第一篇:肖金明 解读小学数学新课标中的几个核心概念
培训时间:2018年元月十二日 主讲人:肖金明
解读小学数学新课标中的几个核心概念
《小学数学新课程标准》以全新观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域,特别突出地强调了10个学习内容的核心概念,分别是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识。下面结合我的教学实践浅谈我对数感、符号感、空间观念、数据分析观念、应用意识和推理能力的认识。
一、数感是人的一种基本数学素养
数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,又能以数学的思维研究现实,能用数学的方法解决实际问题。数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
培养和发展学生的数感,应该注意以下两个方面:
1、引导学生联系自己身边具体、有趣的事物;
2、注重解决实际问题。
二、在解决问题的过程中发展学生的符号感
符号感是人对符号的意义、符号的作用的理解,以及主动地使用符号的意识和习惯。符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
发展学生的符号感可以同时从两方面进行:
1、结合数学内容,及时教给学生一些数学符号;
2、鼓励学生创造性地使用自己的独特符号。
三、空间观念是培养学生初步的创新精神和实践能力需要的基本要素
空间观念表现为对现实世界里的物体的形状、大小、位置、变化及相互关系的理解与把握。空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化。能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系。能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
在实际教学中,我们要把发展学生的空间观念落到实处,增加学生动手实践的机会。
四、数据分析观念的发展与培养
数据分析是指:在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着的信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物、每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,所以说,数据分析是统计的核心。数据分析观念是人对数据统计活动的体会与理解,是自觉应用统计方法解决问题的意识。数据分析观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
发展小学生的数据分析观念,可采用的方法:
1、组织学生经历统计活动的全过程;
2、培养学生从报刊、杂志、电视等媒体中获取信息的意识,读懂统计图表,并能与同伴交流。
五、大力培养学生的应用意识
应用意识是综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
培养学生的应用意识,应注意以下几点:
1、指导学生选好题目;
2、明确活动目标;
3、强调自主性与交流的要求;
4、总结与评价。
六、注重发展学生的推理能力
合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。归纳推理、类比推理和统计推理是合情推理的主要形式。推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。
培养小学生的推理能力,应该做到以下两点:首先,把培养学生的推理能力贯穿在日常数学教学中。其次,把推理能力的培养落实到《标准》的四个内容领域之中。
第二篇:小学数学新课标的十大核心概念
《小学数学新课程标准》以全新的观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域,特别突出地强调了10个学习内容的核心概念,分别是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识。下面结合我的教学实践浅谈我对这些核心概念的认识:
一、数感是人的一种基本数学素养
数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,又能以数学的思维研究现实,能用数学的方法解决实际问题。数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
培养和发展学生的数感,应该注意以下两个方面:
1、引导学生联系自己身边具体、有趣的事物;
2、注重解决实际问题。
二、在解决问题的过程中发展学生的符号感
符号感是人对符号的意义、符号的作用的理解,以及主动地使用符号的意识和习惯。符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
发展学生的符号感可以同时从两方面进行:
1、结合数学内容,及时教给学生一些数学符号;
2、鼓励学生创造性地使用自己的独特符号。
三、空间观念是培养学生初步的创新精神和实践能力需要的基本要素
空间观念表现为对现实世界里的物体的形状、大小、位置、变化及相互关系的理解与把握。空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化。能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系。能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。在实际教学中,我们要把发展学生的空间观念落到实处,增加学生动手实践的机会。
四、数据分析观念的发展与培养
数据分析是指:在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着的信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物、每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,所以说,数据分析是统计的核心。
数据分析观念是人对数据统计活动的体会与理解,是自觉应用统计方
法解决问题的意识。数据分析观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
发展小学生的数据分析观念,可采用的方法:
1、组织学生经历统计活动的全过程;
2、培养学生从报刊、杂志、电视等媒体中获取信息的意识,读懂统计图表,并能与同伴交流。
五、大力培养学生的应用意识
应用意识是综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
培养学生的应用意识,应注意以下几点:
1、指导学生选好题目;
2、明确活动目标;
3、强调自主性与交流的要求;
4、总结与评价。
六、注重发展学生的推理能力
合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。归纳推理、类比推理和统计推理是合情推理的主要形式。推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。
培养小学生的推理能力,应该做到以下两点:首先,把培养学生的推理能力贯穿在日常数学教学中。其次,把推理能力的培养落实到《标准》的四个内容领域之中。
第三篇:小学数学新课标解读
小学数学新课标解读
太和中心校
与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化 2001年版: 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。2011年版: 数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条” 2001年版“三句话”: 人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。2011年版“两句话”: 人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。“6条”改“5条”: 在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术 2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、理念中新增加了一些提法 要处理好四个关系 有效的教学活动是什么? 数学课程基本理念(两句话)数学教学活动的本质要求 培养良好的数学学习习惯 注重启发式 正确看待教师的主导作用 处理好评价中的关系 注意信息技术与课程内容的整合五、“双基”变“四基” 2001年版: “双基”:基础知识、基本技能; 2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。并把 “四基”与数学素养的培养进行整合: 掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
六、四个领域名称的变化 2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化 更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化 不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。
第四篇:小学数学新课标解读
小学数学新课标解读
1、双基指基础知识和基本技能。
2、新的数学课程的基本内容包括:重要的数学知识,基本的数学思想方法和必要的应用技能。
3、课程标准抛弃了将数学学习内容分为“数与计算,量与计量,几何初步知识,应用题,代数初步知识,统计初步知识”六个方面的传统做法,构建了“数与代数,空间与图形,统计与概率,、实践和综合应用”。
4、课程标准中增加的内容包括:统计与概率的有关知识,空间与图形的有关内容,数与代数的有关内容。删减的主要内容:过时的失去学习价值的知识,一些繁杂的大数目计算,以及类型化的应用题。
5、提升的内容有:估算、算法多样化、各类知识的应用等。降低的内容有:较大数目得整数、多位小数和分数的四则运算,整除、约数和倍数、素数和合数。
6、课程标准中加强的内容有:数感与空间感、理解运算的意义、选择适当的运算的策略与工具、加强口算与估算、体会与理解的模式与关系、认识事物与图形的位置与变化、把统计与概率作为一个重要内容、加强数据的搜集整理分析与运用、加强实践与综合应用、重视计算器的使用。
7、削弱的内容有:淡化繁杂的计算、降低笔算的要求、不独立设置“应用题”单元、取消对应用题的人为分类。
8、新的数学课程有以下特点:片段化、过程化、现代化。
9、第二学段的教学建议:让学生在现实情境中体验和理解数学。鼓励学生独立思考,引导学生自主探究、合作交流。加强估算,鼓励解决问题策略的多样化。重视培养学生应用数学的意识和能力
10、数学课程的教育理念是:
一、突出基础性、普及性和发展性,面向全体学生。1.人人学有价值的数学;
2、人人都能获得必要的数学;
3、不同的人在数学上得到不同的发展。
二、为其他科学提供语言、思想和方法。
三、满足数学学习方式的多样性。
四、教师是教学活动的组织者、引导者和合作者。
五、教学评价的多元化。
六、运用现代信息技术。(树立“育人为本”的教育观,“人才多样化,人人能成才”的人才观,“德智体美全面发展”的教育质量观,“为学生一生的发展河幸福奠定基础”的教育价值观。)
11、数学课标的价值取向:是真正面型“人的”课程;是构建美好“人性”的课程;是指向“真是生活”的课程。
12、传统数学课程更强调规格和结果,新的数学课程则更突出经验与过程,即所谓的“做数学”、“数学化”。
13、新课标的四类分类目标是:知识与技能、数学思考、解决问题、情感与态度。
14、解决问题不同于解题。解决问题的起点是现实生活情境,问题由自己提出,方法由自己选择:解题的起点是人们事先已经编制完成的题目,重在套类型,模仿例题的解答模式。在解决问题的过程中,积累的是生活的经验、与人相处的策略和解决问题的一般能力,这是解题所不能做到的。
第五篇:2011版小学数学新课标解读
2011版小学数学新课标解读
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化
2001年版:
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:
数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”
2001年版“三句话”:
人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。2011年版“两句话”:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
四、理念中新增加了一些提法
要处理好四个关系,数学课程基本理念(两句话),数学教学活动的本质要求,培养良好的数学学习习惯,注重启发式,正确看待教师的主导作用,处理好评价中的关系,注意信息技术与课程内容的整合。
五、“双基”变“四基”
2001年版: “双基”:基础知识、基本技能;
2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。
六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化
不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。