命题与证明教案(沪科版八年级上)

时间:2019-05-14 13:26:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《命题与证明教案(沪科版八年级上)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《命题与证明教案(沪科版八年级上)》。

第一篇:命题与证明教案(沪科版八年级上)

14.2《命题与证明》学习导航

命题与证明涉及平面几何所要研究的基本内容之一,也是以后复杂图形研究的重要基础.在知识学习的同时,命题与证明逐步渗透了推理论证的格式,并介绍了命题的结构和证明的步骤,所以命题与证明也是推理论证的入门阶段,命题与证明的内容是很重要的基础知识,是关系到今后几何学习的重要阶段,是中考考查的热点之一.

一、知识点回顾

1.定义、命题、公理和定理的含义.

(1)定义是揭示一个事物区别于其他事物特征的句子.

(2)命题:可以判断是正确或错误的句子叫做命题.

其中正确的命题称为真命题,错误的命题称为假命题.

(3)命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,这种命题可写成“如果„„那么„„”的形式.其中用“如果”开始的部分是题设,用“那么”开始的部分是结论.

(4)公理:如果—个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫公理.

(5)如果一个命题可从公理或其他真命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫定理.如“三角形的内角和等于180°”等.

注意:定理是正确的命题,但正确的命题不一定是定理.

2.定义、命题、公理和定理之间的联系与区别.

这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,只不过公理是最原始的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其他命题真假的依据.

3.证明

(1)根据题设、定义以及已经被确认的公理、定理等,经过逻辑推理,来判断—个命题是否正确,这样的推理过程叫做证明.

(2)证明真命题的一般步骤是:

①根据题意,画出图形;

②根据题设、结论,结合图形,写出已知、求证;

③经过分析,找出由已知推出结论的途径,写出证明过程,并注明依据.

命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性.

第二篇:沪科版八年级数学14章 命题与证明--教学反思

《14章 命题与证明6》的教学反思

三铺初中蒋万贵

本节课目标明确,预设很充分,课堂教学过程中能紧扣教学目标,每个环节都有明确的指向性问题。很注重学法的指导,双基的训练,充分调动了学生的积极性。能面向全体学生,引导学生自主、合作、探究的学习,新课程理念体现的较好,课堂教学中“亮”点也较多。

本节课能尊重学生的体验,注重学生基本学习习惯的养成,重视对学生分析问题、解决问题能力的培养。教育学生要注意解题过程中的细节,强调了解题书写要规范,自然地渗透情感与价值观的培养。

整节课的教学设计适合学生学情,切合教材与新课程要求,教学流程设计清晰流畅,教学效果良好。

但课堂容量较大,学生预习不够充分,时间不够用,学生没有足够的时间去思考,在一些环节的处理上存在粗糙的问题,有些问题没有进行深层次的挖掘,下一节课还需进一步巩固提高。

第三篇:2015秋八年级数学上册 13.2 命题与证明教学设计 (新版)沪科版剖析

13.2 命题与证明

第1课时 命题与证明(一)教学目标

【知识与技能】

1.理解真命题、假命题、公理、原命题、逆命题等概念.2.会判断一个命题的真假,能区分公理、定理和命题.3.理解证明的含义,体验证明的必要性和数学推理的严密性.【过程与方法】

1.通过一些简单命题的证明,训练学生的逻辑推理能力.2.根据命题的证明需要,要求学生画出图形,写出已知、求证,训练学生将命题转化为数学语言的能力.【情感、态度与价值观】

1.通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.2.让学生积极参与数学活动,对数学定理、命题的由来产生好奇心和求知欲,让学生认识数学与人类生活的密切联系,提高学生学习数学的积极性.重点难点

【重点】

学习命题的概念和命题、公理、定理的区分.【难点】

严密完整地写出推理过程.教学过程

一、创设情境,导入新知 教师多媒体出示: 有一根比地球赤道长1m的铜线将地球赤道绕一圈,想一想,铜线与地球赤道之间的空隙有多大?能放进一颗枣吗?能放进一个苹果吗? 学生交流讨论后回答.生甲:都放不进去.生乙:枣能放进,苹果放不进.生丙:都能放进.师:我们现在用这个式子来算,设赤道的长为C,则铜线与地球赤道之间的间隙是-=≈0.26(m),可见,枣和苹果都能放进去.通过这个例子,你们受到了什么启发? 生:有些东西想象的或感觉的不一定可靠,要具体分析.师:对,我们要做到有理有据.上一节研究三角形的性质时,我们通过折叠、剪拼、度量等方法得到三角形的内角和是180°,但对这种方法,有的同学提出这样的疑问: 在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值;度量三个角,然后相加,不一定能准确地得到180°.这两种情况怎么解释呢? 学生思考、交流、讨论.师:是这样的,研究几何图形时,从观察和实验得到的认识,有时会有误差,难以使人确信其结果一定正确.因此,就得在观察的基础上有理有据地说明理由,这就是说,要判断数学命题的真假,需要做必要的逻辑推理.二、共同探究,获取新知

师:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.教师多媒体出示:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.教师找一名学生回答,然后集体订正.师:在逻辑学中,凡是可以判断出真(即正确)、假(即错误)的语句叫做命题.上面的(1)、(2)、(4)都是正确的命题,我们称之为真命题;(3)是错误的命题,我们称之为假命题.如果一个语句没有对某一事件的正确与否作出任何判断,那么它就不是命题,比如感叹句、疑问句、祈使句等.教师多媒体出示:(1)请关上窗户;(2)你明天骑车来上学吗?(3)天真冷啊!(4)今天晚上不会下雨.(5)昨天我们去旅游了.师:请同学们判断一下哪些语句是命题? 学生讨论后回答,然后集体订正.师:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常写成“如果……那么……”的形式.有时我们为了简便,省略关联词“如果”、“那么”,如命题“如果两个角是对顶角,那么这两个角相等”,可以写成“对顶角相等”.以“如果……那么……”为关联词的命题的一般形式是“如果p,那么q”,或者说成“若p,则q”,其中p是这个命题的条件(或假设),q是这个命题的结论(或题断).三、边讲边练 教师多媒体出示: 【例1】 指出下列命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.生甲:(1)中“两条直线平行于同一条直线”是条件,“两条直线平行”是结论.生乙:“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论.四、层层推进,深入探究

师:将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.我们在前面学习了命题都可以判断真假,当一个命题是真命题时,它的逆命题也是真命题吗? 学生交流讨论后发表意见.师:我们可以看这样一个例子,“如果∠1与∠2是对顶角,那么∠1=∠2”是真命题,它的逆命题是什么? 生:它的逆命题是“如果∠1=∠2,那么∠1与∠2是对顶角”.师:它是真命题还是假命题呢? 生:假命题.师:你是怎么判断它是假命题的呢? 学生交流讨论后回答.教师多媒体出示下图.师:对.我们可以举一个例子,比如角平分线分成的两个角,∠1=∠2,但显然,这里∠1与∠2就不是对顶角.像这种符合命题条件,但不满足命题结论的例子,我们称之为反例.若要说明一个命题是假命题,只要举出一个反例即可.五、练习新知,加深讨论

师:请同学们看教材中本节例1后练习的第2题.教师找学生回答,然后集体订正得到:(1)假命题.反例:|-1|=|1|,但-1≠1.(2)假命题.反例:(-1)×(-1)>0,但-1是负数.(3)真命题.(4)假命题.若两条不平行的直线与第三条直线相交,同位角不相等.师:我们来看第3题.教师找学生回答,然后集体订正得到:(1)真命题,(2)真命题,(3)真命题.师:在数学命题的研究中,为了确认某些命题是真还是假,需要对命题的正确性进行论证,在论证过程中,必须追本求源,真理不需要再作论证,其正确性是人们在长期实践中检验所得的真命题,作为判断其他命题真假的依据,这些作为原始根据的真命题称为公理.同学们想一下,我们学过哪些公理? 生甲:经过两点有一条直线,并且只有一条直线.生乙:两点之间的所有连线中,线段最短.生丙:经过直线外一点,有且只有一条直线平行于这条直线, 师:对,这些都是公理.有些命题,它们的正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理.谁能举几个例子? 生甲:对顶角相等.生乙:三角形的三个内角和等于180°.生丙:等角的补角相等.师:对.推理的过程叫做证明.下面,我们来证明一个七年级时用过的定理“内错角相等, 3 两直线平行”.教师多媒体出示: 【例2】 已知:如图所示,直线c与直线a、b相交,且∠1=∠2.求证:a∥b.师:若已知“同位角相等,两直线平行”这个定理,怎么证明“内错角相等,两直线平行”这个结论? 学生交流讨论,教师巡视指导.学生口述,教师板书推理过程.证明:∵∠1=∠2,(已知)又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)教师强调:证明中的每一步推理都要有根据,不能想当然.这些根据,可以是已知条件,也可以是定义、公理、已经学过的定理.【例3】 已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.证明:∵OE平分∠AOB,OF平分∠BOC(已知)∴∠1=∠AOB,∠2=∠BOC.(角平分线的定义)又∵∠AOB+∠BOC=180°,(已知)∴∠1+∠2=(∠AOB+∠BOC)=90°.(等式性质)∴OE⊥OF.(垂直的定义)

六、课堂小结

师:我们今天学习了什么内容? 学生回答,教师补充完善.教学反思

在这节课上,通过举反例判定一个命题是假命题,培养学生学会从反面思考问题的方法.通过强调正面的严密性,让学生理解证明的必要性和推理过程要步步有据.在教学方法上我主要采用“举一”,让学生独立思考、自由交流、集思广益,从而达到“反三”的目的.尽可能地调动更多学生主动参与、交流、沟通,通过自身思维碰撞构建新的认知结构,从而准确地判断命题的真假,对于假命题举出反例.对于命题的证明,要求学生能写出证明的一般步骤并能做到步步有据.第2课时 命题与证明(二)教学目标

【知识与技能】

1.掌握三角形内角和定理及其三个推论.2.熟悉并掌握较简单命题的证明方法及其表述.3.探索并理解三角形的内角和定理.4.会灵活地运用三角形内角和定理的几个推论解决实际问题.【过程与方法】

1.经历探索并证明三角形内角和定理的过程.2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论.【情感、态度和价值观】

1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.3.通过生动的教学活动,发展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.重点难点

【重点】

三角形内角和定理的证明,三角形内角和定理及其推理.【难点】

三角形内角和定理的证明.教学过程

一、创设情境,导入新知

师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗? 学生回答.师:我们用什么方法证明过这个命题? 生:用折叠、剪拼和度量的方法.师:很好!在上节课我们学习了定理的概念,大家还记得吗? 生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.二、共同探究,获取新知 教师多媒体出示: 【例1】 证明三角形内角和定理:三角形的三个内角和等于180°.师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;再结合图形,写出已知、求证.这个命题的条件和结论分别是什么? 生:条件是一个三角形,结论是它的内角和等于180°.师:这个命题与图形有关吗? 生:有关.师:那我们要画出什么图形? 生:一个三角形.教师在黑板上画出一个三角形.师:题目中没有已知、求证,我们自己要写出来.已知就是条件,求证的就是要证的结论.应该怎么写? 生:已知:△ABC,如图所示.求证:∠A+∠B+∠C=180°.教师板书.师:以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们以启发,现在我们通过作图来实现这种转化,给出证明.教师边操作边讲解: 在剪拼中我们可以把∠B剪下,放在这个位置,在证明中我们可以作出一个角与∠B相等,来代替这种操作.并且为了证明的需要,在原来图形上添画的线,这种线叫做辅助线.同学们看,应该怎样添画辅助线来帮助我们证明这个问题? 生:延长BC到D,以点C为顶点、CD为一边作∠2=∠B.教师作图:

师:对.如果再知道什么条件就能得到结论了? 学生讨论后回答.生:因为∠1+∠2+∠ACB是一个平角,等于180°,如果∠A=∠1,那么就有∠A+∠B+∠C=∠1+∠2+∠ACB=180°,这样就证出了结论.师:对.现在我们看怎样证∠A=∠1? 学生交流讨论.教师提示:∠A和∠1是什么角? 生:内错角.师:怎么证两个内错角相等? 生:两直线平行,内错角相等.师:在题中要证哪两条直线平行?怎么证它们平行? 生:证明CE∥BA,因为∠2=∠B,由同位角相等,两直线平行,就可以证出CE∥BA了.师:很好!我们现在来把这个推导过程具体写一下.要注意,我们刚才是分析,可以由结论推条件,但在书写过程中,要先写条件,再写结论,这个顺序要理清.学生口述,教师板书.师:现在大家想一想,如果一个三角形中一个角是90°,根据三角形内角和定理,另外两个角的和会是多少? 生:90°.师:对.两个角的和是90°,我们可以称它们之间是什么关系? 生:互余.师:对.由此我们得到三角形内角和定理的第一个推论.教师板书: 推论1 直角三角形的两锐角互余.三、边讲边练

师:三角形内角和定理的证明有多种方法,课本练习中给出了另外两种证法.大家能不能说出第一题的思路? 生:过点A作DE∥BC后,由两直线平行,内错角相等来建立两个相等关系,再由平角的定义就可证出了.师:你们已经理清了思路,现在请大家将书上的证明过程补充完整.学生完成练习第1题.师:第二个练习的思路大家清楚吗? 学生交流讨论后回答.生:过三角形一边上一点作两条平行线,然后根据平行线的性质使△ABC的三个内角与组成平角的三个角分别相等,再由平角的定义证明它们的和是180°.师:很好!请同学们把证明过程补充完整.学生补充练习第2题的证明,教师巡视指导,然后集体订正.四、层层推进,深化理解 教师多媒体出示:

师:在三角形内角和定理的证明中,我们曾经如图中所示那样把△ABC的一边BC延长至点D,得到∠ACD,像这样由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.在上图中,△ABC的外角,也就是∠ACD与它不相邻的内角∠A、∠B有怎样的关系?你能给出证明吗? 学生小组交流讨论后回答.生:∠ACD与∠ACB的和是180°,所以∠ACD=180°-∠ACB;根据三角形内角和定理,∠A+∠B+∠C=180°,∠A+∠B=180°-∠C.由等式的性质,得到∠ACD=∠A+∠B.师:很好!除了这个相等关系,还能得到什么大小关系? 生:∠ACD>∠A,∠ACD>∠B.师:很好!在证明中主要应用了三角形内角和定理,我们把这两个结论称为这个定理的两个推论.教师板书: 推论2 三角形的一个外角等于与它不相邻的两个内角的和.推论3 三角形的一个外角大于与它不相邻的任何一个内角.师:像这样,由公理、定理直接得出的真命题叫做推论.推论2可以用来计算角的大小,推论3可以用来比较两个角的大小.【例2】 已知:如图所示,∠

1、∠

2、∠3是△ABC的三个外角.求证:∠1+∠2+∠3=360°.师:这个问题实质上是三角形外角和定理,即三角形三个外角的和是360°.请大家想一下,怎么证明这个命题? 学生交流讨论后回答,然后集体订正.证明:∵∠1=∠ABC+∠ACB, ∠2=∠BAC+∠ACB, ∠3=∠BAC+∠ABC,(三角形的一个外角等于与它不相邻的两个内角的和)∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC).(等式性质)∵∠ABC+∠ACB+∠BAC=180°,(三角形内角和定理)∴∠1+∠2+∠3=360°.五、课堂小结

师:我们今天学习了哪些内容?你有什么收获? 学生发言,教师点评.教学反思

本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.在证明三角形内角和定理的第一种证法中,我带领他们回顾了以前证明此定理的操作方法,并说明这两种方法的思想是一致的.一方面可以让他们学会把实际问题用数学形式表示出来,另一方面培养了他们建立相关事物之间的联系的意识,促进知识的迁移.在证明三角形内角和定理的练习中,我让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.

第四篇:命题与证明平行四边形 教案

《命题与证明》

1、定义(一般地,能清楚地规定某一名称或术语意义的句子叫做该名称或术语的定义)

2、命题(一般地,判断一件事情的句子叫做命题)命题是一个“判断句”,判断“是”或“非”.其中正确的命题叫做真命题,错误的命题叫做假命题,如“对顶角相等”是真命题,“相等的角是对顶角”是假命题.注意:(1)命题是语句,而且必须是能判断正确和错误的句子.(2)错误的命题也是命题.

过直线外一点做一条直线与已知直线垂直。

过直线外一点做一条直线,要么与已知直线相交,要么与已知直线平行。

3、每个命题是由条件(题设)和结论(题断)两部分组成.条件是已知事项,结论是由已知事项推出的事项,命题常写成“如果……那么……”的形式.一般形式是“如果p,那么q”,其中用“如果”开始的部分是条件,用“那么”开始的部分是结论.(判断清楚哪些是条件,哪些是结论)

写成“如果,那么”的形式

①在同一个三角形中 等角对等边

②角平分线上的点到角两边的距离相等

③同角的余角相等

3、公理、定理、推论

人们在长期实践中检验所得的真命题,并作为判断其他命题真假的依据,这样的真命题叫做公理.如“过两点有且只有一条直线”;“两点之间,线段最短”等等.有些命题的正确性是通过推理证实的,并被选定作为判定其它命题真假的依据,这样的真命题叫定理.由公理、定理直接得出的真命题叫做推论. 如 三角形内角和定理三角形的内角和等于180°.

推论1 直角三角形的两锐角互余.

推论2 三角形的一个外角等于与它不相邻的两个内角的和.

推论3 三角形的一个外角大于与它不相邻的任何一个内角.

4、证明真命题的方法

根据题设、定义、公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫证明.证明一个真命题一般按以下步骤进行:

(1)审题,分清命题的条件与结论.(2)画图,依题意画出图形,画图时应做到图形正确且具有一般性,切忌将图形特殊化.(3)写“已知”“求证”,按照图形,分析、探求解题思路,然后写出证明过程,证明的每一步都要做到叙述清楚,而且要有理有据.5、证明假命题的方法

证明一个命题是假命题,只需举一个“反例”即可,也就是举出一个符合命题的条件而不符合结论的例子.用反证证明下列命题是假命题

有一条边、两个角相等的两个三角形全等

任何三条线段都能组成三角形

6、重难点及归纳

①命题的理解:本节的一个难点是找出一个命题的题设和结论,它是后面证明中,书写已知求证的基础,对那些条件结论不明显的命题.应在学习中多练,必要时结合图形来区分.例如命题“如果两条直线和

第三条直线平行,那么这两条直线也互相平行”,其中“两条直线和第三条直线平行”是条件,“这两条直线也平行”是结论.再如命题,“对顶角相等”,它的条件和结论不明显,应将它改成“如果两个角为对顶角,那么这两个角相等”,再指出条件和结论.

②定义、命题、公理和定理之间的联系与区别

这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,只不过公理是最原始的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其他命题真假的依据.

③证明真命题的方法和步骤,难点是分析证明思路,有条理地写出推理过程.

④三角形内角和定理的三个推论常用来求角的大小和进行角的比较.

7、证明的思路: ①从已知出发,推出可能的结果,并与要证明的结论比较,直至推出最后的结果。②从

要证明的结论出发,探索要使结论成立,需要什么条件,并与已知条件对照,直到找到所需要的并且是已知的条件。

探索证明:在三角形的内角中,至少有一个角大于或等于60度

9、用反证法(证明的思路如何,苦李子的故事)

用反证法证明命题,一般有三个步骤:

反设 假设命题的结论不成立(即假设命题结论的反面成立)

归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾,或者与假设所推出的任何一个已知相矛盾)结论 从而得出命题结论正确。

例如用反证法证明:

在同一个平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

在三角形的内角中,至少有一个角大于或等于60度

例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行

已知:如图∠1=∠2A1B

求证:AB∥CD

证明:设AB与CD不平行C2D

那么它们必相交,设交点为MD

这时,∠1是△GHM的外角A

1∴∠1>∠2G这与已知条件相矛盾

2∴AB与CD不平行的假设不能成立H

∴AB∥CDC

例2.求证两条直线相交只有一个交点

证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。

(从以上两例看出,证明中的三个步骤,最关键的是第二步——推出矛盾。但有的题目,第一步“反设”也要认真对待)。

例3.已知:m2是3的倍数,求证:m 也是3的倍数

例4.求证:2不是有理数

《平行四边形》

1、四边形的定义

2、定理:四边形的内角和等于360度

推论:四边形的外角和等于360度

N边形的内角和外角和(为什么)

正五边形能镶嵌平面吗(为什么)

单独和镶嵌平面的正多边形有哪几种?为什么只有这几种?

(2011浙江省,8,3分)如图,在五边形ABCDE中,∠BAE=120°, ∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()(如何作辅助线,培养感觉)

A.100°B.110°C.120°D.130°

3、平行四边形的定义性质

定理:平行四边形的对角相等

定理1:平行四边形的两组对边分别相等。

推论1:夹在两条平行线间的平行线段相等。

推论1:夹在两条平行线间的垂线段相等。

定理2:平行四边形的对角线互相平分。

4、中心对称图形定义 对称中心

性质:对称中心平分两个对称点的线段。(在平面直角坐标系中,点(x,y)关于原点对称的点的坐标是多少?为什么?)

5、平行四边形的判定

①定义②定理1:一组对边平行且相等的四边形是平行四边形③定理2:两组对边分别相等的四边形是平行四边形④定理3:对角线互相平分的四边形是平行四边形

6、三角形的中位线定理(如何证明?)

7、逆命题与逆定理

两个命题,如果第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。每个命题都有逆命题。每个定理都有逆命题。如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理。

因此,每个命题有逆命题;每个定理有逆命题,但不一定有逆定理。

1.(2011浙江金华,15,4分)如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是

.3.(2011四川成都,20,10分)如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.5CD

1(1)若BK=2KC,求AB的值;(2)连接BE,若BE平分∠ABC,则当AE=2AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=nAD(n2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.

6、如图,已知△ABC中,ABC45,F是高AD和BE的交点,CD4,则线段DF的长度为().A

.B. 4C

.D

第五篇:沪科版八年级物理《快与慢》教案

第三节 快与慢

一、教学目标

【知识与技能】

1.能用速度描述物体的运动. 2.能用速度公式进行简单的计算. 3.知道匀速直线运动的概念. 【过程与方法】

1.经历观察物理现象的过程.能简单描述所观察现象的主要特征.具有初步的观察能力.

2.能应用所学知识解决简单的实际问题.具有初步的分析问题、解决问题的能力.

【情感、态度与价值观】

1.感受科学与艺术结合所带来的美感.具有对科学的求知欲.

2.在解决问题的过程中.有克服困难的信心和决心,体验战胜困难-解决物理问题时的喜悦.

二、教学重难点

重点:速度及其单位

难点:匀速直线运动的速度和变速直线运动速度的区别

三、教学设备和用具

多媒体图片,《快与慢》教学光盘。

四、教学过程

(一)、导入新课

多媒体展示:蜗牛爬行、人走路、汽车行驶、飞机飞行、卫星运转等运动情况。

师:它们运动的快慢相同吗?

生:不同。有些运动得快,有些运动得慢。师:你是如何知道的?你是如何比较的? 生:(略)

师:下面我们一起来研究物体运动的快慢。

(二)、新授

一、怎样比较物体运动的快慢 1.比较物体运动快慢的方法

举例:在学校田径运动会上百米赛跑正在进行,谁能获得冠军,观众正在试目以待。

提问:如果你们是观众,用眼睛看,谁运动得快? 作为裁判员,你认为谁运动得快? 总结:观众和裁判员判断谁快谁慢所用的方法是不同的。观众看谁跑在前面是用“相同时间比路程”的方法。裁判员看谁先到达终点是用“相同路程比时间”的方法。

2.速度

师:若物体运动路程和时间都不同。例如:一个物体在3s内运动了6m,另一个物体在5s内运动了10m,该如何判断物体的运动快慢呢?请同学们分组讨论后再回答。

(1)、速度的定义

物体在一段时间内通过的路程与通过这段路程所用时间的比称为速度。(2)、公式

若用s表示路程,用t表示时间,用v表示速度,则速度公式为v=s/t,变形公式:s=vt,t=s/v。

(3)、国际单位:米/秒,读作“米每秒”,可用符号“m/s”或“m·s-1”表示。

常用单位:千米/时,读作“千米每时”,用符号“km/h”或“km·h-1”表示。

(4)、单位换算:1m/s=

km/h

1km/h=

m/s(5)、例题

【例1】、你的同学跑100 m用了17 s,而你用25 s跑了165 m。你的同学和你谁跑得快呢? 【例2】、声音在空气中的传播速度为340m/s,需要多长时间才能听到相距1 km处产生的雷声?(教师强调解答过程)

二、匀速直线运动和变速直线运动

1、匀速直线运动

(1)、阅读课本:计算小汽车在平直公路上行驶的速度

通过计算小汽车的速度,知道小汽车在这三段路程中的速度是不变的。

(2)、定义:速度不变的直线运动叫做匀速直线运动

特点:运动沿直线进行,速度恒定不变

(3)、匀速直线运动是理想的情况,自然界中严格地作匀速直线运动的物体是不常见的。

2、变速直线运动

(1)、阅读课本:计算天鹅在空中沿直线飞翔的速度

通过计算可知,天鹅在飞行中速度越来越快,在各段中,它的运动速度是变化的。

(2)、定义:速度变化的直线运动称为变速直线运动。

特点:运动沿直线进行,速度大小变化。

(3)、平均速度v=s总/t总

【拓展】下面是人和一些物体运动的大致平均速度

人步行:1.2 m/s

自行车:5 m/s

火车:28 m/s

客机:250 m/s

子弹:900 m/s

光:3×108m/s

(三)、巩固练习

1、一辆轿车在水平路面上匀速直线行驶,轿车上的速度表显示数据为90km/h。求:

(1)轿车行驶的速度是多少米/秒?

(2)在2min内轿车行驶的路程是多少千米?

2、一座大桥全长6.89千米,江面上正桥长为1570米,一列长为110米的火车匀速行驶,通过江面正桥需120秒,则火车的速度是多少米/秒?火车通过全桥需用的时间是多少?

五、小结

提问:通过本课的学习,你有哪些收获?

六、作业

完成学生用书相关练习。

七、板书设计

第三节 快与慢

一、怎样比较物体运动的快慢

1、比较物体运动快慢的方法(1)、相同时间比路程(2)、相同路程比时间

2、速度

(1)、定义:物体在一段时间内通过的路程与通过这段路程所用时间的比称为速度

(2)、公式:v=s/t(3)、单位:m/s,km/h

二、匀速直线运动和变速直线运动

1、匀速直线运动

(1)、定义:速度不变的直线运动叫做匀速直线运动(2)、特点:运动沿直线进行,速度恒定不变

2、变速直线运动

(1)、定义:速度变化的直线运动称为变速直线运动。(2)、特点:运动沿直线进行,速度大小变化。(3)、平均速度v=s总/t总

下载命题与证明教案(沪科版八年级上)word格式文档
下载命题与证明教案(沪科版八年级上).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八年级数学等腰三角形教案(沪科版)

    本资料来自于资源最齐全的21世纪教育网www.xiexiebang.com 课题:等腰三角形(沪科版八年级数学) 教材分析: 本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现......

    八年级数学等腰三角形教案(沪科版)

    课题:等腰三角形 来榜中心学校 张林业2012.12.20 教材分析: 本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。教材通过学生对等腰三角形的叠合操作,得出......

    沪科版八年级物理教案

    公开课教案 沪科版八年级物理《做功的快慢》 宽阔中学:田仁山 教学目标: 知识与技能:知道功率的概念,计算公式和单位,能说明有关问题并进行计算。 过程与方法:会用不同的方法判断......

    沪科版八年级物理上学期教学计划

    沪科版八年级物理上学期教学计划 一、学生情况分析 本学期担任5、9、11三个班的物理教学工作,在上学期期末成绩较为一般,学习态度也比较不好,在这一学期本人将在教法和学生的学......

    沪科版八年级物理上学期教学计划

    八年级物理上学期教学计划 一、指导思想 在九年制义务教育阶段,物理课程的教学不仅应该注重科学知识的传授和技能的训练,注重将物理科学的新成就及其对人类文明的影响等纳入课......

    沪科版八年级物理上学期教学计划

    八年级物理上学期教学计划 一、指导思想 在九年制义务教育阶段,物理课程的教学不仅应该注重科学知识的传授和技能的训练,注重将物理科学的新成就及其对人类文明的影响等纳入课......

    八年级物理 2.3 快与慢精品教案 沪科版

    亿库教育网http://www.xiexiebang.com §2-3 快与慢 〖教学目标〗 1、理解速度的概念,能用速度描述物体的运动; 2、了解测量速度的一些方法,能用速度公式进行简单计算; 3、知道匀......

    沪科版八年级物理质量与密度课程教案

    我在学习的路上既选择远方,必风雨兼程 物理八年级上册复习讲义 专题五 质量与密度 【考纲要求】 1.初步认识质量的概念及单位; 2.理解密度概念及其物理意义; 3.会用天平测量物......