《垂径定理》教学反思
《垂径定理》教学反思1
垂径定理是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点,由于垂径定理的题设和结论都较复杂,因此,理解和证明定理是本节课的难点,在教学中也是一节较难把握的课。 在垂径定理这节课中,我获益良多主要体现在以下几个方面:
一.注重结论的表述
在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句.
二.注重透彻的剖析
一些该让学生知道的知识点,点拨得不够透彻.如CD是直径,其实应该可以拓展为过圆心的直线; 不能够用数量关系求的,应该要适当地引导学生设未知数.而不是直接告诉学生这种题目就是要设未知数. 同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者说引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受.
三.注重导学案的设计
在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课.这样就不会使得后面讲推论的时间太短,太仓促.前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而在多媒体中练习题量太小,而且是题型太单一,可以再多做些找相等的量的.基础训练。
四.注重常规辅助线的总结
其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,而这两种题目我的训练都不到位.
通过反思这一课的课堂教学,我发现大部分学生对知识的理解不够,不能灵活应用知识于实际生活(求赵州桥主桥拱的半径)。对这一课进行全面反思后,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些失误给了我了一个今后努力的方向.
一:培养学生会用数学知识解决实际问题
数学来源于生活,又服务于生活。在实际生活中,数、形随处可见,无处不在。好的实际问题容易引起学生的兴趣,激发学生探索和发现问题的欲望,使学生感到数学课很熟悉,数学知识离我们很近。不过,学生在解决实际问题的过程中,主要存在几点困难,一是学生见到实际问题就畏惧,根本不想读题;二是学生对实际问题背景不熟悉,熟悉问题背景花费一定时间;三是对于实际问题,学生不知如何下手解决,所用知识是什么,用什么思想方法解决。为了克服这种困难,本节课专门设计了一个较为熟悉的实际问题,这样做的好处,一是体现问题具有现实的用途---数学的有用性,二是与本节课的知识内容及数学思想方法有直接关系。这个问题解决了,以后学生再见到类似的实际问题时,就不会感到陌生。
我们知道,每种教学模式都有其优劣,如果一味的按一种教学模式贯穿于整个教学过程,并不能达到最好的教学效果。教学中,应根据不同的教学内容,选择不同的教学模式来教学,这样效果会更好。
二:充分体现学生的主体地位
教学中,要把尊重学生、关注学生的发展动态始终放在第一位。注重学生间的合作交流,给学生多次展示自己的机会,锻炼学生的胆量,培养学生语言表达能力及逻辑推理能力,并给予适当的鼓励和表扬,使学生有成功感,增强学生学好数学的信心。
在知识发生发展与应用过程中,注重数学思想方法的渗透(如本节课渗透从特殊到一般的数学思想),教给学生解决问题的办法,使学生学会学习。
在今后的学习中,我会更加努力,改正自己的缺点,努力钻研教材,不断提高自己的教学水平。
《垂径定理》教学反思2
学情分析
本节课是在上节课学习了圆的概念及弧、弦等概念的基础上的一节课。在上节课结束时留给学生这样一个问题“你还想进一步研究什么?”通过学习,学生很容易联系到上节课学习了圆、弧、弦、直径、半径等有关知识。那么圆内这些元素还具有哪些性质呢?学生自然地从上节课过渡到这节课的学习,同时培养了学生勤于动脑,勤于思考的好习惯,激发了学生学习的兴趣与热情。
本节课主要有两方面的内容:一是圆的轴对称性,二是垂径定理及其推论。开始以赵州桥的问题引入课题,带着问题进行学习。圆的轴对称性主要是通过动手操作得出结论,圆是轴对称图形,根据轴对称性进一步研究圆中相等的弦、弧得出垂径定理及其推论。利用此定理再去解决赵州桥问题,每一个环节都是环环相扣,不是孤立存在的。
教学目标
经历探索圆的轴对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。理解并应用垂径定理进行有关的计算。
重点难点
掌握垂径定理及其推论,学会运用垂径定理等结论解决一些有关证明、计算和作图问题。
反思之一:实际问题的意义的看法
数学来源于生活,又服务于生活。在实际生活中,数、形随处可见,无处不在。好的实际问题容易引起学生的兴趣,激发学生探索和发现问题的欲望,使学生感到数学课很熟悉,数学知识离我们很近。学生在解决实际问题的过程中,主要困难有两点,一是学生一见到实际问题就畏惧,根本不去读题,二是学生对实际背景不熟悉。为此,本节课设计了一个实际问题,这样做的好处,一是具有非常实际的用途,二是与本节课的内容具有直接关系。这个问题解决了,以后学生再讲到类似的实际问题时,就不会感到陌生。
每种教学模式都有其优劣,如果一味地按一种教学模式贯穿于整个教学过程,并不能达到最好的教学效果。对于我们教师来说,应根据不同的教学内容,选择不同的教学模式来教学,这样效果会更好。本节课,由于学生的差异较大,所以选择了小组合作这种教学模式,发挥小组合作学习的优势,给学生创造一个宽松的学习环境,使学生消除畏惧怕错的`心理压力,激发学生的创新精神,帮助学生树立学好知识的信心和勇气。
反思之二:需要更加关注学生
教学中,把尊重学生,关注学生的发展动态始终放在第一位。在这节课中,注重学生间的合作交流,给学生多次展示自己的机会,锻炼学生的胆量,培养学生语言表达能力及逻辑推理能力,并给予适当的鼓励和表扬,使学生有成功感,增强学生学好数学的信心。
在知识发生发展与应用过程中注重教学思想方法的渗透,如本节课从特殊到一般的数学思想,交给学生解决问题的办法,使学生学会学习。
《垂径定理》教学反思3
首先讲下这节课,我的一些思路:
⑴在教学方法与教材处理方面,根据现在的教材特点,教学内容以及在新课标理念的指导下,最后决定让学生在课堂上多动手、多观察、多交流,最后得出定理,这个方法符合新课程理念观点,也符合教师的主导作用与学生的主体地位相统一的原则。
同时,在教学中,我充分利用教具和投影仪,提高教学效率。在实验,演示,操作,观察,练习等师生的共同活动中启发学生,培养学生直觉思维能力,结合学生实际情况作适当的拓广。
我参加这次教学技能大赛,获益良多主要体现在以下几个方面:
(1)在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的'过渡语句。
(2)一些该让学生知道的知识点,讲得不够透彻。如CD是直径,其实应该可以拓展为过圆心的直线(要多强调,而不是一笔带过);不能够用数量关系求的,应该要适当地引导学生设未知数。而不是直接告诉学生这种题目就是要设未知数。同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者话引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。
(3)在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课。这样就不会使得后面讲推论的时间太短,太仓促。前面复习用的时间太长,在复习的部分应该多加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而学案中练习题的量太少,而且是题型太单一,可以再做多些找相等的量的基础训练,对B班的学生更加熟悉垂径定理,基础题目的掌握对B班大有好处。
(4)其实这节课还有个作图思想要灌输比学生,即是教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要边弦心距都要作出来,而这两种题目我的训练都不到位。
(5)还有其他很多问题:例题的讲解不够详细,深刻。给学生思考的时间不够;题目的梯度设计得不是很好……
最后,这些失误给了我一个今后的努力的方向。在今后的学习中,我努力钻研教材改正自己缺点。
《垂径定理》教学反思4
垂直于弦的直径也叫垂经定理,是初中九年级人教版第二十四章第2节内容,它是圆中有关计算方面比较重要的一节。
本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每一条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:
(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生 很感兴趣,有些同学折的 是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。 )
(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。
(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)
(4)问学生在什么样条件下得出这些结论的?
(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。
通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。
当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:
(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的`问题就变成水到渠成的事情了。
(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。
(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。 总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。
《垂径定理》教学反思5
教学方法与教材处理:我选用引导发现法和直观演示法。让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验———观察———猜想———证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用学校新安装的班班通工程,利用课件,既增强了学生的学习兴趣,又提高教学效果,在实验,演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。另外,教学中我还注重用不同图片的.颜色对比来启发学生。
设计的特色:为了给学生营造一个民主、平等而又富有诗意的课堂,我以新数学课程标准下的基本理念和总体目标为指导思想在教学过程中始终面向全体学生,依据学生的实际水平,选择适当的教学起点和教学方法,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验。通过“实验——观察——猜想——证明”的思想,让每个学生都有所得,我注意前后知识的链接,进行各学科间的整合,为学生提供了广阔的思考空间,同时辅以相应的音乐,为学生创设轻松、愉快、高雅的学习氛围,在学习中感悟生活中的数学美。
《垂径定理》教学反思6
在垂径定理教学中,我获益良多,主要体现在以下几个方面:
(1)在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句。
(2)一些该让学生知道的知识点,讲得不够透彻。如CD是直径,其实应该可以拓展为过圆心的直线;不能够用数量关系求的,应该要适当地引导学生设未知数。而不是直接告诉学生这种题目就是要设未知数。同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者说引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。
(3)在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课。这样就不会使得后面讲推论的时间太短,太仓促。前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而在多媒体中练习题量太小,而且是题型太单一,可以再多做些找相等的量的基础训练。
(4)其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,而这两种题目我的训练都不到位。
(5)还有其他很多问题:例题的讲解不够详细,深刻。给学生思考的.时间不够;题目的梯度设计得不是很好……
通过反思这一课的课堂教学,我发现大部分学生对知识的理解不够,不能灵活应用知识于实际生活(求赵州桥主桥拱的半径)。对这一课进行全面反思后,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些失误给了我一个今后的努力的方向。在今后的学习中,我会更加努力,改正自己的缺点,努力钻研教材。
《垂径定理》教学反思7
“纸上得来终觉浅,绝知此事要躬行”,构建高效课堂之声频频入耳,但实效甚微,很多空喊不干,我觉得就是没实施、没领悟好这一诗句的真谛。我们走在第一线的教师,入心地走进教材,深入了解学生的认知能力,其实对上好每堂课是个必备的前奏,那才能感悟到育人的快乐!
刚刚讲完《垂径定理》第一课时的内容,自我有些许的满足感,因为我入心了,入情了。在上课之前,我精心设计了课题的引入、定理的推理、定理的引申、应用,整堂课下来预设的基本程序和任务都算是圆满完成。
起初新课的引入我用了实物---圆,把圆进行对折操作让学生清晰地看到了圆是轴对称图形并说出它的对称轴,让学生从感性认识上升到理性认识,而且还锻炼了学生的对数学知识的归纳总结的能力。接着以实物转化为黑板上的示意图进入下一环节,当这个折痕把圆中的某条弦垂直且平分,那么你能得到圆中哪些相等的线段与弧?学生围绕这个问题热烈地讨论出了相等的线段和弧的结论,然后各抒己见地分别证明其结论的正确性。“横看成岭侧成峰,远近高低各不同”,当学生选择不同的证明方法时,我有意地让他们比较证明方法的优劣,那么他们就会在不经意中学会了解题要走捷径是多么自豪轻松的事情。在这个精彩时刻我画龙点睛地板书了课题----垂径定理,与此同时趁热打铁地要学生总结什么是垂径定理的内容,并分清命题的题设和结论。当然我作为引导者绝不放过定理的形成过程的任何一个细节,当学生总结出定理后,在黑板上板书时我分别用不同颜色的粉笔区分了命题的题设和结论,我认为用颜色来冲击他们的视觉更能加深印象,也减轻了教师千叮咛万嘱咐的麻烦。定理形成后剩下的是让学生熟悉如何把文字命题转化为几何演绎推理格式,也更是为后期的教学服务。随之而来的是定理的巩固,这个环节我安排的习题先是直接运用定理,接着引申定理,把定理中的“直径”引申扩充为 “过圆心的某条直线”来开阔学生的视野进行解题而且
使之知识的消化得以升华。这些点点滴滴地精心传授迎来了喜悦的成果,在例题的解决的过程中学生处理地得心应手,定理运用自如。这时真切地体会到了没有笨学生,只有不用心教的老师。见到这一成效,我很自信,很有成就感,我的努力没付诸东流,由此自信产生了激情,激情就会创造奇迹,后面的`教学过程让我的教与学生的学更为融洽了。果不其然,学生们对于我出示的有点难度的巩固训练题都不怕艰难险阻、跃跃欲试地挣着抢着去解决,已然忘记了这是课堂的约束,好像突然间已经把这节新内容注入到了骨子里,令人欣慰地得到了他们既快又准的答案。
本节课我见证了我入心教学的神奇,孩子们的收获与应对就是最好的证明。一堂课后,我教我乐,他学他乐。面对这些鲜活的生命没有理由让我退缩,唯独只有义无反顾地耐心地将爱心传递,来感染周围人,因为爱心的力量是不可估量的。真的,孩子们在学习中及教师在教学中保持愉快和舒畅的心境,有利于发挥学生的主动性和创造性,实现有意识和无意识的统一,从而释放出巨大的学习潜能。如今,我们每天的实战演习受任于课改之旺季,时刻奉命于教师责任之根本。作为执教者只有让责任在课外担起,才得以让智慧在课内展现,在探究中师生互动,在分享中情景交融!如此的良性循环让教师的授课岂不就变成一大美差!
《垂径定理》教学反思8
“垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位,是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用。由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点及难点。
对本节课的教学我有以下几点反思:
1、本节课主要有两方面的内容:一是圆的轴对称性,二是垂径定理及其推论。开始以赵州桥的问题引入课题,带着问题进行学习,学习有目标,圆的轴对称性主要是通过动手操作得出结论,圆是轴对称图形,根据轴对称性进一步研究圆中相等的弦,弧得出垂径定理及其推论。利用此定理再去解决赵州桥问题,每一个环节都是环环相扣,不是孤立存在的。
2.在数学教学中,语言的严密性,逻辑性很重要的,而我在课堂上,尤其是知识点的联系方面的引导词,结论的表述,更加需要再努力钻研.今后我将在这方面下功夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的`过渡语句.
3在教案设计方面,在时间上把握得不够准确。有点前松后紧。前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;在多媒体中,题目的梯度设计虽然很好但时间紧练习题量太小。
4,其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,应加强两种题目的训练。.
通过反思这一课的课堂教学,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些问题给了我一个今后的努力的方向.在今后的教学中,我会更加努力。
《垂直于弦的直径》的教学反思
垂直于弦的直径也叫垂经定理,是初中九年级人教版第二十四章第2节内容,它是圆中有关计算方面比较重要的一节。
本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每一条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:
(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生 很感兴趣,有些同学折的 是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。)
(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。
(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)
(4)问学生在什么样条件下得出这些结论的?
(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。
通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。
当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:
(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的问题就变成水到渠成的事情了。
(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。
(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。
总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。