第一篇:《垂径定理的应用》授导型教学设计(范文)
学科:初中数学
授课年级:九年级
学校:眉县青化中学 教师姓名:张亚雄
章节名称 垂径定理及其应用 计划学时 1 本节内容是前面圆的性质的重要体现,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也是为进行圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的位置。另外,本节课通过“实验--观察--猜想——合作交流——证明”的途径,进一步培养学生的动手能力,观察能力,分析、联想能力、与人合作交流的能力,同时利用圆的轴对称性,可以对学生进行数学美的教育。
学习内容分析 因此,这节课无论从知识上,还是在从学生能力的培养及情感教育方面都起着十分重要的作用。通过分析,我们看到“垂径定理”在教材中起着重要的作用,是今后解决有关计算、证明和作图问题的重要依据,它有广泛的应用,因此,本节课的教学重点是:垂径定理及其应用。
由于垂径定理的题设与结论比较复杂,很容易混淆遗漏,所以,对垂径定理的题设与结论区分是难点之一,同时,对定理的证明方法“叠合法”学生不常用到,是本节的又一难点。因此,本节课的难点是:对垂径定理题设与结论的区分及定理的证明方法。
而理解垂径定理的关键是圆的轴对称性。
学习者分析 处于这一阶段的学生,对于圆的弦、弧、圆心角、圆周角已经了解,但对于它们之间的关系还不太明白,还需要在课堂上进一步引导,达到教学目标。
课程标准:进一步理解垂径定理和灵活运用垂径定理。
知识与技能:使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力
教学目标
过程与方法:教师播放动画、创设情境,激发学生的求知欲望;学生在老师的引导下进行自主探索、合作交流,收获新知;通过分组训练、深化新知,共同感受收获的喜悦
情感、态度与价值观:通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。
教学重点及解决措施 教学重点:理解垂径定理和灵活运用垂径定理。解决措施:选用引导发现法和直观演示法。让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理。
教学难点及解决措施 教学难点:对垂径定理题设与结论的区分及定理的证明方法。解决措施:让学生实验、观察并得出猜想,然后引导学生分析上述猜想的条和结论,并将文字语言转化为符号语言,写出已知、求证,为分清定理的题设和结论作好铺垫,从而达到解决难点的目的。
整个教学设计内容分七个环节来完成。
1、复习提问---创设情境教师演示动画:将一等腰三角形对折,启发学生共同回忆等腰三角形是轴对称图形,复习轴对称图形的概念。并提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?这样了解了学生的认知基础,带领学生作好学习新课的知识准备并逐步引入新课。
2、引入新课---揭示课题:在引入新课的同时,运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验、观察,通过实验,引导学生得出结论:(1)圆是轴对称图形;(2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴;(3)圆的对称轴有无数条。(出示教具演示)。然后再请同学们在自己作的圆中作图:(1)任意作一条弦 AB;(2)过圆心作AB的垂线得直径CD且交AB于E。(出示教具演示)引导学生分析直径CD与弦AB的垂直关系,说明CD是垂于弦的直径,并设问:它除了上述性质外,是否还有其他性质呢?这样就很自然地导出本节课的课题,此时板书课题 7.3垂直于弦的直径。这样通过全体学生参与实验,逐步导出新课。
教学设计思
3、讲解新课---探求新知:首先让学生实验、观察并得出猜想,然后引导学生分析上述猜想路
得出结论,并将文字语言转化为符号语言,写出已知、求证,为分清定理的题设和结论作好铺垫,从而达到解决难点的目的。接下来再对学生引导分析,让学生合作讨论,展示成果。最后师生共同演示、验证猜想的正确性,同时利用动画得出证明方法,从而解决本节课的又一难点——叠合法的证题方法。此时再板书垂径定理的内容。为了强调定理中的条件,我出示题组训练一,让学生抢答,根据实际情况进一步强调“垂”与“径”缺一不可,最后进行定理变式
4、定理的应用:为了及时巩固,帮助学生对所学定理的理解与使用讲完定理及变式后,我依据本班学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。
5、巩固练习----测评反馈:为了检测学生对本课教学目标的达成情况,进一步加强定理的应用训练,我设计了与代数、物理相关的反馈题组训练三,针对学生解答情况,及时查漏补缺。
6、课堂小结---深化提高:至此,估计学生基本能够掌握定理,达到预定目标,这时,利用提问形式,师生共同进行小结
7、布置作业结合学生的实际情况,为了更好地因材施教,我的作业题分为必做题与选做题,必做题。目的是调动学生学习积极性,提高学生思维的广度,培养学生良好的学习习惯及思维品质,让学有余力的学生进一步的提高。另外,作业限时20分钟,减轻学生的负担,提高学习效率。
板书设计为了使本节课更具理论性、逻辑性,我将板书设计分为三部分,第一部分为圆的轴对称性,第二部分为垂径定理及其变式,第三部分为测评反馈区(学生板演区)。
设计要突出的特色:为了给学生营造一个民主、平等而又富有诗意的课堂,我以新数学课程标准下的基本理念和总体目标为指导思想在教学过程中始终面向全体学生,依据学生的实际水平,选择适当的教学起点和教学方法,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验。通过“实验--观察--猜想--证明”的思想,让每个学生都有所得,我注意前后知识的链接,进行各学科间的整合,为学生提供了广阔的思考空间,同时辅以相应的音乐,为学生创设轻松、愉快、高雅的学习氛围,在学习中感悟生活中的数学美。
依据的理论 做中学、引导发现法、直观演示法和合作学习。信息技术应用分析 知识点 定理内容0.例
1、巩固练习教学过程(可续页)教学环节 教学内容 所用时间 教师活动
教师演示动画:将一等腰三角形对折,导入新
启发学生共同回忆等腰三角形是轴对称课,以动复习提问---创设画为契机5分钟
情境
提出问
圆心,腰长为半径作圆,得到的圆是否题。
是轴对称图形呢?
问题:如果以这个等腰三角形的顶点为
题
图形,复习轴对称图形的概念。并提出
学生回答问
利用动画引入对
学生活动
设计意图
学习水平媒体内容与形式 理解 应用
计算机显示内容
使用方式 计算机显示内容
使用效果 较好
计算机显示内容、黑板演示。计算机显示内容、黑板演示 增大练习量
学生动手实验、观察,通过实验得出结论:(1)圆是轴
学生动手实
对称图形;(2)经引入新课---揭示引入新课 5分钟
课题
出示教具演示,导出本节课题。
学生回答问
直线(注:不能说
题。
直径)都是它的对称轴;(3)圆的对称轴有无数条。学生实验、观察并得出猜想,然后引
学生动手实
导学生分析上述讲解新课---探求探求新知 15分钟
新知
书垂径定理的内容
学生回答问
将文字语言转化
题。
为符号语言,写出已知、求证。
定理巩固练习
设计了包括例1在内的有梯度的,循序----测评反馈: 定理的应用: 定理的应10分钟
用
练二
渐进的与物理、代数相关的变式题组训
解题
掌握定理
验分组讨论,猜想得出结论,并
验分组讨论,过圆心的每一条
第二篇:垂径定理教学设计
垂径定理教学设计
教学目标:
1.使学生理解圆的轴对称性
2.掌握垂径定理
3.学会运用垂径定理解决有关的证明、计算问题。过程与方法
1.通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力
2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。情感、态度与价值观
通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。
教学重点: 垂径定理及应用 教学难点:
垂径定理的理解及其应用 教学用具:圆形纸片,小黑板 教学过程:
一、创设情景:地震造成我们小区的圆柱形供水管道损坏,现在工人师傅要为我们换管道,如图,他测量出管道有积水部分的最大深度是3CM,水面的宽度为6CM,这个工人师傅想了又想,也不知道该用多大的水管来替换,你能帮他解决这个问题吗?
二、引入新课---揭示课题:
1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论:(1)圆是轴对称图形(2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴(3)圆的对称轴有无数条(4)圆也是中心对称图形.(出示教具演示)。
2、请同学们在自己作的圆中作图:(1)任意作一条弦 AB;(2)作直径CD垂直弦AB垂足为E。(出示教具演示)引导学生分析直径CD与弦AB此时的关系,说明直径CD垂直于弦AB的,并设问:垂直于弦的直径它除了上述性质外,是否还有其他性质呢?导出本节课的课题.三、讲解新课---探求新知
(1)实验--观察--猜想: 让学生将上述作好的圆沿直径CD对折,观察重合部分后,发现有哪些线段相等、弧相等,并得出猜想:在圆O中,CD是直径,AB是弦,CD垂直AB于E.那么AE=BE,弧AC=弧BC,弧AD=弧BD.(2)证明:引导学生用“叠合法”证明此定理(3)对定理的结构进行分析(4)结合图形用几何语言表述(5)垂径定理的变式
四、定理的应用:
例1:(2008哈尔滨中考)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交
⊙O于点C,且CD=1,则弦AB的长是___________ 练习1:(08年福州中考)如图,AB是圆O的弦,OC⊥AB于C,若AB=8cm,OC=3cm,则圆O的半径长为多少?
精讲点拨:求圆中有关线段的长度时,常借助垂径定理转化为直角三角形,半径r、弦半a/
2、弦心距d,三者构造出一个直角三角形,知道两个量可用勾股定理求出第三个量
例2:如图,两个圆都以点O为圆心,求证AC=BD 练习2:如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证四边形ADOE是正方形.五、小结与反思: 你学习了哪些内容? 你有哪些收获? 你掌握了哪些思想方法? 你还有什么问题 ?
六、课后拓展:
1、(09年模拟)如图,已知AB、AC为弦,OM⊥AB于点M,ON⊥AC于点N,BC=4,则MN= ————.
2、你能帮工人师傅解决水管替换问题了吗?
3、已知⊙O的半径为10,弦AB∥CD,AB=12,AB和CD的距离为 .
七、布置作业:习题,1,9
八、教学反思:
CD=16,则
第三篇:垂径定理教学反思
《垂直于弦的直径》的教学反思
垂直于弦的直径也叫垂经定理,是初中九年级人教版第二十四章第2节内容,它是圆中有关计算方面比较重要的一节。
本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每一条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:
(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生 很感兴趣,有些同学折的 是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。)
(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。
(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)
(4)问学生在什么样条件下得出这些结论的?
(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。
通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。
当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:
(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的问题就变成水到渠成的事情了。
(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。
(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。
总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。
第四篇:《垂径定理》教学反思
《垂径定理》教学反思
《垂径定理》教学反思1
垂径定理是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点,由于垂径定理的题设和结论都较复杂,因此,理解和证明定理是本节课的难点,在教学中也是一节较难把握的课。 在垂径定理这节课中,我获益良多主要体现在以下几个方面:
一.注重结论的表述
在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句.
二.注重透彻的剖析
一些该让学生知道的知识点,点拨得不够透彻.如CD是直径,其实应该可以拓展为过圆心的直线; 不能够用数量关系求的,应该要适当地引导学生设未知数.而不是直接告诉学生这种题目就是要设未知数. 同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者说引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受.
三.注重导学案的设计
在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课.这样就不会使得后面讲推论的时间太短,太仓促.前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而在多媒体中练习题量太小,而且是题型太单一,可以再多做些找相等的量的.基础训练。
四.注重常规辅助线的总结
其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,而这两种题目我的训练都不到位.
通过反思这一课的课堂教学,我发现大部分学生对知识的理解不够,不能灵活应用知识于实际生活(求赵州桥主桥拱的半径)。对这一课进行全面反思后,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些失误给了我了一个今后努力的方向.
一:培养学生会用数学知识解决实际问题
数学来源于生活,又服务于生活。在实际生活中,数、形随处可见,无处不在。好的实际问题容易引起学生的兴趣,激发学生探索和发现问题的欲望,使学生感到数学课很熟悉,数学知识离我们很近。不过,学生在解决实际问题的过程中,主要存在几点困难,一是学生见到实际问题就畏惧,根本不想读题;二是学生对实际问题背景不熟悉,熟悉问题背景花费一定时间;三是对于实际问题,学生不知如何下手解决,所用知识是什么,用什么思想方法解决。为了克服这种困难,本节课专门设计了一个较为熟悉的实际问题,这样做的好处,一是体现问题具有现实的用途---数学的有用性,二是与本节课的知识内容及数学思想方法有直接关系。这个问题解决了,以后学生再见到类似的实际问题时,就不会感到陌生。
我们知道,每种教学模式都有其优劣,如果一味的按一种教学模式贯穿于整个教学过程,并不能达到最好的教学效果。教学中,应根据不同的教学内容,选择不同的教学模式来教学,这样效果会更好。
二:充分体现学生的主体地位
教学中,要把尊重学生、关注学生的发展动态始终放在第一位。注重学生间的合作交流,给学生多次展示自己的机会,锻炼学生的胆量,培养学生语言表达能力及逻辑推理能力,并给予适当的鼓励和表扬,使学生有成功感,增强学生学好数学的信心。
在知识发生发展与应用过程中,注重数学思想方法的渗透(如本节课渗透从特殊到一般的数学思想),教给学生解决问题的办法,使学生学会学习。
在今后的学习中,我会更加努力,改正自己的缺点,努力钻研教材,不断提高自己的教学水平。
《垂径定理》教学反思2
学情分析
本节课是在上节课学习了圆的概念及弧、弦等概念的基础上的一节课。在上节课结束时留给学生这样一个问题“你还想进一步研究什么?”通过学习,学生很容易联系到上节课学习了圆、弧、弦、直径、半径等有关知识。那么圆内这些元素还具有哪些性质呢?学生自然地从上节课过渡到这节课的学习,同时培养了学生勤于动脑,勤于思考的好习惯,激发了学生学习的兴趣与热情。
本节课主要有两方面的内容:一是圆的轴对称性,二是垂径定理及其推论。开始以赵州桥的问题引入课题,带着问题进行学习。圆的轴对称性主要是通过动手操作得出结论,圆是轴对称图形,根据轴对称性进一步研究圆中相等的弦、弧得出垂径定理及其推论。利用此定理再去解决赵州桥问题,每一个环节都是环环相扣,不是孤立存在的。
教学目标
经历探索圆的轴对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。理解并应用垂径定理进行有关的计算。
重点难点
掌握垂径定理及其推论,学会运用垂径定理等结论解决一些有关证明、计算和作图问题。
反思之一:实际问题的意义的看法
数学来源于生活,又服务于生活。在实际生活中,数、形随处可见,无处不在。好的实际问题容易引起学生的兴趣,激发学生探索和发现问题的欲望,使学生感到数学课很熟悉,数学知识离我们很近。学生在解决实际问题的过程中,主要困难有两点,一是学生一见到实际问题就畏惧,根本不去读题,二是学生对实际背景不熟悉。为此,本节课设计了一个实际问题,这样做的好处,一是具有非常实际的用途,二是与本节课的内容具有直接关系。这个问题解决了,以后学生再讲到类似的实际问题时,就不会感到陌生。
每种教学模式都有其优劣,如果一味地按一种教学模式贯穿于整个教学过程,并不能达到最好的教学效果。对于我们教师来说,应根据不同的教学内容,选择不同的教学模式来教学,这样效果会更好。本节课,由于学生的差异较大,所以选择了小组合作这种教学模式,发挥小组合作学习的优势,给学生创造一个宽松的学习环境,使学生消除畏惧怕错的`心理压力,激发学生的创新精神,帮助学生树立学好知识的信心和勇气。
反思之二:需要更加关注学生
教学中,把尊重学生,关注学生的发展动态始终放在第一位。在这节课中,注重学生间的合作交流,给学生多次展示自己的机会,锻炼学生的胆量,培养学生语言表达能力及逻辑推理能力,并给予适当的鼓励和表扬,使学生有成功感,增强学生学好数学的信心。
在知识发生发展与应用过程中注重教学思想方法的渗透,如本节课从特殊到一般的数学思想,交给学生解决问题的办法,使学生学会学习。
《垂径定理》教学反思3
首先讲下这节课,我的一些思路:
⑴在教学方法与教材处理方面,根据现在的教材特点,教学内容以及在新课标理念的指导下,最后决定让学生在课堂上多动手、多观察、多交流,最后得出定理,这个方法符合新课程理念观点,也符合教师的主导作用与学生的主体地位相统一的原则。
同时,在教学中,我充分利用教具和投影仪,提高教学效率。在实验,演示,操作,观察,练习等师生的共同活动中启发学生,培养学生直觉思维能力,结合学生实际情况作适当的拓广。
我参加这次教学技能大赛,获益良多主要体现在以下几个方面:
(1)在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的'过渡语句。
(2)一些该让学生知道的知识点,讲得不够透彻。如CD是直径,其实应该可以拓展为过圆心的直线(要多强调,而不是一笔带过);不能够用数量关系求的,应该要适当地引导学生设未知数。而不是直接告诉学生这种题目就是要设未知数。同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者话引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。
(3)在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课。这样就不会使得后面讲推论的时间太短,太仓促。前面复习用的时间太长,在复习的部分应该多加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而学案中练习题的量太少,而且是题型太单一,可以再做多些找相等的量的基础训练,对B班的学生更加熟悉垂径定理,基础题目的掌握对B班大有好处。
(4)其实这节课还有个作图思想要灌输比学生,即是教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要边弦心距都要作出来,而这两种题目我的训练都不到位。
(5)还有其他很多问题:例题的讲解不够详细,深刻。给学生思考的时间不够;题目的梯度设计得不是很好……
最后,这些失误给了我一个今后的努力的方向。在今后的学习中,我努力钻研教材改正自己缺点。
《垂径定理》教学反思4
垂直于弦的直径也叫垂经定理,是初中九年级人教版第二十四章第2节内容,它是圆中有关计算方面比较重要的一节。
本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每一条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:
(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生 很感兴趣,有些同学折的 是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。 )
(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。
(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)
(4)问学生在什么样条件下得出这些结论的?
(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。
通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。
当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:
(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的`问题就变成水到渠成的事情了。
(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。
(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。 总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。
《垂径定理》教学反思5
教学方法与教材处理:我选用引导发现法和直观演示法。让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验———观察———猜想———证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用学校新安装的班班通工程,利用课件,既增强了学生的学习兴趣,又提高教学效果,在实验,演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。另外,教学中我还注重用不同图片的.颜色对比来启发学生。
设计的特色:为了给学生营造一个民主、平等而又富有诗意的课堂,我以新数学课程标准下的基本理念和总体目标为指导思想在教学过程中始终面向全体学生,依据学生的实际水平,选择适当的教学起点和教学方法,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验。通过“实验——观察——猜想——证明”的思想,让每个学生都有所得,我注意前后知识的链接,进行各学科间的整合,为学生提供了广阔的思考空间,同时辅以相应的音乐,为学生创设轻松、愉快、高雅的学习氛围,在学习中感悟生活中的数学美。
《垂径定理》教学反思6
在垂径定理教学中,我获益良多,主要体现在以下几个方面:
(1)在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句。
(2)一些该让学生知道的知识点,讲得不够透彻。如CD是直径,其实应该可以拓展为过圆心的直线;不能够用数量关系求的,应该要适当地引导学生设未知数。而不是直接告诉学生这种题目就是要设未知数。同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者说引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。
(3)在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课。这样就不会使得后面讲推论的时间太短,太仓促。前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而在多媒体中练习题量太小,而且是题型太单一,可以再多做些找相等的量的基础训练。
(4)其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,而这两种题目我的训练都不到位。
(5)还有其他很多问题:例题的讲解不够详细,深刻。给学生思考的.时间不够;题目的梯度设计得不是很好……
通过反思这一课的课堂教学,我发现大部分学生对知识的理解不够,不能灵活应用知识于实际生活(求赵州桥主桥拱的半径)。对这一课进行全面反思后,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些失误给了我一个今后的努力的方向。在今后的学习中,我会更加努力,改正自己的缺点,努力钻研教材。
《垂径定理》教学反思7
“纸上得来终觉浅,绝知此事要躬行”,构建高效课堂之声频频入耳,但实效甚微,很多空喊不干,我觉得就是没实施、没领悟好这一诗句的真谛。我们走在第一线的教师,入心地走进教材,深入了解学生的认知能力,其实对上好每堂课是个必备的前奏,那才能感悟到育人的快乐!
刚刚讲完《垂径定理》第一课时的内容,自我有些许的满足感,因为我入心了,入情了。在上课之前,我精心设计了课题的引入、定理的推理、定理的引申、应用,整堂课下来预设的基本程序和任务都算是圆满完成。
起初新课的引入我用了实物---圆,把圆进行对折操作让学生清晰地看到了圆是轴对称图形并说出它的对称轴,让学生从感性认识上升到理性认识,而且还锻炼了学生的对数学知识的归纳总结的能力。接着以实物转化为黑板上的示意图进入下一环节,当这个折痕把圆中的某条弦垂直且平分,那么你能得到圆中哪些相等的线段与弧?学生围绕这个问题热烈地讨论出了相等的线段和弧的结论,然后各抒己见地分别证明其结论的正确性。“横看成岭侧成峰,远近高低各不同”,当学生选择不同的证明方法时,我有意地让他们比较证明方法的优劣,那么他们就会在不经意中学会了解题要走捷径是多么自豪轻松的事情。在这个精彩时刻我画龙点睛地板书了课题----垂径定理,与此同时趁热打铁地要学生总结什么是垂径定理的内容,并分清命题的题设和结论。当然我作为引导者绝不放过定理的形成过程的任何一个细节,当学生总结出定理后,在黑板上板书时我分别用不同颜色的粉笔区分了命题的题设和结论,我认为用颜色来冲击他们的视觉更能加深印象,也减轻了教师千叮咛万嘱咐的麻烦。定理形成后剩下的是让学生熟悉如何把文字命题转化为几何演绎推理格式,也更是为后期的教学服务。随之而来的是定理的巩固,这个环节我安排的习题先是直接运用定理,接着引申定理,把定理中的“直径”引申扩充为 “过圆心的某条直线”来开阔学生的视野进行解题而且
使之知识的消化得以升华。这些点点滴滴地精心传授迎来了喜悦的成果,在例题的解决的过程中学生处理地得心应手,定理运用自如。这时真切地体会到了没有笨学生,只有不用心教的老师。见到这一成效,我很自信,很有成就感,我的努力没付诸东流,由此自信产生了激情,激情就会创造奇迹,后面的`教学过程让我的教与学生的学更为融洽了。果不其然,学生们对于我出示的有点难度的巩固训练题都不怕艰难险阻、跃跃欲试地挣着抢着去解决,已然忘记了这是课堂的约束,好像突然间已经把这节新内容注入到了骨子里,令人欣慰地得到了他们既快又准的答案。
本节课我见证了我入心教学的神奇,孩子们的收获与应对就是最好的证明。一堂课后,我教我乐,他学他乐。面对这些鲜活的生命没有理由让我退缩,唯独只有义无反顾地耐心地将爱心传递,来感染周围人,因为爱心的力量是不可估量的。真的,孩子们在学习中及教师在教学中保持愉快和舒畅的心境,有利于发挥学生的主动性和创造性,实现有意识和无意识的统一,从而释放出巨大的学习潜能。如今,我们每天的实战演习受任于课改之旺季,时刻奉命于教师责任之根本。作为执教者只有让责任在课外担起,才得以让智慧在课内展现,在探究中师生互动,在分享中情景交融!如此的良性循环让教师的授课岂不就变成一大美差!
《垂径定理》教学反思8
“垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位,是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用。由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点及难点。
对本节课的教学我有以下几点反思:
1、本节课主要有两方面的内容:一是圆的轴对称性,二是垂径定理及其推论。开始以赵州桥的问题引入课题,带着问题进行学习,学习有目标,圆的轴对称性主要是通过动手操作得出结论,圆是轴对称图形,根据轴对称性进一步研究圆中相等的弦,弧得出垂径定理及其推论。利用此定理再去解决赵州桥问题,每一个环节都是环环相扣,不是孤立存在的。
2.在数学教学中,语言的严密性,逻辑性很重要的,而我在课堂上,尤其是知识点的联系方面的引导词,结论的表述,更加需要再努力钻研.今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的`过渡语句.
3在教案设计方面,在时间上把握得不够准确。有点前松后紧。前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;在多媒体中,题目的梯度设计虽然很好但时间紧练习题量太小。
4,其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,应加强两种题目的训练。.
通过反思这一课的课堂教学,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些问题给了我一个今后的努力的方向.在今后的教学中,我会更加努力。
第五篇:《垂径定理》说课稿
《垂径定理》案例分析
张小飞
一、教材分析
1、内容地位:从知识体系上看,《垂径定理》是义务教育新课程标准人教版九年级(上册)第三章内容,是在学生学习了《旋转与中心对称》之后,对特殊的中心对称图形圆的深度学习的过程,是学生学习了圆的基本概念之后,对圆的基本性质的新探究。是中考的必考考点之一。
2、学习目标:
(1)利用圆的对称性探究垂径定理。(2)能运用垂径定理解决问题。(3)全心投入,细心认真。
3、重点难点:
学习重点:垂径定理的探究及运用。学习难点:利用垂径定理解决问题。
二、学情分析
1.学生心理特征:进入初三,学生思维活跃,求知欲强,对探索问题充满好奇,在课堂上有互相竞争的渴望,相比以前,他们有一定的知识储备,但学习积极性有所减退,自我意识增强。
2.学生认知基础:在学习本节之前,学生已经学习了《圆的基本概念》,明确了直径、弦等基本概念,会运用轴对称的性质解决问题,学习了勾股定理,具备了进一步学习《垂径定理》的基本能力.3.学生活动经验基础:学生在之前的学习中,已明确了展示课的学习程序,并能利用学案,准备展示,变式训练,归纳方法,灵活运用,具备了学习活动的经验基础.三、教法学法分析
教法分析:针对学生的认知水平和心理特征,在本节课,我将指导学生在小组合作的学习氛围中开展小组展示,有组织、有目的、有针对性的引导学生积极参与教学活动,并鼓励学生采用自主探索、合作交流的学习方式,在观察、思考、运用的过程中,养成全面、有序的思考问题的习惯
学法分析:作为一节展示课,学生将在教师的带领下经历明确目标、温故知新、准备展示、展示所学、巩固提升等过程,培养学生独学静思、有效交流、积极合作、大胆展示的良好学习习惯。
四、教学过程及大致时间分配(1)明确目标、(1分钟)
目标出示在黑板上,教师引导学生理解(2)温故知新(3分钟)
采用个别提问的方式,复习基本知识点,为扎实做充分准备(3)分配任务,准备展示(5分钟)
教师分配展示的任务,并指导学生做展示的前期准备。(4)小组展示,变式训练(20分钟)
学生分组有序展示,在展示中鼓励提问,可做变式训练。要求展示者书写规范,过程完整,声音洪亮,表达流利,衔接紧凑。(5)归纳梳理、整理学案(3分钟)
学生将错误的题目整理,补充不完整的解题过程,要求用双色笔。(6)反馈检测、巩固提高(12分钟)
完成学案反馈检测部分,力争按下课能够完成。
五、教后反思 垂直于弦的直径也叫垂经定理,是初中阶段圆中有关计算方面比较重要的一节。本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:
(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生很感兴趣,有些同学折的是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。)
(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。
(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)
(4)问学生在什么样条件下得出这些结论的?
(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。
当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的问题就变成水到渠成的事情了。(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。
(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。
总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。