九年级数学垂径定理

时间:2019-05-15 04:02:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级数学垂径定理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级数学垂径定理》。

第一篇:九年级数学垂径定理

24.1.2 垂直于弦的直径

【教学目标】

1:探索圆的对称性,进而得到垂直于弦的直径所具有的性质;

3:使学生领会数学的2:能够利用垂直于弦的直径的性质解决相关实际问题.

严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神. 【自主探究】

活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?

活动2:按下面的步骤做一做:

第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;

第二步,得到一条折痕CD;

第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;

第四步,将纸打开,新的折痕与圆交于另一点B,如图1.

在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?

AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,活动3:如图3,弦AB=16 m,求此圆的半径.

二:尝试应用

活动4:如图4,已知AB,请你利用尺规作图的方法作出AB的中点,说出你的作法.

AB

三 拓展创新

1.如图5,某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7.2米,桥的最高处点C离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明CA理由.

B

教学札记:

第二篇:《垂径定理》说课稿

《垂径定理》案例分析

张小飞

一、教材分析

1、内容地位:从知识体系上看,《垂径定理》是义务教育新课程标准人教版九年级(上册)第三章内容,是在学生学习了《旋转与中心对称》之后,对特殊的中心对称图形圆的深度学习的过程,是学生学习了圆的基本概念之后,对圆的基本性质的新探究。是中考的必考考点之一。

2、学习目标:

(1)利用圆的对称性探究垂径定理。(2)能运用垂径定理解决问题。(3)全心投入,细心认真。

3、重点难点:

学习重点:垂径定理的探究及运用。学习难点:利用垂径定理解决问题。

二、学情分析

1.学生心理特征:进入初三,学生思维活跃,求知欲强,对探索问题充满好奇,在课堂上有互相竞争的渴望,相比以前,他们有一定的知识储备,但学习积极性有所减退,自我意识增强。

2.学生认知基础:在学习本节之前,学生已经学习了《圆的基本概念》,明确了直径、弦等基本概念,会运用轴对称的性质解决问题,学习了勾股定理,具备了进一步学习《垂径定理》的基本能力.3.学生活动经验基础:学生在之前的学习中,已明确了展示课的学习程序,并能利用学案,准备展示,变式训练,归纳方法,灵活运用,具备了学习活动的经验基础.三、教法学法分析

教法分析:针对学生的认知水平和心理特征,在本节课,我将指导学生在小组合作的学习氛围中开展小组展示,有组织、有目的、有针对性的引导学生积极参与教学活动,并鼓励学生采用自主探索、合作交流的学习方式,在观察、思考、运用的过程中,养成全面、有序的思考问题的习惯

学法分析:作为一节展示课,学生将在教师的带领下经历明确目标、温故知新、准备展示、展示所学、巩固提升等过程,培养学生独学静思、有效交流、积极合作、大胆展示的良好学习习惯。

四、教学过程及大致时间分配(1)明确目标、(1分钟)

目标出示在黑板上,教师引导学生理解(2)温故知新(3分钟)

采用个别提问的方式,复习基本知识点,为扎实做充分准备(3)分配任务,准备展示(5分钟)

教师分配展示的任务,并指导学生做展示的前期准备。(4)小组展示,变式训练(20分钟)

学生分组有序展示,在展示中鼓励提问,可做变式训练。要求展示者书写规范,过程完整,声音洪亮,表达流利,衔接紧凑。(5)归纳梳理、整理学案(3分钟)

学生将错误的题目整理,补充不完整的解题过程,要求用双色笔。(6)反馈检测、巩固提高(12分钟)

完成学案反馈检测部分,力争按下课能够完成。

五、教后反思 垂直于弦的直径也叫垂经定理,是初中阶段圆中有关计算方面比较重要的一节。本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:

(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生很感兴趣,有些同学折的是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。)

(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。

(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)

(4)问学生在什么样条件下得出这些结论的?

(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。

当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的问题就变成水到渠成的事情了。(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。

(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。

总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。

第三篇:数学人教版九年级上册垂径定理的练习

《垂直于弦的直径》同步试题

一、选择题

1.下列命题中,正确的是(). A.平分一条直径的弦必垂直于这条直径

B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心

D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 考查目的:考查对垂径定理及其推论的理解

2.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是().

A.4

B.6

C.7

D.8

考查目的:考查垂径定理的应用,利用垂径定理进行相关计算.

3.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为().

A.2

B.3

C.4

D.5

二、填空题

4.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是

考查目的:考查垂径定理的应用,利用垂径定理进行相关计算. 5.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为

考查目的:考查垂径定理的应用,利用垂径定理进行相关计算.

6.如图,⊙O的直径AB平分弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=

厘米.

考查目的:考查垂径定理推论的应用,利用推论进行相关计算.

三、解答题

7.如图是一个隧道的截面,如果路面在圆的半径的长.

宽为8米,净高

为8米,求这个隧道所

考查目的:考查垂径定理在实际问题中的应用,考察方程思想.

8.已知⊙O的半径长为R=5,弦AB 与弦CD平行,AB=6,CD=8,求AB,CD间的距离.

考查目的:考查垂径定理的应用,利用垂径定理进行相关计算.分类讨论思想.

第四篇:垂径定理教学反思

《垂直于弦的直径》的教学反思

垂直于弦的直径也叫垂经定理,是初中九年级人教版第二十四章第2节内容,它是圆中有关计算方面比较重要的一节。

本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每一条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:

(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生 很感兴趣,有些同学折的 是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。)

(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。

(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)

(4)问学生在什么样条件下得出这些结论的?

(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。

通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。

当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:

(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的问题就变成水到渠成的事情了。

(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。

(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。

总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。

第五篇:垂径定理教学设计

垂径定理教学设计

教学目标:

1.使学生理解圆的轴对称性

2.掌握垂径定理

3.学会运用垂径定理解决有关的证明、计算问题。过程与方法

1.通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力

2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。情感、态度与价值观

通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。

教学重点: 垂径定理及应用 教学难点:

垂径定理的理解及其应用 教学用具:圆形纸片,小黑板 教学过程:

一、创设情景:地震造成我们小区的圆柱形供水管道损坏,现在工人师傅要为我们换管道,如图,他测量出管道有积水部分的最大深度是3CM,水面的宽度为6CM,这个工人师傅想了又想,也不知道该用多大的水管来替换,你能帮他解决这个问题吗?

二、引入新课---揭示课题:

1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论:(1)圆是轴对称图形(2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴(3)圆的对称轴有无数条(4)圆也是中心对称图形.(出示教具演示)。

2、请同学们在自己作的圆中作图:(1)任意作一条弦 AB;(2)作直径CD垂直弦AB垂足为E。(出示教具演示)引导学生分析直径CD与弦AB此时的关系,说明直径CD垂直于弦AB的,并设问:垂直于弦的直径它除了上述性质外,是否还有其他性质呢?导出本节课的课题.三、讲解新课---探求新知

(1)实验--观察--猜想: 让学生将上述作好的圆沿直径CD对折,观察重合部分后,发现有哪些线段相等、弧相等,并得出猜想:在圆O中,CD是直径,AB是弦,CD垂直AB于E.那么AE=BE,弧AC=弧BC,弧AD=弧BD.(2)证明:引导学生用“叠合法”证明此定理(3)对定理的结构进行分析(4)结合图形用几何语言表述(5)垂径定理的变式

四、定理的应用:

例1:(2008哈尔滨中考)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交

⊙O于点C,且CD=1,则弦AB的长是___________ 练习1:(08年福州中考)如图,AB是圆O的弦,OC⊥AB于C,若AB=8cm,OC=3cm,则圆O的半径长为多少?

精讲点拨:求圆中有关线段的长度时,常借助垂径定理转化为直角三角形,半径r、弦半a/

2、弦心距d,三者构造出一个直角三角形,知道两个量可用勾股定理求出第三个量

例2:如图,两个圆都以点O为圆心,求证AC=BD 练习2:如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证四边形ADOE是正方形.五、小结与反思: 你学习了哪些内容? 你有哪些收获? 你掌握了哪些思想方法? 你还有什么问题 ?

六、课后拓展:

1、(09年模拟)如图,已知AB、AC为弦,OM⊥AB于点M,ON⊥AC于点N,BC=4,则MN= ————.

2、你能帮工人师傅解决水管替换问题了吗?

3、已知⊙O的半径为10,弦AB∥CD,AB=12,AB和CD的距离为 .

七、布置作业:习题,1,9

八、教学反思:

CD=16,则

下载九年级数学垂径定理word格式文档
下载九年级数学垂径定理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《垂径定理》教学反思

    《垂径定理》教学反思 《垂径定理》教学反思1 垂径定理是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位是今后研究圆与其他图形位置关系和数量关系的基础,......

    垂径定理评课稿

    垂径定理评课稿授课人:窦德辉评课人:袁小波 窦老师上了一节出色的公开课很牛,体现在:一、从教学目标上看这节课的知识目标是求解圆的标准方程,能熟练运用待定系数法解题.能力目标......

    垂径定理的教学反思

    垂径定理的教学反思 集安市花甸中学 安凤英 学情分析 本节课是在上节课学习了圆的概念及弧、弦等概念的基础上的一节课。在上节课结束时留给学生这样一个问题“你还想进一步......

    垂径定理教学设计(五篇材料)

    垂径定理教学设计 《垂径定理》教学设计 教学目标: 知识与能力 1.使学生理解圆的轴对称性 2.掌握垂径定理 3.学会运用垂径定理解决有关的证明、计算问题。 过程与方法 1.通......

    垂径定理---教学反思(推荐五篇)

    《垂径定理》教学反思 “垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活......

    《垂径定理的应用》授导型教学设计(范文)

    学科:初中数学授课年级:九年级学校:眉县青化中学 教师姓名:张亚雄 章节名称 垂径定理及其应用 计划学时 1 本节内容是前面圆的性质的重要体现,是圆的轴对称性的具体化,也是今后......

    数学定理证明

    一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理) 2.局部有界性定理. 3.拉格朗日中值定理. 4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛......

    九年级《平行线等分线段定理》

    第四课时平行线等分线段定理 教学目标 1. 使学生掌握平行线等分线段定理及推论. 2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力. 3. 通过定......