第一篇:[教案精品]新课标高中数学人教A版必修四全册教案2.4.1平面向量数量积的物理背景及含义
2.4.1平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程:
一、复习引入:(1)两个非零向量夹角的概念:已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=时,a与b垂直,记a⊥b;2(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤180(2)两向量共线的判定(3)练习
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=(C)A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(B)A.-3 B.-1 C.1 D.3(4)力做的功:W = |F||s|cos,是F与s的夹角.二、讲解新课:1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,(0≤θ≤π).并规定0向量与任何向量的数量积为0.探究:
1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,1 也不能用“×”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cos有可能为0.(4)已知实数a、b、c(b0),则ab=bc a=c.但是ab = bc a = c
如右图:ab = |a||b|cos = |b||OA|,bc = |b||c|cos = |b||OA| ab = bc 但a c(5)在实数中,有(ab)c = a(bc),但是(ab)c a(bc)显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.2.“投影”的概念:作图
定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值; 当为钝角时投影为负值; 当为直角时投影为0; 当 = 0时投影为 |b|; 当 = 180时投影为 |b|.3.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.探究:两个向量的数量积的性质:设a、b为两个非零向量,1、ab ab = 0
2、当a与b同向时,ab = |a||b|; 当a与b反向时,ab = |a||b|.特别的aa = |a|或|a|aa |ab| ≤ |a||b| cos =探究:平面向量数量积的运算律 1.交换律:a b = b a
证:设a,b夹角为,则a b = |a||b|cos,b a = |b||a|cos ∴a b = b a
2.数乘结合律:(a)b =(ab)= a(b)证:若> 0,(a)b =|a||b|cos,(ab)=|a||b|cos,a(b)=|a||b|cos,2ab
|a||b| 2 若< 0,(a)b =|a||b|cos()= |a||b|(cos)=|a||b|cos,(ab)=|a||b|cos,a(b)=|a||b|cos()= |a||b|(cos)=|a||b|cos.3.分配律:(a + b)c = ac + bc
在平面内取一点O,作OA= a,AB= b,OC= c,∵a + b(即OB)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cos = |a| cos1 + |b| cos
2∴| c | |a + b| cos =|c| |a| cos1 + |c| |b| cos2,∴c(a + b)= ca + cb 即:(a + b)c = ac + bc
说明:(1)一般地,(a·b)с≠a(b·с)
(2)a·с=b·с,с≠0
2
a=b
2(3)有如下常用性质:a=|a|,(a+b)(с+d)=a·с+a·d+b·с+b·d
三、讲解范例:
例1.证明:(a+b)=a+2a·b+b 2
2
2
例2.已知|a|=12,|b|=9,ab542,求a与b的夹角。
例3.已知|a|=6,|b|=4,a与b的夹角为60求:(1)(a+2b)·(a-3b).(2)|a+b|与|a-b|.(利用 |a|oaa)
例4.已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直.四、课堂练习:
1.P106面1、2、3题。
2.下列叙述不正确的是()
A.向量的数量积满足交换律 B.向量的数量积满足分配律 C.向量的数量积满足结合律 D.a·b是一个实数 3.|a|=3,|b|=4,向量a+
33b与a-b的位置关系为()44A.平行 B.垂直 C.夹角为
D.不平行也不垂直 3 4.已知|a|=8,|b|=10,|a+b|=16,求a与b的夹角.五、小结:
1.平面向量的数量积及其几何意义; 2.平面向量数量积的重要性质及运算律; 3.向量垂直的条件.六、作业:《习案》作业二十三。
第二篇:2.4.1平面向量数量积的物理背景及其含义(教学设计)
SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)
2.4.1平面向量的数量积的物理背景及其含义(教学设计)
[教学目标]
一、知识与能力:
1. 掌握平面向量的数量积的物理背景及几何意义; 2. 掌握平面向量数量积的运算律;
二、过程与方法:
渗透数形结合的数学思想方法,培养学生转化问题的能力;借助物理背景,感知数学问题,探究知识的来龙去脉;培养学生转化问题的能力.三、情感、态度与价值观:
培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点.[教学重点] 向量的数量积的定义及性质. [教学难点]
对向量数量积的定义及性质的理解和应用.
一、复习回顾,新课引入
1. 向量共线定理
向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.2.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2 3.平面向量的坐标表示
分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj,把(x,y)叫做向量a的(直角)坐标,记作a(x,y)4.平面向量的坐标运算
若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y).若A(x1,y1),B(x2,y2),则ABx2x1,y2y1
5.a∥b(b0)的充要条件是x1y2-x2y1=0 6.线段的定比分点及λ
P1,P2是直线l上的两点,P是l上不同于P1,P2的任一点,存在实数λ,使 =λP1PPP2,λ叫做点P分
P1P2所成的比,有三种情况:SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)
λ>0(内分)
(外分)λ<0(λ<-1)
(外分)λ<0(-1<λ<0)问题:如图一个力F作用于一个物体上,使该物体位移S,(1)如何计算这个力所做的功?W=|S||F|cos.(2)如何从数学的角度来理解这个公式呢?
1的意义是什么? ○2|F|cos的意义是什么?○3|S|cos 的意义是什么?
○
二、师生互动,新课讲解:
1.两个非零向量夹角的概念
已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;
(2)当θ=π时,a与b反向;(3)当θ=时,a与b垂直,记a⊥b; 2(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤180
C
2.平面向量数量积(内积)的定义:已知两个非零向量a和b,它们的夹角为,我们把数量|a|·|b|·cos叫做a和b的数量积(或内积)。记作:a·b
即:a·b=|a|·|b|·cos
(0≤θ≤π).并规定0与任何向量的数量积为0.探究:两个向量的数量积与向量同实数积有很大区别
(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cos有可能为0.(4)已知实数a、b、c(b0),则ab=bc a=c.但是ab = bc
如右图:ab = |a||b|cos = |b||OA|,bc = |b||c|cos = |b||OA| ab = bc
但a c
(5)在实数中,有(ab)c = a(bc),但是(ab)c a(bc)
a = c SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)
显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.3.“投影”的概念:作图
定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b|;当 = 180时投影为 |b|.4.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:
设a,b都是非零向量,e是与b方向相同的单位向量,是a与e的夹角,则: 1)eaae|a|cos 2)abab0
3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|.特别地,a·a=|a|2或|a|=aa 4)cosab|a||b| 5)|a·b||a|·|b| 例1(课本P104例1)已知|a|=5,|b|=4,a与b的夹角=120,求ab.解:ab=|a||b|cos=54cos120=-10.变式训练1:向量|a|=6,a与b的夹角为120,求a在b方向上的投影.(-3)
3. 数量积的运算律(1)ab= ba;
(2)(a)b=(ab)=a(b);(3)(a+b)c=ac+bc
例2(课本P105例2)对于任意向量a,b证明(1)(a+b)2=a2+2 ab+b2;(2)(a+b)(a-b)=a2-b2.SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)
证明:(1)(a+b)2=(a+b)(a+b)
=aa+ab+ba+bb
=a2+2ab+b2;
(2)(a+b)(a-b)=aa-ab+ba-bb=a2-b2.变式训练2:判断下列说法是否正确:
(1)若a=0,则对于任一向量b,有ab=0.()(2)若a0,则对任一非零向量b,有ab0.()(3)若a0,ab=0,则b=0.()(4)若ab=0,则a,b至少有一个为零.()(5)若a0,ab=ac,则b=c.()(6)若ab=ac,则b=c,当且仅当a0时成立.()(7)对任意向量a、b、c,有(ab)ca(bc).()(8)对任意向量a,有a2=|a|2.()例3(课本P105例3)已知|a|=6,|b|=4,a与b的夹角为60,求(a+2b)(a-3b).解:(a+2b)(a-3b)=aa-ab-6bb
=|a|2-ab-6|b|
2=|a|2-|a||b|cos-6|b|2
=-72.变式训练3:已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°,∴a·b=0;
③当a与b的夹角是60°时,有
a·b=|a||b|cos60°=3×6×=9 例4(课本P105例4)已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直? 解:a+kb与a-kb互相垂直的条件是(a+kb)(a-kb)=0,12SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)
即a2-k2b2=0,∵ a2=32=9,b2=42=16,∴ 9-16k2=9,∴k=.变式训练4:已知|a|=2,|b|=4,ka+b与ka-b垂直,求实数k的值.解:(ka+b)(ka-b)=0 k2a2-b2=0 k2|a|2-|b|2=0 4k2-16=0 k=2.课堂练习(课本P106练习NO:1;2;3)
三、课堂小结,巩固反思:
1.平面向量的数量积的物理背景及几何意义; 2.平面向量数量积的运算律.四、课时必记:
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,2、|b|cos叫做向量b在a方向上的投影.3、设a,b都是非零向量,e是与b方向相同的单位向量,是a与e的夹角,则:
1)eaae|a|cos 2)abab0
3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|.特别地,a·a=|a|2或|a|=aa 4)cosab|a||b| 5)|a·b||a|·|b|
五、分层作业: A组:
1、(课本P108习题2.4 A组:NO:2)
2、(课本P108习题2.4 A组:NO:6)SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)
3、(课本P108习题2.4 A组:NO:7)
4、.已知|a|=1,|b|=2,且(a-b)与a垂直,则a与b的夹角是()
A.60°
B.30°
C.135°
D.45°
5、已知a⊥b、c与a、b的夹角均为60°,且|a|=1,|b|=2,|c|=3,则(a+2b-c)=______.B组:
1、已知|a|=1,|b|=2,(1)若a∥b,求a·b;(2)若a、b的夹角为60°,求|a+b|;(3)若a-b与a垂直,求a与b的夹角.2、设m、n是两个单位向量,其夹角为60°,求向量a=2m+n与b=2n-3m的夹角.C组:
1、(tb1225172)已知:(a3b)垂直于(7a5b)、(a4b)垂直于(7a2b),求a与b的夹角。
(答:
2)
32、(tb1225577)设e1和e2是两个单位向量,其夹角为600,试求向量a=2e1+e2和b=-3e1+2e2的夹角。(答:1200)
第三篇:[教案精品]新课标高中数学人教A版必修四全册教案2.3平面向量基本定理及坐标表示(二)
2.3.3平面向量的坐标运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.教学过程:
一、复习引入:1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量
二、讲解新课:
1.平面向量的坐标运算
思考1:已知:a(x1,y1),b(x2,y2),你能得出ab、ab、a的坐标吗?设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2)(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.(2)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y)
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
思考2:已知A(x1,y1),B(x2,y2),怎样求AB的坐标?
(3)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1
AB=OBOA=(x2,y2)(x1,y1)=(x2 x1,y2 y1)一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.思考3:你能标出坐标为(x2 x1,y2 y1)的P点吗?
向量AB的坐标与以原点为始点、点P为终点的向量的坐标是相同的。
三、讲解范例:
例1 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例2 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)例3已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0 得:(3,4)+(2,5)+(x,y)=(0,0)即:32x0x5 ∴ ∴F3(5,1)45y0y
1四、课堂练习:
1.若M(3,-2)N(-5,-1)且 MP1MN,求P点的坐标 22.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.五、小结:平面向量的坐标运算;
六、课后作业:《习案》作业二十
第四篇:平面向量的数量积的物理背景及其含义教学反思
1.1 教材的地位与作用
本节课是在学生学习了向量的概念和向量的加法、减法、数乘向量等线性运算的基础上,探索向量的又一种新的运算,它既是前面所学知识和方法的延续,又是后继学习解三角形、解析几何以及空间向量等内容的基础,因此本节内容具有承上启下的重要作用.1.2 学情分析
(1)学生已经学习了任意角的三角函数、向量的概念和线性运算等知识.(2)学生对向量的物理背景有了一定的了解.如:力、位移、速度的合成与分解,力做功的有关知识.(3)学生已经具备了一定的数学建模能力,能从简单的物理背景及生活背景抽象出数学概念.2 教学目标分析
依据课程标准和以上分析,制定本节课的三维目标如下:
知识与技能目标
通过物理中“功”的实例,理解平面向量数量积的含义及其物理意义,掌握平面向量数量积的性质.过程与方法目标
经历从物理背景的分析,抽象概括出概念的过程,培养学生归纳概括,类比迁移的能力;经历通过不同的方式探究、发现平面向量数量积性质的过程,体会从特殊到一般、分类讨论、数形结合的数学思想方法.情感、态度、价值观目标
通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会各学科之间的密切联系,感受知识的形成过程,提高数学学习的兴趣,形成独立自主的钻研精神和合作交流的科学态度.3 重点、难点分析
根据教学目标以及学情分析,确定本节课的教学重点、难点.重点:平面向量数量积的概念和性质.难点:向量在轴上的正射影的概念的理解和平面向量数量积的性质的发现.在教学中,注意遵循学生的认知规律.从学生感兴趣的物理实例入手,通过层层分析,形成数量积的概念,并经历概念辨析、深化理解、学以致用等过程,来突出重点.通过练习和探究问题的设计,将五个性质分散开来,通过课件动画、问题引领、自主探究、合作交流等手段,从理性认识到实践练习,再到应用,使性质自然呈现,既突出了重点,又突破了难点.教学策略分析
基于数量积的知识特点及学生的认知规律,采用启发式和问题探究相结合的教学方法.著名数学教育家波利亚指出:“学习任何东西,最好的途径是自己去发现”.因此,指导学生采用发现式学习法.在课堂上坚持以教师为主导,学生为主体,以抽象类比与问题探究为主线.同时,为了有效实现教学目标,采用多媒体和自编学案辅助教学.5 教学过程分析
本节课的教学流程如下:
具体分析如下:
5.1 创设情境 展示背景
教师录像展示“大力士拉车”的情境实例,提出物理问题.问题1 大力士拉车,沿着绳子方向上的力为F,车移动的位移是s,力和位移的夹角为θ,大力士所做的功为多少?
设计意图 从学生已有的认知水平出发,通过熟悉的生活实例,创设数量积的物理背景,激发学生的学习热情.5.2 分析背景 形成概念
该环节,依据本套教材的特点,以物理背景作为总的抓手,通过抽象、概括、归纳,形成了两个向量的夹角、向量在轴上的正射影和向量的数量积定义三个概念.第一步:背景的初次分析
问题2 决定功的大小的量有哪几个?它们是标量还是矢量?当力和位移的大小一定时,功的大小取决于那个量?
问题3 这个夹角抽象到我们数学中,就是今天我们要学习的两个向量的夹角,把力F、位移s换作数学中任意两个非零向量a与b,你能尝试着给出向量a与b夹角的概念吗?
设计意图 通过力做功的几个因素的分析,突出夹角在做功中的作用,形成两个向量夹角的概念.1.两个向量的夹角
已知非零向量a与b,作OA=a,OB=b,则∠AOB称作向量a与b的夹角,记作:〈a,b〉.问题4 下面几种情形中(锐角、钝角、直角、共线同向、共线反向),两向量的夹角分别是什么角?
设计意图 通过几种类型的夹角的给出,让学生直观感知夹角的范围,帮助学生理解夹角范围规定的合理性.规定: 0≤〈a,b〉≤π,且〈a,b〉=〈b,a〉.特别的:当〈a,b〉=π2时,叫做a与b垂直,记作a⊥b;
两向量的垂直符号同几何中的垂直符号是一致的.问题5 请回顾:0的方向是怎样规定的?
规定:0与任意向量垂直.前面曾规定:0与任意向量平行.设计意图 概念呈现后,注意与前面所学知识进行对比,便于学生理解,记忆.图
1练习: 如图1,正△ABC中,求
(1)AC与AB的夹角;
(2)AB与BC的夹角.注:确定两向量的夹角的关键是:通过平移使两向量共起点.设计意图 及时巩固所学概念,强调确定两向量夹角的一般方法.第二步:背景的再次分析
问题6 真正使汽车前进的力是什么?它的大小是多少?
设计意图 让学生借助已有的认知经验,类比物理背景中拉力F在位移方向上的分力,它的大小是Fcos θ,自然引出向量在轴上的正射影及其数量的概念.从特殊到一般,符合学生的认知规律,突破难点.2.向量在轴上的正射影
已知向量a和轴l,作OA=a,过点O、A分别作轴l的垂线,垂足分别为O1、A1,则向量O1A1叫做向量a在轴l上的正射影(简称射影).向量在轴上的正射影的数量
该射影在轴l上的坐标,称作a在轴l上的数量或在轴l的方向上的数量.OA=a在轴l上正射影的坐标记作: al,若向量a的方向与轴l的正向所成的角为θ,则al=|a|cos θ.问题7 向量在轴上的正射影与向量在轴上的正射影的数量有什么区别?
问题8 向量在轴上的正射影的数量一定是正实数吗?
注: a在轴l上的正射影的数量是个实数,可正、可负、可为零.向量a在b方向上的正射影及数量
如果向量b在轴l上且与轴同向,那么,向量O1A1叫做向量a在向量b方向上的正射影,它的数量是acos.设计意图 让学生理解正射影及其数量的含义,并引申出向量a在向量b方向上的正射影及其数量,为数量积的概念的学习做准备
第五篇:[教案精品]新课标高中数学人教A版必修四全册教案2.3平面向量基本定理及坐标表示(三)
2.3.4平面向量共线的坐标表示教学目的:(1)理解平面向量共线的坐标表示;(2)掌握平面上两点间的中点坐标公式及定点坐标公式;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量公线的坐标表示及定点坐标公式,教学难点:向量的坐标表示的理解及运算的准确性教学过程:
一、复习引入:1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量2.平面向量的坐标表示
分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj把(x,y)叫做向量a的(直角)坐标,记作a(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0).2.平面向量的坐标运算(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差..实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.1
向量AB的坐标与以原点为始点、点P为终点的向量的坐标是相同的。3.练习:1.若M(3,-2)N(-5,-1)且 MP1MN,求P点的坐标22.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),如何求证:四边形ABCD是梯形.?
二、讲解新课:
1、思考:(1)两个向量共线的条件是什么?(2)如何用坐标表示两个共线向量?
设a=(x1,y1),b=(x2,y2)其中ba.x1x2由a=λb得,(x1,y1)=λ(x2,y2) 消去λ,x1y2-x2y1=0
y1y2a∥b(b0)的充要条件是x1y2-x2y1=0探究:(1)消去λ时能不能两式相除?
(不能 ∵y1,y2有可能为0,∵b0 ∴x2,y2中至少有一个不为0)
(2)能不能写成y1y2 ?(不能。∵x1,x2有可能为0)x1x2ab
x1y2x2y10(3)向量共线有哪两种形式? a∥b(b0)
三、讲解范例:
例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.思考:你还有其它方法吗?
例3若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x 解:∵a=(-1,x)与b=(-x,2)共线 ∴(-1)×2-x•(-x)=0
∴x=±2 ∵a与b方向相同 ∴x=2
例4 已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB平行于直线CD吗?
解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴AB∥CD
又 ∵ AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60 ∴AC与AB不平行
∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD 例5设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.思考:(1)中 P1P:PP2=?(2)中P1P:PP2=? 若P1P:PP2=如何求点P的坐标?
四、课堂练习:P101面4、5、6、7题。
五、小结 :(1)平面向量共线的坐标表示;
(2)平面上两点间的中点坐标公式及定点坐标公式;(3)向量共线的坐标表示.六、课后作业:《习案》二十二。思考:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=(C)A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(B) A.-3 B.-1 C.1 D.3 3.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为(B)A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,则y= 3.3
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为26.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= 5