第一篇:正弦定理,余弦的多种证明
正弦(余弦)定理的另类证明
课本利用向量法证明正弦定理,本文来介绍的另外两种证法.正弦定理:在一个三角形中,各边和它所对角的正弦比相等,即a=bsinAsinB=csinC.证法1:(等积法)在任意斜三角形ABC中,S△111absinCacsinBbcsinA,222两边同除以1abc即得:a=b=c2sinAsinBsinCABC=
.C点评:证法1主要利用了任意斜三角形面积可分别转化为三角形不同边与其对应高的乘积的12.此证法体现了转化与化归的思想方法.abAOBDc证法2:(外接圆法)如图1所示,设O为△ABC的外接圆的圆心,连接CO并延长交圆O于D,连接BD,则A=D,BCaa所以sinAsinDCD,即2R.同理 2RsinAbsinB=2R,csinC=2R.故 a=b=csinAsinBsinC=2R(R为三角形外接圆半径).点评:证法2建立了三角形中的边与对角、外接圆半径三者之间的联系,这三者知二可求一,为正弦定理增添了新内容,体现了数形结合的思想.小结:由以上证明过程,我们可以得到正弦定理的几种变形形式: 1.a: b: c = sinA : sinB :sinC;2.a=2RsinA;b=2RsinB;c=2RsinC;3.sinA=2aR;sinB= 2bR;sinC=2cR.(其中R为△ABC外接圆的半径)
在解决三角形问题时,一定要根据问题的具体情况,恰当地选用公式.公式选择得当、方法运用对路是简化问题的必要手段.
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
证明: 如图:
∵a=b-c
∴a^2=(b-c)^2(证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc 再拆开,得a^2=b^2+c^2-2*b*c*CosA 同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。------------------平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 从余弦定理和余弦函数的性质可以看出, 如果一个三角形两边的平方和等于第三 边的平方,那么第三边所对的角一定是直 角,如果小于第三边的平方,那么第三边所 对的角是钝角,如果大于第三边,那么第三边
所对的角是锐角.即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。
第二篇:正弦定理证明
新课标必修数学5“解三角形”内容分析及教学建议
江苏省锡山高级中学杨志文
新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。
一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较
1.课程内容安排上的变化
“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。
2.教学要求的变化
原大纲对“解斜三角形”的教学要求是:
(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。
(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。《标准》对“解三角形”的教学要求是:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。
3、课程关注点的变化
原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。
4、内容处理上的变化
原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。
二、教学中应注意的几个问题及教学建议
原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。
1.要重视探究和推理
《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。
参考案例:正弦定理的探索、发现与证明
教学建议:建议按如下步骤设计教学过程:
(1)从特殊三角形入手进行发现
让学生观察并测量一个三角板的边长。
提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?
例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,58.610,101010 000
sin30sin60sin90
abc
对于特殊三角形,我们发现规律:。
sinAsinBsinC
则有:
提出问题:上述规律,对任意三角形成立吗?(2)实验,探索规律
二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,忽略测量误差,通过实验,对任意三角形,有结论:
abc,即在一个三角形中,
sinAsinBsinC
各边和它所对的角的正弦的比相等。
提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?
(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A,向
量j
与向量CB的夹角为900-C,(如图1),且有:ACCBAB,所以j·(+)= j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)
ac
。
sinAsinC
cbabc
同理,过点C做单位向量j垂直于,可得:,故有。
sinCsinBsinAsinBsinC
③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与
则得 a sinC = c sinA,即
向量AB的夹角为A-900,向量j与向量的夹角为900-C,且有:,同样可证得:
abc
。
sinAsinB
提出问题:你还能利用其他方法证明吗?
方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。
2.要重视综合应用
《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:
参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135.求BC的长.教学建议:
引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将
A B
四边形问题转化为三角形问题,选择余弦定理求BD,再由正弦定理
例2图 求BC。
3.要重视实际应用
《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。
参考案例:解三角形在实际中的应用
参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与
乙船相遇?
教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇,构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。
答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点
例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E
者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为
解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已
知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.4.要重视研究性学习
解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习
课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.
教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。
参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB
平行。从图形的特点来看,涉及到线段的长度和角度,将
这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.
NBB
PO图(2)
QM
O图(1)
按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:
时,Smax200.
4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:
sin120
又MN2OMsin(60)40sin(60),MQ
20sin
3sin. 3
MP20sin,OP20cos,从而S400sincos200sin2.即当
∴SMQMN
sinsin(60)cos(260)cos60. 33
∴当30时,Smax由于
400. 3
400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33
也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。
参考文献:
①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。
②《普通高中数学课程标准(实验))》。人民教育出版社。2003年4月第一次印刷。③《普通高中数学课程标准(实验)解读》。严士健 张奠宙王尚志等主编。江苏教育出版社。2004年4月。
第三篇:原创正弦定理证明
1.直角三角形中:sinA=,sinB=,sinC=1
即c=
∴abc,c=,c=.sinAsinBsinCacbcabc== sinAsinBsinC
2.斜三角形中
证明一:(等积法)在任意斜△ABC当中
S△ABC=absinCacsinBbcsinA
两边同除以abc即得:
证明二:(外接圆法)
如图所示,∠A=∠D ∴aaCD2R sinAsinD
bc=2R,=2R sinBsinC12121212abc== sinAsinBsinC
同理
证明三:(向量法)
过A作单位向量j垂直于AC
由 AC+CB=AB
两边同乘以单位向量j 得 j•(AC+CB)=j•AB 则•+•=•
∴|j|•|AC|cos90+|j|•|CB|cos(90C)=| j|•|AB|cos(90A)
∴asinCcsinA∴ac= sinAsinC
cbabc同理,若过C作j垂直于CB得: =∴== sinCsinBsinAsinBsinC
正弦定理的应用 从理论上正弦定理可解决两类问题:
1.两角和任意一边,求其它两边和一角;
2已知a, b和A, 用正弦定理求B时的各种情况
:
⑴若A为锐角时: absinA无解absinA一解(直角)
bsinAab二解(一锐, 一钝)ab一解(锐角)
已知边a,b和A
a 无解a=CH=bsinA仅有一个解 CH=bsinA ab无解⑵若A为直角或钝角时: ab一解(锐角) 正弦定理证明1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。2.三角形的余弦定理证明:平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。2 谈正、余弦定理的多种证法 聊城二中 魏清泉 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则(1)(正弦定理)= =;(2)(余弦定理)c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.一、正弦定理的证明 证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。 所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。 证法四:如图3,设单位向量j与向量AC垂直。因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=| j ||CB|cos(90°-∠C)=a•sinC,j•AB=| j ||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明 法一:在△ABC中,已知,求c。 正弦定理证明 1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。 2.三角形的余弦定理证明: 平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^ 2b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^ 2所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD+(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。 2谈正、余弦定理的多种证法 聊城二中魏清泉 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则 (1)(正弦定理)==; (2)(余弦定理) c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA.一、正弦定理的证明 证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。 所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。 证法三:如图2,设CD=2r是△ABC的外接圆的直径,则∠DAC=90°,∠ABC=∠ADC。 证法四:如图3,设单位向量j与向量AC垂直。 因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=|j||CB|cos(90°-∠C)=a•sinC,j•AB=|j||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明 法一:在△ABC中,已知,求c。 过A作,在Rt中,法二:,即: 法三: 先证明如下等式: ⑴ 证明: 故⑴式成立,再由正弦定理变形,得 结合⑴、有 即.同理可证 .三、正余弦定理的统一证明 法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算: =(-acosB,asinB),=-=(bcosA-c,bsinA),(1)由=:得 asinB=bsinA,即 =.同理可得:=.∴==.(2)由=(b-cosA-c)2+(bsinA)2=b2+c2-2bccosA,又||=a,∴a2=b2+c2-2bccosA.同理: c2=a2+b2-2abcosC; b2=a2+c2-2accosB.法二:如图5,,设轴、轴方向上的单位向量分别为、,将上式的两边分别与、作数量积,可知,即 将(1)式改写为 化简得b2-a2-c2=-2accosB.即b2=a2+c2-2accosB.(4)第四篇:正弦定理证明
第五篇:正弦定理证明