二项式定理教学反思

时间:2019-05-15 16:29:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二项式定理教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二项式定理教学反思》。

第一篇:二项式定理教学反思

二项式定理教学反思

(一)下午在安庆一中高二(6)班上了一节数学展示课,课堂学生的反应和专家的点评,都让我受益匪浅,主要体会如下:

1、学生能机积极配合,情绪高涨。据了解,高二(6)班学生基础较好,整体素质较高。由于是新老师,学生不了解我的教学风格,开头几分钟,学生的积极性还没有完全调动起来,但随着时间的推进,课堂氛围不断进入高潮。在遇到疑难问题时,只要我稍加点拨,都能立即化解。特别是最后一道天津高考题,具有挑战性,需要较高的逆向思维水平,但一名学生在很短的时间内就看出了它的结构特点,作出了完整的回答,使学生和听课老师眼睛一亮。加上我及时总结的“数感、式感和图感”又让学生耳目一新,增添了课堂色彩。

2、数学思想、方法和数学文化得到了较好的体现。孙主任点评中的“课堂教学要有高贵和丰满的学科气质”,我认为对数学课堂来说,就是要体现数学思想、方法和数学文化,让数学课堂有“数学味”。课堂中,提到的数学的两重性“直觉与逻辑”,牛顿的“没有大胆的猜想就没有伟大的发现”,二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,反例C62就不是偶数等等,都带给学生积极的情感体验和无尽的思考。“真诚、深刻、丰富”是课堂永恒的追求。

3、基本技巧和基本方法可能没有很好落实。本节课的教学重点是二项式定理的探求过程,而简单的应用则次之。基于这种想法,我在引导发现定理上花的时间较多,证明过程多媒体详细展示,但最后没有点到“还可以用数学归纳法证明”是一个疏忽。同时对将(p-q)7展开这种问题没有书写示范,以致不少学生书写不规范或弄错,板演的学生就有好几处错误,我也没有详细板书订正。我想,好在还有第二节课的加强,先让学生对此内容有点兴趣,再去强化运算的正确性也不迟。

4、课堂上如何放手让学生自主学习。多位专家评课中提到数学课堂上如何放手让学生自主学习,这也是新课程大力倡导的。我认为,像这样面对新学生的展示课,难以操作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上2先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何实施自主学习值得深入研究。

5、数学教师要不断提高专业水平和人文素养。范梅南有一句名言:教学就是“即兴创作”,依托的是教师的文化底蕴和精神修养。对数学教师来说,我认为是专业水平和人文素养。专业水平可以帮助你确定有梯度的思维目标,创设有价值的思维情景;人文素养可以帮助你确定良好的情感目标,营造积极的情感情景。速度、效果、体验是判别有效课堂的三要素,其中就蕴涵着对学生探索精神、创新精神的唤醒和弘扬,创新能力的发展和提升,创造型人格的生成与确立。数学教师要多读点文学作品,打造有诗意的数学课堂。

二项式定理教学反思

(二)二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用。

本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程。

本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依。

教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,()而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。

本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考。

不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。

二项式定理教学反思

(三)首先感谢市教育局各位专家领导给予高度评价,并提出宝贵意见和建议。你们的肯定将激励我在教育事业上勇往直前,我会走得更好,走的更远。你们的建议会让我不断的反省自己,改正自己,完善自己。反思后则奋进,存在问题就整改,发现问题则深思,找到经验就升华。我要牢记你们所说的话“应该向专家型教师学习,向这个方向努力!”

上班已有六年时间,带了两轮的高中数学,在知识方面我严格要求自己,勤思多问,“教然后而知困”,不断发现陌生的自己,促使自己拜师求教,书海寻宝,不断的提高自己的专业素质。在教学技能方面也是严格按照学校的要求多听课、多请教、多反思;备好每一堂课,上好每一堂课;课后做好教学反思,注意课堂中的每一个细节;同时也大胆的尝试和实践一些新的教学手段、思路和方法,形成和完善自己独有的教学风格。

学习的过程是新旧知识互相碰撞的过程,旧知识不断被新知识所补充所完善。通过学习者不断的思维,才能把新的知识内化,来完善原有的知识结构。对于数学教学而言,教会学生思维才是根本,无论教师的讲解多么精彩,思维活动过程是任何人无法替代的。

在本节课的教学设计中,我很好的把握了重点和难点,通过简单例子反复强调二项展开式的特点和通项公式的特点及功能,学生的理解很轻松。对于例题的选择也是结合近几年的高考特点由浅入深,总体的设计还比较满意。但在上课的过程中忽视了一个很重要的因素——学生。我班是一个文科普班,数学基础不是很好,虽然是复习课,但仍有部分学生跟没学过一样,我在讲课过程中语速过快,一部分学生没能跟上。因此在今后的教学中,一定要多关注学生的原有知识水平和个性差异,灵活机动地随机处理课堂上的问题,把学生出现的错误当成是一种珍贵的教学资源,并加以合理利用。同时也要认真观察学生的微妙变化和反应情况,随机的调整教课的速度,让每个学生都能消化吸收。今后我要在讲课中多下功夫,多收集好的教学方法,教案;多积累典型的例题;认真研究考试大纲,把握教学的重点和难点,上好每一堂课。在其他细节方面,我将以最快的速度去改进、完善。

最后再次感谢各位领导!我将争取早日成为一名优秀的数学教师。

第二篇:二项式定理教学反思

二项式定理教学反思

黄慧莹

二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用.

本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.

教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解.

本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考.

不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究.

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.

第三篇:二项式定理教学总结(教学反思)

高校素质课《二项式定理》总结

高二数学:×××

二项式定理是选修2-3的1.3节的第一课时,本节课是在学习了排列组合的基础上学习的,并为后面学习概率中的二项分布奠定了基础,所以它是承上启下的一节课。根据本节教材特点及学生的认知结构确定本节课的教学重点为:二项定理的推导及通项公式的运用。由于二项式定理的导出对学生来讲有一定的难度所以确定本节课的难点为:二项式定理的推导。

在教学中,采用“四步骤八环节”的教学模式,把整个课堂分为创设情境,导入设疑;自学释疑,同伴互助;训练操作,反馈矫正;延伸迁移,归纳小结。让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

设计亮点

一、导入

结合今天周三,高考是周几,延伸到再过810天的那一天是星期几的问题,将计算方法归纳到用7除的余数问题,特殊到一般:8=7+1,82=(7+1)2=72+2*7+1,83=(7+1)3=73+3*72+3*7+1,那810=(7+1)10又如何展开呢?,将810转化为(7+1)10的展开式问题,导入新课研究(a+b)n的展开式。学生思考研究方法,易得特殊到一般。

二、难点的突破

本节难点是二项式定理的推导,我做了以下自学,合作的活动安排来让学生完成探究: 1.引导学生对写出的(a+b)

2、(a+b)

3、(a+b)4的展开式进行下列四个方面的探究:项数;各项次数;字母a、b指数的变化规律;各项系数;猜测(a+b)5的展开式中含哪些项?(a+b)n的展开式中含哪些项?学生思考学生小组讨论,自由发表见解.注:从学生的回答中看出学生能归纳出展开式的项数,次数及每一项中a,b组合的规律,但是说不对每一项的系数。正是教学设计中预设的。用面下方法解决。

2、设计合作探究问题:(a+b)2展开的过程中是如何体现分类加法和分步乘法两个计数原理的?怎么从排列组合的角度解释(a+b)2展开式中每一项的系数?类比归纳完善(a+b)5展开式每一项的系数,(a+b)n展开式每一项的系数?学生自主思考,合作交流完成二项式定理的突破。

三、分析定理的结构特点 挖掘内涵

1、展开式的项数;学生回答5次,9次,m-1次的展开式共多少项?

2、通项;学生回答展开式中第1项,第5项,第8项,第k项,第k+1项分别是什么,从而归纳出通项。

3、二项式系数与项的系数.强调新的名词“二项式系数”,结合学生大胆写出(a-b)n展开式,并说出第7项的系数及二项式系数,自己体会。

四、尝试应用

定理给出后,课本的2个例题略显复杂,所以我给出几个简单小题来巩固定理:(2x+1)4展开式,(x-1-2)5展开式中含x-3的项。再让学生对例一,例二进行演板。预设:

1、学生会展开,不会化简。

2、对通项的作用不明确,不熟悉。解决方法:学生展示,学生改错并提出更好的办法,并总结做题方法。

五、延伸和小结

在完成本节任务外,延伸我重点还是放在定理的挖掘中,采用定理的逆用,及求二项式系数的和。巩固定理的同时挖深定理内涵。小结上让学生总结知识,数学思想方法,典型题目及解题方法等。不足之处:

我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。有些知识非得老师参与并详尽的启发学生思考得到,而这样做就又好像不是学生学出来的,而是教出来的。以后这方面多想办法,在组织学生活动高效方面下功夫。

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.学完二项式定理后,二项式定理及通项公式的运用就是以后学习的重点。

2013.05.10

第四篇:二项式定理教学反思

《二项式定理》教学反思

汾口中学

叶轶群

《二项式定理》这节内容我采用以知识点 “问题串”的形式引导学生自主探究的教学方法,在循序渐进中以小问题带动大问题,环环相扣,将知识点落实。而学生在自主讨论中,初步认识二项式定理是初中多项式乘法的继续,初步掌握展开式的规律,充分而有效地训练了学生的思维。

整节课在学生讨论探究中进行,通过一连串层层递进的问题,引导学生掌握展开式形成的规律,比如:(问题1:请在多项式中圈出能得到(a+b)4展开式中的项a4 b0的单项式a:(a+b)4 =(a+b)(a+b)(a+b)(a+b)---------问题2:请在多项式中用不同颜色的笔标出得到(a+b)4展开式中的项a3 b的单项式a和b(a+b)4 =(a+b)(a+b)(a+b)(a+b)(a+b)4 =(a+b)(a+b)(a+b)(a+b)(a+b)4 =(a+b)(a+b)(a+b)(a+b)(a+b)4 =(a+b)(a+b)(a+b)(a+b)------------问题3:请你用组合的观点来探究(a+b)4 =(a+b)(a+b)(a+b)(a+b)展开式中的项a2 b2的系数)以上三个问题由浅入深,由简单到复杂,引导学生体验(a+b)4展开式中的特殊项得来的过程,通过学生自己用笔动手圈注和问题“你是如何做到标注时不重复无遗漏的?”的引导,让学生自己体验的到这些特殊的项需要两个步骤:先取b再取a,进而可以轻而易举的把对特殊项的探究的方法转移到计数原理上来。然后马上引

导学生完成问题4:类比以上探究项a4b0和a3b 及a2b2构成规律的方法,请你写出(a+b)4 二项展开式的每一项(把展开式按照a的降幂,b的升幂进行排列)(a+b)4 = ____。

在这个过程中非常具有挑战性问题的引入能使学生产生新奇感,激发了学生的学习兴趣和积极性.进一步把这一研究方法推广到展开式的每一项,从而得到(a+b)4二项展开式,又把这一问题往前推进了一步,引导学生找出展开式的通项,进而推广到一般情形。

教学中我特别注重运用通项意识,凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。但也有意外出现,对于二项式定理的逆运用,上课过程中重视不够,以为学生在推导展开式的同时也能够推导它的逆公式,所以在上课过程中一笔带过,导致作业中的问题比较多,基于此,在另一个班级的教学中,我决定把这个知识点跟展开式的推导融为一体来落实知识点。

本节课的亮点:

1、从“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,带给学生积极的情感体验和无尽的思考.数学思想、方法和数学文化得到了较好的体现.

2、课堂小结顺其自然地引导学生把握知识之间的内在本质联系,引导学生用扩展、深化等方式提出新问题,并用问题链引向课外或后续课程。

3、掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。教材的探求过程将归纳推理与演绎推理

有机结合起来,教学过程中,学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发他们发现一般性问题的解决方法

4、本节课教学,我采用“问题――探究”的教学模式,以“问题链”组织课堂教学,让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

本节课不足之处:

1、我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课。

2、本节课教学过程中还不够生动有趣。正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。

第五篇:二项式定理教学反思

二项式定理教学反思

二项式定理是代数乘法公式的推广,这节课的内容安排在计数原理之后进行学习,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用;另一方面是由于二项式系数是一些特殊的组合数,由二项式定理可导出一些组合数的恒等式,这对深化组合数的认识有好处.再者,二项式定理也为学习随机变量及其分布作准备,它是带领我们进入微分学领域大门的一把金钥匙.运用二项式定理还可以解决如整除、近似计算、不等式证明等数学问题.总之,二项式定理是综合性较强、具有联系不同内容作用的知识。

教学目标(1)理解二项式定理是代数中乘法公式的推广,能利用计数原理证明二项式定理,理解并掌握二项式定理;(2)通过二项式定理的“发现”和证明,培养观察、分析、归纳、推理能力,体会从特殊到一般的思维方式;(3)培养自主探究意思、合作精神,体验二项式定理的发现和创造历程,感受和体验数学的简洁美、和谐美和对称美。

教学重点:用计数原理分析abn的展开式,得到二项式定理。教学难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。

数学教学过程从本质上来说是教师促进学生思维发展、人格完善的过程,促进学生思维发展的载体是“问题”,问题通常有两种来源:一是教师抛出“问题”;二是学生提出“问题”。但目前数学教学过程中,绝大多数问题是教师抛给学生的,学生的“问题意识”和“如何提问”有待教师的发掘。本节课再现了二项式定理发现的历史背景,让学生体验问题发现的过程.教师在教学过程中为学生搭建“脚手架”从根本上来说是对教学过程的一种管理与调控,这种管理与调控是建立在对学生认知基础和认知规律的认识之上的,也就是要解决何时搭建“脚手架”、搭建什么样的“脚手架”。“脚手架”搭建过早、过细,学生的思维被牵着走,缺少自由发挥的空间,从问题的提出到问题的解决,一路顺风顺水,不仅无法体验思维过程中的各种尝试,也缺少思维挫败的经历,及至面临挫败时缺少主动求新、求变的意识。二项式定理的系数规律是无法观察出来的,学生思维定势是“先具体再抽象,先特殊再一般”,究竟是否让学生经历“观察的挫败”是教学设计中争议的又一焦点。一些教师害怕在此耽误时间,来不及处理后面的教学内容而主张放弃,但综合考虑学生的认知规律、人格的完善、创新意识的培养,这是不可或缺的环节,经历“观察的挫败”是手段,目的是要培养学生“碰壁”之后主动求变、求新的意识。这就需要教师指导学生换个角度去思考、去探索、去发现,促使其求变。至此,关于争议二的问题也彻底解决了。二项式定理的证明过程与发现过程的一致性,为学生看书自学奠定了基础。在教学设计过程中,这一证明过程更适合学生通过阅读自学、总结、证明。这种安排不仅有利于落实新课程标准的理念,还利于学生学习能力的培养。每节数学课上都有练习,二项式定理的正用、逆用、回归本质求系数等使学生在变化的数学情景下得到了技能训练,有利于学生对数学技能的掌握。

下载二项式定理教学反思word格式文档
下载二项式定理教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高二数学教案:二项式定理(★)

    北京英才苑网站http://www.xiexiebang.com ·版权所有·盗版必究· 二项式定理(2) 一、课题:二项式定理(2) 二、教学目标:1.进一步熟悉二项式定理及二项展开式的通项公式,并能灵活的......

    二项式定理应用2

    二项式定理及其应用 一、求某项的系数: 【例1】(1)在(1-x3)(1+x)10的展开式中,x5的系数是多少?(407) (2)求(1+x-x2)6展开式中含x5的项.(6x5) 二、证明组合数等式: 练习 例2 计算:1.9975(精......

    高中数学知识点总结---二项式定理

    高中数学知识点总结---二项式定理0n01n1rnrrn0n1. ⑴二项式定理:(ab)nCnabCnabCnabCnab. 展开式具有以下特点: ① 项数:共有n1项; 012r,Cn,Cn,,Cn,,Cn② 系数:依次为组合数Cnn;......

    高中数学 排列组合与二项式定理

    排列组合与二项式定理 1.(西城区)在(2x2 A.-5 1x)的展开式常数项是 6 D.60 ( ) B.15 C.-60 2.(东城区)8名运动员参加男子100米的决赛. 已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,......

    二项式定理观课报告

    《二项式定理》观课报告 我认真观摩了本模块的路中华老师的上课视频课例《二项式定理》,整个教学过程环环相扣,从简单到复杂,逐层深入。教师在整个教学过程中与学生交流,充分发......

    高中数学知识点总结---二项式定理5篇

    高中数学知识点总结---二项式定理 0n01n1rnrrn0n1. ⑴二项式定理:(ab)nCnabCnabCnabCnab. 展开式具有以下特点: ① 项数:共有n1项; 012rn② 系数:依次为组合数Cn,Cn,Cn,,Cn,,Cn;......

    高三复习课《二项式定理》说课稿

    高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高......

    数学 -排列、组合、二项式定理-基本原理 -数学教案

    教学目标 (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原理;(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个......