预定的教学目标。

二、教学内容

执教者因材施教,充分考虑到该班学生的实际情况,把本节课分为两个课时进行。教学内容紧紧围绕教学目标展开。准确的确定了本节课的教学重、难点:探究函数的单调性与导数的关系,并在处理时,分为三个层次进行,层层递进,化难为易。学生易于理解、掌握。很好的处理了新旧知识的结合点,抓住知识的生长点,讲授具有启发性,层次详略得当。对于课后作业的布置分必做题、选做题、思考题。很好的照顾到了不同知识水平的学生,鼓励学生不断努力、挑战自我,体现了分层教学思想。

三、教学方法

教师本堂课主要采用启发式、探究式的教学方法,并对学生进行学法的指导。使学生积极思维、主动学习、自主学习,从而达到会学的目的。让学生参与尝试、猜想、试验、探索与发展的过程,培养学生良好的思维习惯与思维品质。充分发挥教师的主导作用,学生的体作用。最大限度地提高了课堂效率。主要体现在以下几个方面:

1、情境引入:引发学生对函数的单调性与导数关系的思考。

2、探究关系:引导学生从图像、切线、定义三个不同的角度去探究。

3、规律总结、课堂总结:都先是学生思考回答,老师再补充完善,体现教师主导、学生的主体作用。

四、教学基本功

教师的教态自然、评议清晰富有启发性,在语言表达方面还可以简练些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。板书设计合理;组织教学,驾驭课堂的能力较强。

五、教学效果

本堂课在规定的时间内完成了教学任务,知识的传授、能力的培养、思想与道德教育等方面都实现了教学目标的要求;从学生的情况来看学生注意力集中、积极参与本堂课的学习,课堂气氛非常活跃。教学效果良好。

总之,在这节课中,老师能创设有效的教学情境,关注学生的生活经验和心理特点,引导学生多角度思考问题,解决问题。让学生真正成为学习的主人,教师真正成为组织者、引导者、参与者、促进者。让整个课堂焕发出生命活力!

下载利用导数求函数的单调性解读word格式文档
下载利用导数求函数的单调性解读.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    利用函数的单调性证明不等式

    龙源期刊网 http://.cn 利用函数的单调性证明不等式 作者:胡锦秀 来源:《数理化学习·高一二版》2013年第04期 函数的单调性是函数的重要性质之一,在不等式证明中扮演着重要角......

    利用函数的单调性证明不等式

    利用函数的单调性证明不等式单调函数是一个重要的函数类, 函数的单调性应用广泛, 可利用它解方程、求最值、证明等式与不等式、求取值范围等, 并且可使许多问题的求解简单明......

    含参函数单调性

    含参数函数单调性 ●基础知识总结和逻辑关系 一、 函数的单调性 求可导函数单调区间的一般步骤和方法: 1) 确定函数的f(x)的定义区间; 2) 求f'(x),令f'(x)0,解此方程,求出它在定......

    函数的单调性

    函数的单调性说课稿(市级一等奖) 函数单调性说课稿 《函数的单调性》说课稿(市级一等奖) 旬阳县神河中学 詹进根 我说课的课题是《普通高中课程标准实验教科书 必修1》第二......

    函数单调性教案(简单)

    函数单调性 一、教学目标 1、建立增(减)函数及单调性、单调区间的概念 2、掌握如何从函数图象上看出单调区间及单调性 3、掌握如何利用定义证明一段区间上的函数单调性 二、教......

    1.3.1函数的单调性与导数教学反思

    一节课下来暴露了许多问题: 1、学生对函数的单调性有所遗忘,不会求单调区间。 2、学生对导数的几何意义不能深入理解。 3、学生对求导公式掌握不够熟练,求导出现错误。 4、教师......

    利用函数单调性证明积分不等式(修改)

    利用函数单调性证明积分不等式黄道增浙江省台州学院(浙江317000)摘要:积分不等式的证明方法多种多样,本文主要利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。......

    “函数的单调性和奇偶性”教学设计解读

    一、目的要求了解函数单调性的概念,掌握判断一些简单函数的单调性的方法。二、内容分析1.在研究函数的性质时,单调性是一个重要内容,实际上,在初中学习函数时,已经重点研究......