第一篇:我国风力发电现状及其技术发展02
3存在的问题及展望
尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。风电发展侧重于资源规划,风电场的建设往往没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。
参考文献:
[1] 陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.[2] 张明锋, 邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,1
(27):1-3.[3] 党福玲,朝克,贾永.我国风电产业发展现状浅析[J].经济论坛,2010(12):58-60.[4] 韩永奇,韩晨曦.中国风电产业的发展与前景[J].新材料产业,2010(12):8-10.[5] 王超,张怀宇,王辛慧等.风力发电技术及其发展方向[J].电站系统工程,2006,22(2):11-13.[6] 许洪华,郭金东.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,6(10):106-108.[7] 张新房,徐大平,柳亦兵等.风力发电技术的发展及相关控制问题综述[J].华北电力技术,2005(5):42-45.[8] 马昕霞, 宋明中,马强等.风力发电系统控制技术的研究.上海电力学院学报[J].2005(3):205-209.[
第二篇:我国风力发电现状及其技术发展02
2.3风力发电机组控制策略的发展
风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率及输入到传动链的功率发生变化,影响了风电系统的发电效率并引起转矩传动链的振荡,会对电能质量及接入的电网产生影响,对于小电网甚至会影响其稳定性。风力发电机组通常采用柔性部件,这有助于减小内部的机械应力,但同时也会使风电系统的动态特性复杂化,且转矩传动模块会有很大振荡。目前,对风力发电机的控制策略研究根据控制器类型可分为两大类:基于数学模型的传统控制方法和现代控制方法。传统控制采用线性控制方法,通过调节发电机电磁转矩或桨叶节距角,使叶尖速比保持最优值,从而实现风能的最大捕获。对于快速变化的风速,其调节相对滞后。同时基于某工作点的线性化模型的方法,对于工作范围较宽、随机扰动大、不确定因素多、非线性严重的风电系统并不适用。
现代控制方法主要包括变结构控制、鲁棒控制、自适应控制、智能控制等[7,8]。变结构控制因具有快速响应、对系统参数变化不敏感、设计简单和易于实现等优点而在风电系统中得到广泛应用。鲁棒控制具有处理多变量问题的能力,对于具有建模误差、参数不准确和干扰位置系统的控制问题,在强稳定性的鲁棒控制中可得到直接解决。模糊控制是一种典型的智能控制方法,其最大的特点是将专家的知识和经验表示为语言规则用于控制,不依赖于被控制对象的精确的数学模型,能够克服非线性因素的影响,对被调节对象有较强的鲁棒性。由于风力发电机的精确数学模型难以建立,模糊控制非常适合于风力发电机组的控制,越来越受到风电研究人员的重视。人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的系统。利用神经元可以构成各种不同的拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。利用神经网络的学习特性,可用于风力机的低风速的节距控制。
3存在的问题及展望
尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。风电发展侧重于资源规划,风电场的建设往往没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。
参考文献:
[1] 陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.[2] 张明锋, 邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,1
(27):1-3.[3] 党福玲,朝克,贾永.我国风电产业发展现状浅析[J].经济论坛,2010(12):58-60.[4] 韩永奇,韩晨曦.中国风电产业的发展与前景[J].新材料产业,2010(12):8-10.[5] 王超,张怀宇,王辛慧等.风力发电技术及其发展方向[J].电站系统工程,2006,22(2):11-13.[6] 许洪华,郭金东.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,6(10):106-108.[7] 张新房,徐大平,柳亦兵等.风力发电技术的发展及相关控制问题综述[J].华北电力技术,2005(5):42-45.[8] 马昕霞, 宋明中,马强等.风力发电系统控制技术的研究.上海电力学院学报[J].2005(3):205-209.[
第三篇:我国风力发电现状及其技术发展01
2.2风力发电机组控制技术的发展
控制技术是风力发电机组安全高效运行的关键技术[5,6],这是因为:
1)自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等因素的随机性和不可控性,这样风力机所获得的风能也是随机和不可控的。
2)为使风能利用率更高,大型风力发电机组的叶片直径大约在60m~100m之间,因此风轮具有较大的转动惯量。
3)自动控制在风力发电机组的并网和脱网、输入功率的优化和限制、风轮的主动对风以及运行过程中故障的检测和保护中都应得到很好的利用。
4)风力资源丰富的地区通常环境较为恶劣,在海岛和边远的地区甚至海上,人们希望分散不均的风力发电机组能够无人值班运行和远程监控。这就对风力发电机组的控制系统可靠性提出了很高的要求。
因此,众多学者都致力于深入研究风力发电的控制技术和控制系统,这些研究工作对于风力发电机组优化运行有极其重要的意义。计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。
定桨距型风力机指桨叶与轮毂的连接是固定的,即桨距角固定不变,当风速变化时,桨叶的迎风角度固定不变。失速型是当风速高于额定风速,利用桨叶翼型本身所具有的失速特性,即气流的攻角增大到失速条件,使桨叶的表面产生涡流,将发电机的功率输出限制在一定范围内。失速调节型的优点是简单可靠,当风速变化引起输出功率变化时,只通过桨叶的被动失速调节而控制系统不做任何控制,使控制系统大为简化。其缺点是叶片重量大,桨叶、轮毂、塔架等部件受力较大,机组的整体效率较低,也使得这些关键部件更容易疲劳磨损。
变速恒频风力发电机组是近年来发展起来的一种新型风力发电系统,其转速不受发电机输出功率的限制,而其输出电压的频率、幅值和相位也不受转子转速的影响。论文大全网www.xiexiebang.com整理。
与恒速风电机组相比,它的优越性在于:低风速时能够跟踪风速变化,在运行中保持最佳叶尖速比以获得最大风能;高风速时利用风轮转速的变化调节风力机桨距角,在保证风电机组安全稳定运行的同时,使输出功率更加平稳。变速恒频风力发电机组通过励磁控制和变桨距调节来实现最佳运行状态。变桨距是根据风速和发电机转速来调整叶片桨距角,从而控制发电机输出功率,由传动齿轮箱、伺服电机和驱动控制单元组成。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,以得到理想的输出功率。变桨距风力发电机组的优点是:输出功率平稳,在额定点具有较高的风能利用系数,具有更好的起动性能与制动性能,能够确保高风速段的额定功率。
2.3风力发电机组控制策略的发展
风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率及输入到传动链的功率发生变化,影响了风电系统的发电效率并引起转矩传动链的振荡,会对电能质量及接入的电网产生影响,对于小电网甚至会影响其稳定性。风力发电机组通常采用柔性部件,这有助于减小内部的机械应力,但同时也会使
风电系统的动态特性复杂化,且转矩传动模块会有很大振荡。目前,对风力发电机的控制策略研究根据控制器类型可分为两大类:基于数学模型的传统控制方法和现代控制方法。传统控制采用线性控制方法,通过调节发电机电磁转矩或桨叶节距角,使叶尖速比保持最优值,从而实现风能的最大捕获。对于快速变化的风速,其调节相对滞后。同时基于某工作点的线性化模型的方法,对于工作范围较宽、随机扰动大、不确定因素多、非线性严重的风电系统并不适用。
现代控制方法主要包括变结构控制、鲁棒控制、自适应控制、智能控制等[7,8]。变结构控制因具有快速响应、对系统参数变化不敏感、设计简单和易于实现等优点而在风电系统中得到广泛应用。鲁棒控制具有处理多变量问题的能力,对于具有建模误差、参数不准确和干扰位置系统的控制问题,在强稳定性的鲁棒控制中可得到直接解决。模糊控制是一种典型的智能控制方法,其最大的特点是将专家的知识和经验表示为语言规则用于控制,不依赖于被控制对象的精确的数学模型,能够克服非线性因素的影响,对被调节对象有较强的鲁棒性。由于风力发电机的精确数学模型难以建立,模糊控制非常适合于风力发电机组的控制,越来越受到风电研究人员的重视。人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的系统。利用神经元可以构成各种不同的拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。利用神经网络的学习特性,可用于风力机的低风速的节距控制。
3存在的问题及展望
尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。风电发展侧重于资源规划,风电场的建设往往没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。
参考文献:
[1] 陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.[2] 张明锋, 邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,1
(27):1-3.[3] 党福玲,朝克,贾永.我国风电产业发展现状浅析[J].经济论坛,2010(12):58-60.[4] 韩永奇,韩晨曦.中国风电产业的发展与前景[J].新材料产业,2010(12):8-10.[5] 王超,张怀宇,王辛慧等.风力发电技术及其发展方向[J].电站系统工程,2006,22(2):11-13.[6] 许洪华,郭金东.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,6(10):106-108.[7] 张新房,徐大平,柳亦兵等.风力发电技术的发展及相关控制问题综述[J].华北电力技术,2005(5):42-45.[8] 马昕霞, 宋明中,马强等.风力发电系统控制技术的研究.上海电力学院学报[J].2005(3):205-209.[
第四篇:风力发电的调节控制技术发展
风力发电的调节控制技术发展
在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。
随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,“十五”期间,600kw风力发电机组开始产业化实施,兆瓦级失速型。兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍,并指出其各自的优缺点。
1定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。主动失速调节型风力发电机组 将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。
其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;
而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。变速恒频的优点是大范围内调节运行转速,来适应因风速变化而引起的风力机功率的变化,可以最大限度的吸收风能,因而效率较高;控制系统采取的控制手段可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂。
第五篇:我国风力发电的发展
在我国,发展风能具有很大现实意义,不仅是环保原因,我国确实具有巨大的风能资源。我国幅员辽阔,海岸线长,风能资源非常丰富,既有陆地的、也有海上的。据中国气象科学研究院测算,我国东南沿海及其附近岛屿是风能资源非常丰富的地区,有效风能密度大于或等于 200W/m2的等值线平行于海岸线,沿海岛屿有效风能密度在 300W/m2以上,全年风速大于或等于 3m/s 的时数约为 7000~8000h,大于或等于 6m/s 的时数为 4000h。新疆北部、内蒙古、甘肃北部是风能资源丰富地区,有效风能密度为 200~300W/m2,全年风速大于或等于 3m/s 的时数为 5000h 以上,全年风速大于或等于 6m/s 的时数为 3000h 以上,黑龙江、吉林东部、河北北部及辽东半岛的风能资源也较好,有效风能密度为 200W/m2以上,全年风速大于和等于 3m/s 的时数为 5000h,全年风速大于和等于 6m/s 的时数为3000h。青藏高原北部有效风能密度在 150~220W/m2之间,全年风速大于和等于3m/s 的时数为 4000~5000h,全年风速大于和等于 6m/s 的时数为 3000h。目前探明全国陆地风能理论储量为 32.26 亿 kW,可开发利用的储量为 2.53 亿 kW,近海7.5 亿 kW,合计风能可达 10.03 亿 kW,居世界前列[6]。
1.3.1 小型风力发电行业的现状
我国于 20 世纪 50 年代后期开始风力发电技术的研究工作,1957—1958 年在江苏、吉林、辽宁、新疆等地建造了一些功率在 10kW 以下、风轮直径在 10 米以下的小型风力发电装置,但由于受当时的技术经济条件限制,其后处于停滞状态。我国较大规模地开发和应用风力发电始于 20 世纪 70 年代。我国自主开发研制生产的小型风力发电机,解决了居住分散的农、牧、渔民的生产生活用电。20 世纪 80 年代初,我国把小型风力发电作为农村电气化的措施之一,供农村一家一户使用。特别是在内蒙古地区由于风自然资源丰富和当地群众的需求,并得到了政府的支持,小型风力发电机的研究和推广得到了长足的发展,对于解决边远地区居住分散的农牧民群众的生活用电和部分生产用电起了很大作用。我国目前生产的小型风力发电机按额定功率从100W 到 10kW 共十种。其主要技术特点是:2~3 个叶片,侧偏调速、上风向,配套高效永磁发电机,再配以尾翼、立杆、底座、地锚和拉线。其中以户用微型机组技术最为成熟,有 50,100,150,200,300,500W 微型机组系列定型产品,并进行批量生产,不但满足了国内需求,还远销国外。
到 2006 年底,我国从事小型风力发电机组及其配套件开发、研制、生产的单位达到 78 家,其中:大专院校、科研院所 15 家,生产制造单位 38 家,配套件生产单位 25 家,目前我国小型风力发电机的年生产能力达 8 万台。从 1983—2006 年底,全国各生产厂家累计生产各种小型风力发电机组达 37.6 万余台,总容量为 6.52 万 kW,预计年发电量约
1.33 亿 kWh。所生产的小型风力发电机组,除满足国内用户需要外,还出口远销到 25 个国家和我国台湾、香港地区,累计出口各种小型风力发电机近1.7万余台。我国小型风力发电机保有量、年产量、生产能力均列世界之首
自 20 世纪的最后两年以来,全世界风力发电的装机容量快速增长,特别是在欧洲,为了实现减排温室气体的目标,对风电执行较高收购电价的激励政策促进了风电技术和产业的发展,风电成本继续下降。由于海上风能资源比陆地丰富,海上风电场在欧洲已经从可行性示范进入商业化示范阶段。风电机组技术继续向着增大单机容量的方向发展,正在研制风轮直径超过 100m 的 5MW 机组,预计 2013 年,单机容量达到 15MW。1996 年至 2000 年世界上风电增长率 5 年平均达到 31%,2000 年末装机总容量为 1770 万 MW,2001 年末达到 2447 万 MW,一年增加 677 万 kW,增长率为32%,说明风电高增率趋势仍然继
续。2004 年全世界新增装机容量为 8000MW,2004年底全世界风电装机总容量为 47000MW,并作了 2020 年风电达到世界电力总量的12%的规划蓝图(即风力 12)。2005 年世界各国风电装机容量排在前十名的国家是德国、西班牙、美国、丹麦、印度、意大利、荷兰、英国、日本和中国。
世界上,在小型风力发电方面,中国和美国主要生产制造功率为 300W 到 3kW风力机,其中美国在 3kW 到 10kW 小型风力机上占明显优势。在欧洲,主要生产制造功率为 300W 到 100kW 风力发电机。到 2020 年,美国预计安装小型风力机容量为50000MW,可解决 10000 人就业。英国正在研制屋顶用小型风力发电机。世界各国的小型风力发电机正在努力向着:运动部件少、维护少、寿命长、采用新的电力电子技术和计算机技术等方向发展
我国的风力发电事业始于 20 世纪 50 年代,目前已经形成一定的规模。在大型风电方面,拥有 750kW 以下各类风力发电设备的制造能力,2006 年 1 月 28 日,首台兆瓦级变速恒频双馈异步风力发电机及控制装置研制成功,填补国内空白。2006 年 1月 10 日,1.2MW 永磁直驱风力发电机在哈尔滨试制成功,它是我国自主创新研制的容量最大的风力发电机。到 2005 年,全国 15 个省(自治区)已建风电场 62 座,累计运行风力发电机组 1864 台,总容量 126.6 万 kW。2010 年目标为总容量 500 万 kW,2020 年目标为总容量 3000 万 kW,2050 年预计达到 3-5 亿 kW 装机容量。但是,目前我国自行研制和开发大型风力发电机组的技术力量与国外相比相差很多,继续加大对风力发电技术研究的投入,实现关键技术的国产化是保证我国风电事业的持续稳定发展的当务之急。
设计了风力机电动变桨距系统方案,变桨距机构采用单片机控制,并搭建好电动变桨距风力机的试验样机。通过对风力样机做测试,得出风力机组的力矩与风速比的一些重要数据。并通过Matlab51mu11nk软件分别在风速低于额定风速和在额定风速左右两种情况下进行仿真,最终提出的控制规律进行的变桨距调节能满足风力机的功率控制要求,为后续研究做好铺垫工作。
[1] 付文华, 田俊梅.小型风力发电机组的应用[J]: 太阳能.2005,(5): 47~49
[2] 李亚西, 武鑫, 赵斌, 许洪华.世界风力发电现状及发展趋势[J]: 太阳能.2004,(1): 6~7
[3] 张希良.风能开发利用[M].北京: 化学工业出版社, 2005
[4] 李德孚.小型风力发电机组行业现状及展望[J]: 可再生能源.2002,(4): 29~33
[5] 孟明, 王喜平, 许镇琳.风力发电机及其相关技术[J]: 微特电机.2004,(9): 37~42
[6] 王承熙, 张源.风力发电[M].北京: 中国电力出版社, 2002
[7] 宫靖远.风电场工程技术手册[M].北京: 机械工业出版社, 2004
[8] F.Valenciaga, P.F.Puleston.Supervisor Control for a Stand-alone Hybrid Generation System Using Wind and Photovoltaic Energy[J]: IEEE Trans.on Energy Conversion.2005, 20(2): 398~405
[9] 王承熙.风力发电实用技术[M].北京: 金盾出版社, 1995
[10] 叶杭冶.风力发电机组的控制技术[M].北京: 机械工业出版社, 2006
[11] A.M De Broe, S.Drouilhet, V.Gevorgian.A Peak Power Tracker for Small Wind Turbines in Battery Charging Applications[J]: IEEE Transactions on Energy Conversion.1999, 14(4):1630~1635
[12] 张国新.风力发电并网技术及电能质量控制策略.电力自动化设
备.2009,29(6):130~133
[13] Q.Wang L.Chang.An Independent Maximum Power Extraction Strategy for Wind EnergyConversion[J]: Proceeding of the 1999 IEEE Canadian Conference on Electrical and
参考网站: