第一篇:比的化简 教学设计[范文]
北师大版六年级上册《比的化简》教学设计
二棚甸子学校
张文欢
一、教学目标
1、在实际情境中体会化简比的必要性,进一步体会比的意义。
2、掌握化简比的方法,并能解决一些简单的实际问题。
二、教学重点、难点
重点:正确运用商不变的规律或分数的基本性质来化简比。
难点:运用比的化简,解决一些简单的实际问题。
三、教具准备 多媒体课件
四、教学过程
(一)复习铺垫,激趣引新
师:上节课我们学习了《生活中的比》,谁能说说什么叫比? 课件出示:什么叫做比?(指名回答)
师:比如说2:3=2÷3=2/3,在这里2叫做什么?3叫做什么?(指名回答)比的前项除以比的后项我们叫它什么?(齐答)
师:那么比与除法、分数三者之间又有什么联系和区别呢? 课件出示:表格(指名回答三者联系与区别)
师:同学们说的都不错,今天我们继续来探索有关比的知识。(板书标题:比的化简)
(二)探索新知
1、出示学习目标
2、课件出示主题图:奇思和妙想的对话
(1)从奇思和妙想的对话中你能得到什么数学信息?
师:同学们分析的非常好!他们调制完以后想比一比谁的更甜。(PPT出示问题:哪杯蜂蜜水更甜呢?)我们该怎么办呢?(引导学生找出蜂蜜与水之间的关系)
生:可以利用蜂蜜与水的比来比较。相同量的蜂蜜水中,蜂蜜越多,水就越甜。
(预设回答:可以分别求出蜂蜜与水的比值。比值越大,蜂蜜水就越甜。)
3、探索方法,揭示课题
(1)引发思考,同桌讨论
师:都是爱动脑筋的好学生!观察黑板上的这两个比,前项与后项数字不同,该怎么比较呢?请与同桌讨论一下。
(2)反馈方法(板书化简过程)
师:谁来分享一下,你和你同桌的想法?
生1:利用比和分数的关系化简。
(3)复习:什么叫最简分数?(师问生答)
根据最简分数的定义、分数与除法和比的关系说出什么叫最简比?(学生尝试总结)结论:比的前项和后项互为质数,这个比称为最简比。(4)谁愿意到黑板上来完成这两个比的化简?
(两名学生板演化简过程)
3︰12 = 3÷12 = 3/12 = 1:4
4︰16 = 4÷16 = 4/16 =1:4 师:3︰12 = 1:4
4︰16 =1:4 我们通过化简比知道,都是一小杯蜂蜜和四小杯水,所以两杯水一样甜。你能照样子写出一组相等的比么?从这些比中,你发现了什么?
(小组讨论)
小结:比的前项和后项同时(乘以)或(除以)同一个不为0的数,(比值)的大小不变。和我们以前学的(商不变)的规律和(分数基本性子)基本性质一样 小练习
1、小试牛刀:练一练第一题 4.尝试简化
(1)24:42(指名上板演示)
24:42=24/42=4/7=4:7(学生总结)
整数比的化简方法:先把比改成分数的形式,然后约分,就化成最简比。
(2)现在老师再考考大家:出示分数比2/5:1/4,小数比0.7:0.8,(学生尝试,说出根据)学生归纳结论: 小数比的化简方法:可以先利用商不变性质将其转化成整数比,然后再进行化简。分数比的化简方法:前项除以后项,根据比值写出最简整数比。师:那么比的化简需要注意什么呢?
(同桌交流并回答)
多媒体出示:
1、最终结果还是一个比
2、必须化简到最简形式
3、化简方法要灵活
(三)巩固提升
1、化简比。15:21
0.12:0.4
0.7
: 0.08
1: 2/3
2、连一连,完成P53的第1题。
3、联系实际:数数我们班的人数,你能发现有关比的哪些知识?
4、请选择!
(1)0.75:0.1化简后的最简整数比是()。A、7.5:1
B、75:10
C、15:2(2)比的前项是8,后项是2,比值是()。A、4:1
B、4
C、1:4(3)4和它的倒数的最简整数比是()。A、4:1
B、1:4
C、16:1
5、(灵活题)大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是(),比值是();大、小正方形周长的比是(),比值是();大、小正方形面积的比是(),比值是()。[设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。] 教学反思:
教学时先让学生复习商不变性质和分数的基本性质,在学生进一步理解了分数、除法、比之间的联系后,通过教材中创设的情境——哪杯水更甜,让学生发现比可以化简,这样让学生更清楚地认识到两个相关比之间的联系,让学生尝试解决比的化简,学生自然会联系到利用比与分数,除法的关系进行化简。贴近生活的教学更能够加深学生对知识的理解。
第二篇:化简比教学设计
《比的化简》教学设计
教学内容分析:《比的化简》是(北师大版)六年级上册第52--53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。
学生分析: 在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。
教学目标: ?知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。? 能力目标:
1、在观察、比较中理解什么是化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
2、促进知识迁移,培养学生的概括能力。
?情感目标:体验知识的相通性以及数学与生活的联系。
教学重难点:正确运用商不变的性质或分数的基本性质来化简比。
教学关键:理解“化简比”。
一、导入新课
(一)复习旧知:师:今天老师带来了两位老朋友,看大家还是否认识?出示: ①比较分数的大小:4/6 ○ 12/18 ○ 60/90 ②比较商的大小:0.5÷0.7 ○ 5÷7 ○ 50÷70 提问:你是用什么方法解决以上问题?(①分数:运用分数的基本性质约分成最简分数②运用商不变性质)
(二)故事:9月10日(教师节),我去拜访了我的老师,老师很高兴,拿出了许多果品给我吃,其中有我最喜欢的,猜猜看,是什么?(蜂蜜水)? 用40毫升蜂蜜、360毫升水调制了一大杯。请你用比的知识说说蜂蜜水的成份。
蜂蜜与水的比 板书40:360(复习比的知识:前项、后项、比号;)
?老师自己也调制了一杯:用了10毫升蜂蜜、90毫升水,用比表示10:90
?又来了两名学生,老师可高兴啦。用了2小杯蜂蜜、18小杯水,调制了一大杯蜂蜜水。该怎么用比来表示?板书2:18
在品尝的同时,我心里想:是我的蜂蜜水甜,还是后来的蜂蜜水甜呢?同学们,你们能帮老师解决吗?(学生猜)
(三)体会化简比的必要性。
师:你们遇到了什么问题?能找到什么依据吗?
? 想想办法,小组讨论交流。
?全班交流:你的想法与依据。随学生回答板书。
40:360 = 40÷360 = 1/9
10:90=10÷10:90÷10=1/9
2:18 = 2 / 18 = 1/9
比的比值都是九分之一,也就是说,三个杯子中的蜂蜜与水的比其实都是1:9,所以三杯蜂蜜水一样甜。(式子后板书:1:9)
40:360= 40÷360 = 1/9 =1:9
10:90=10÷10:90÷10=1/9 =1:9
2:18 = 2/18 = 1/9 = 1:9
小结:看起来,分数可以约分,比也可以化简。
二、探索新知
(一)1、理解化简比,揭示课题。
? 观察、比较:原来的比与后来得出的比有什么联系与区别?(比不一样,比值相等)?根据学生发言,师板书: 最简单的整数比
通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1(是互质数),这样的整数比就是最简整数比。
?你能列举几个“最简整数比”吗?
揭示课题:比的化简
2、你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)
刚才化简比时,用到了以前学的什么知识?(回忆分数基本性质和商不变性质)
小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。
(通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。让学生谈谈自己对化简比的理解,一方面照顾到学生的个性发展,一方面促进学生知识的内化。)
3、化简比的方法。
(1)独立尝试:(指名一人板书)。
①出示: 化简比:24:42
②自己试一试完成。
▲全班交流。说说你的思路。(方法根据)(运用分数的基本性质,来约分、化简)
③巩固: 15:21
结果有两种形式:4:7和4/7,后者是分数表现形式,应读作4比7,不要读作七分之四。如果读作七分之四,就变成是求比值!(2)小组活动:
① 出示
化简比:0.7:0.8
2/5 :1/4
②这两组比与前面的最大区别是什么?(前后项是小数比和分数比)
0.7:0.8
2/5 :1/4
=0.7÷0.8
= 2/5 ÷ 1/4
=7÷8
= 2/5 ×4
=7:8
= 8/5
=8:5
③小组讨论:如何把这两组比化简?并试一试,全班交流。
巩固:0.12:0.4
2/3:1/2
小结方法:(翻开书,与书上比较异同:化简方法和比的写法)
三、训练巩固及延伸:
※1.化简下面各比。让学生独立完成,指名板书并说说化简过程。
12:36
0.24:0.6
3/4:1/2
1:2/3 2.填空:
比
最简单的整数比 比值
100∶25 5/6:1/2 4.2∶1.4 1:3/4
讨论:化简比和求比值的区别是什么?(区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.)或(区别:求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)3.判断正误,有错就改:
①比的前项和后项分别乘或除以相同的数(0除外),比值不变.()②比可以用分数的形式表现,读作几分之几.()③8:2化成最简单的整数比是4.()
④运用比的基本性质,把比转化成最简单的整数比的过程,就是比的化简.()
4.扩展练习
① 大小圆的半径分别是3厘米和2厘米,试求它们的直径之比,周长之比和面积之比分别是多少?(直径比3:2 周长比3:2
面积比9:4)②杨树的棵数是柳树棵数的20%,求杨树的棵数和柳树棵数的比是多少?(20%:1=1:5)
四、小结:
这节课我们学习了比的化简,在一节课的学习中,你懂得了哪些知识?印象深刻的是什么?哪些有必要提醒大家注意的呢?
板书设计:比的化简
比
化简
最简单的整数比
蜂蜜与水的比
一样甜
40:360= 40 ÷ 360 = 1/9 =1:9(商不变性质)
10:90= 10÷10:90÷10= 1/9=1:9(比的基本性质)
2:18 = 2/18 = 1/9 = 1:9(分数的基本性质)
第三篇:《化简比》教学设计
《化简比》教学设计
所属学科:小学数学
适应对象:小学六年级
一、教学背景
应用比的基本性质比简比,虽然学习过程比较简单,但实际上学生在比简分数比、小数比等时非常容易出错。为了帮助学生克服这一知识难点,借助微课程,不仅可以提高学生的学习兴趣,也能让学生根据自己需要进行个性化学习,满足了不同学习水平学生的学习,有助于达到更好的学习效果。
二、教学目标
1.让学生掌握化简比的方法并会化简比。并通过比较,让学生能够正确区分化简比与求比值的不同。
3.感受数学的独特魅力,增强学习数学的欲望,提高数学学习的兴趣。
三、教学过程
(一)问题导入
1.前面我们学习了比的意义与基本性质,现在我们就利用比的基本性质来学习化简比。
2.化简下列各比:14:21 : 1.25:0.4 【设计意图】开门见山、明晰问题,让学生先自主尝试解决问题。
(二)方法探究
首先,通过对整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了“跳一跳,可摘到果子”式必要铺垫。接着,借助本微课引入另外两种化简比的方法。最后,对化简比与求比值的区别进行教学。
A.理解化简比的三种方法
1.整数比:用比的前项、后项分别除以他们的最大公因数,直到前、后项的公因数只有1为止。
2.分数比:根据比的基本性质,把比的前、后项分别乘分母的最小公倍数,把分数比转化成整理比,进而化简。
3.小数比:根据小数点位置移动引起小数大小变化的规律,把小数比转化成整数比,再化简。
B.区分化简比与求比值的不同
1.用比的基本性质化简比,用比的前项除以后项求比值。2.化简比的结果是个比(若是整数比,可以用分数形式表达),求比值的结果是个数(可以用分数、小数或整数表示)。
【设计意图】在教学中,化简方法由易到难,并通过转化、类推等数学思想与方法,更加有利于学生对化简方法的理解与掌握。
(三)练习反馈:让学生自己举例练习
【设计意图】引导学生运用所学知识解决实际问题,将课堂延伸到课外,培养学生的应用意识。
(四)整理回顾
将化简化的三种方法运用简单的思维导图进行集中呈现。【设计意图】将三种方法整理重现一遍,有利于学生形成较为完整的思维过程。
第四篇:比的化简教学设计
比的化简教学设计
比的化简教学设计1
一、教学内容分析
《比的化简》是义务教育课程标准实验教科书(北师大版)六年级上册第52——53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。
二、学生分析
在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。
三、教学目标:
1、在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
2、在观察、比较中理解什么是化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、促进知识迁移,培养学生的概括能力。
4、体验知识的相通性以及数学与生活的联系。
四、教学重难点:正确运用商不变的性质或分数的基本性质来化简比。
教学关键:理解“化简比”。
五、教学准备:两杯蜂蜜水,小黑板。
教学过程:
(一)情境引入
老师:不少同学已经发现今天讲台上多了两个杯子,这是老师课前分别调制好的两杯蜂蜜水。你现在能判断出哪杯蜂蜜水更甜吗?
你们需要老师提供什么信息?
根据学生回答出示数据信息:
蜂蜜水
(1)号杯:2小杯18小杯
(2)号杯:30毫升270毫升
你获得了什么信息?
联系最近我们所学的知识,你想到了什么?
随学生回答板书:
(1)号杯2:18
蜂蜜与水的比
(2)号杯30:270
(先是直接结合情境提出问题“哪杯蜂蜜水更甜”,意在调动学生已有的生活经验,使其自己意识到,不知道两杯蜂蜜水中蜂蜜与水的具体含量,是不容易判断的。而后又引导学生联系最近所学,想到用“比”来表示每个杯子中蜂蜜与水的关系。借此体验数学与生活的联系,培养学生的问题意识,发挥学生学习主动性。)
(二)探索新知
1、体会化简比的必要性。
再次提出问题:
哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题?
想想办法,先和同桌交流。
全班交流:你的想法与依据。随学生回答板书。
2:18=2÷18=2/18=1/9
30:270=30÷270=30/270=1/9
比的比值都是九分之一,也就是说,两个杯子中的蜂蜜与水的.比其实都是是1:9。(式子后板书:1:9)
2:18=2÷18=2/18=1/9=1:9
30:270=30÷270=30/270=1/9=1:9
说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?
小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。
(在发现、解决实际问题的过程中,加深对比的意义的理解,体会化简比的必要性。)
2、理解化简比,揭示课题。
观察、比较:原来的比与后来得出的比有什么联系与区别?
根据学生发言,师板书:最简单的整数比
你能列举几个“最简整数比”吗?
通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。
指化简过程,揭示课题:比的化简
你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)
刚才化简比时,用到了以前学的什么知识?
小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。
(通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。让学生谈谈自己对化简比的理解,一方面照顾到学生的个性发展,一方面促进学生知识的内化。)
3、化简比的方法。
1)独立尝试:同桌两人分别选一道。(找两人板书)。
出示小黑板:
化简比:24:42120:60
交流:说说你的思路。(方法、根据)
2)小组活动:
出示小黑板:
化简比:
0.7:0.82/5:1/4
这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
3)全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)
4)归纳:怎样化简比?
(必要时,小组先讨论一下再在全班交流。)
老师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比;化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,实际上,化简比与求比值仅一步之遥。
4、看书质疑。
(从模仿练习,到变化练习,从独立尝试到小组讨论解决问题,既让学生感受到化简比的三种类型:整数与整数的比;小数与小数的比;分数与分数的比,又让学生在寻求不同题目的解决方法中巩固化简比的方法,还发挥小组骨干引领作用,培养学生的合作能力。最后鼓励学生归纳化简比的方法,力图培养学生的概括能力,并使学生体验到知识的相通性。)
(三)巩固、提高
1、化简比:(带※的为选做)
(要求:学习有些吃力的可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)
21:240.3:1.54/5:5/71:4/5※0.12:6※0.4:1/4
2、课本第53页第2题。(写出各杯中糖与水的质量比。并判断:这几杯糖水中有一样甜的吗?)
(在练习中巩固化简比的方法,在巩固中得到提高。练习兼顾到班上不同程度学生的差异,练习要求因人而异。并逐步又与生活结合起来,进一步让学生体验到数学与生活的联系,增强数学的应用意识。)
(四)总结
回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
小结:生活中有很多问题需要通过化简比来解决,因此学习化简比十分重要,也很必要.
(五)作业:
课本第52页试一试.
板书:比的化简
化简
比最简单的整数比
(1)号杯2:18=2÷18=2/18=1/9=1:9
蜂蜜与水的比一样甜
(2)号杯30:270=30÷270=30/270=1/9=1:9
比的化简教学设计2
教学目标:
1、通过学生的自主探讨,掌握比的化简方法,并会化简比。
2、通过探讨,使学生理解算法的多样化和最优化。
3、初步渗透事物是普遍联系的辩证唯物主义观点。
教学重点:推导化简比的方法,正确地化简比。
教学难点:正确地化简比。
教师准备:多媒体课件
课时安排:1课时
教学过程:
一、复习准备。
1、我会填。
15/( )=3 ( )/5=2 120/60= 180/( )=3
0.125x1000= ( )x100=75 0.3x( )=3 0.25x4=
1/6x( )=1 2/9x9= 3/5/1/2= 5/3/3=
2、复习比的基本性质,引入课题。
运用商不变性质可以把除法进行简算,根据分数的基本性质可以对分数进行约分。应用比的基本性质,我们也可以把一个比化成最简单的整数比。这就是我们本节课要学习的内容——比的化简(板书)。
什么是最简单的整数比?(前项和后项都是整数,并且互质。)
二、创设情境,探究新知。
1、老师这儿有一张珍藏的照片,想和大家一起来分享(出示主题图),认识这位叔叔吗?(杨利伟)20xx年10月15日,我国自主研发的`“神舟五号”飞船,把杨利伟送入了浩瀚的太空,全国人民都感到非常骄傲与自豪。这张照片是什么?(联合国旗帜)在“神舟五号”上搭载了两面联合国旗帜,一面长15厘米,宽10厘米,一面长180厘米,宽120厘米。这两面旗帜的长和宽的比是多少?是最简整数比吗?怎样运用比的基本性质把它们化成最简比哪?请同学们讨论解决。
(1)、学生汇报:15:10=(15/5):(10/5)=3:2
180:120=(180/60):(120/60)=3:2
提问:5是15和10的什么数?为什么要除以5?
60是180和120的什么数?为什么要除以60?
(2)小结:整数比化简时用前项和后项同时除以它们的最大公因数就可以了。
(3)练习:选择正确答案
6:8=( ) a,3:4 b,2:3 c,12:18
10:20=( ) a,2:5 b,2:3 c,1:2
2、整数比的化简我们学会了,老师这儿还有一种比——分数比,(出示课件1/6:2/9)它怎么来化简呢?小组讨论然后汇报。
(1)学生汇报:1/6:2/9=(1/6x18):(2/9x18)=3:4
提问:18是这两个分数的分母的什么数?为什么要乘18?
(2)小结:化简分数比时,分别给前项和后项同时乘它们的最小公分母,化成整数比,再化简。
(3)练习:化简下列比
3/4:1/5 5/2:6/7
3、分数比的化简我们也学会了,那小数比怎么化简呢?小组讨论,然后汇报。
(1)学生汇报:0。75:2=(0。75x100):(2x100)=75:200=3:8
提问:0.75是几位小数?为什么要乘100?75:100是最简整数比吗?
(2)小结:化简小数比时,要先把小数扩大变成整数,再化简。扩大时要注意同时扩大相同的倍数。
(3)练习:我是化简小能手
2.1:0.2 0.45:0.3
4、总结:整数比——比的前项和后项同时除以它们的最大公因数,就能化成最简整数比。
分数比——比的前项和后项同时乘它们的最小公分母,化成整数比再化简。
小数比——先把小数扩大变成整数,再化简。
三、巩固练习。
1、独立完成做一做,集体订正。订正时注意0。125:5/8有两种方法:
(1)0.125:5/8=1/8:5/8=(1/8x8):(5/8x8)=1:5
(2)0.125:5/8=0.125:0.625=125:625=(125/125):(625/125)=1:5
2、出示课件:把下面的比化成最简单的整数比
32:24 3/5:9/10 3.8:4.2 3:3/4
四、课堂小结。
通过这节课的学习,你有什么收获?
五、布置作业。
37页练习十一4、6题。
比的化简教学设计3
设计思路
在上比的化简这个内容前,我带着学生复习了分数的基本性质、商不变性质, 以及比、除法和分数的关系。因为这些是学习化简比的基础,也能让学生感受数学知识的内在联系。情景导入环节让学生体会到化简比的必要性。在探究环节中,学生已经有了这些知识作为基础,获取新知时就可以放手让学生自己去发现化简比的方法。学生在讨论交流中得出了结论,组织学生比较几种化简比的方法,然后进行优化。
在处理化简比的结果时,老师强调化简比的结果应该写成比的形式,当然写成分数的形式也是可以的,但我觉得读法还是应该读成几比几而不几分之几,因为这样不容易与求比值混为一谈。
一、教学内容:
北师大版小学数学第十一册p52的内容及p53的相关练习
二、教学目标:
1、在实际 情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。
三、教学重点:比的化简的方法。
四、教学难点:运用比的化简,解决一些简单的实际问题。
五、教学过程:
(一)复习铺垫,揭示课题。
1、昨天我们学习了《生活中的比》,谁能说说什么叫比?请你举个例子。(生说完举例比如4:58:9)
2、比与除法、分数有什么关系?(用字母表示)
3、你能用商不变性质把0.4÷0.5的被除数和除数变成整数吗?
4、把4/6约分。(根据分数的基本性质)
[设计意图:比的化简是在学生已经学习分数的基本性质、商不变的性质以及比、分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。感受数学知识的内在联系]
(二)探究新知
1、出示情景图:
淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?
互相讨论,发表看法,如何比较。(学生发言老师板书)
小结:比较的结果一样甜,分数可以约分,比也可以化简。这就是我们今天要研究的——比的化简。
出示课题:比的化简
2、引入“最简单整数比”的概念。
在遇到分数时要将分数约成最简分数,比化简的最终的结果我们称为最简比。
还记得什么叫做最简分数吗?
那你能根据最简分数和分数与除法的关系说出什么叫最简比吗?
(1)老师这里有一组比,请你判断哪些是最简整数比?
6:10 12:21 0.3:0.40.25:1
3:5 4:7 3:4 1/4:1/5
下面老师出几道题,看看同学们能不能把它化简。
(2)化简比: 24 :42; 0.7. :0.8; 2/5 :1/4。
让学生先思考一下三道题是不同类的比,如何化简,怎样化简?与同桌讲一讲你的`方法,最后前后4人组交流你们的方法。
师:你有什么发现?与全班同学交流好吗?(如果学生有困难就由老师带领学生一起完成)
引导学生观察上面三小题的区别并进行小结得出:根据比与除法、分数之间的关系,利用商不变的基本性质或分数的基本性质,可以将各种比化简。方法是:整数比可以利用商不变的基本性质或分数的基本性质把它化成最简整数比;小数比就先把小数化成整数,再约分;分数比的话就变除为乘,再约分。并强调:只要你的化简过程正确,方法不限,最后结果要用比的形式表示,而不是一个数,这就是与比值的区别.
(三) 试一试(我能行)
1、化简下面各比。
0.12 :0.4 1 :2/3 0.25:15/14 39:13
让学生独立完成,指名板书并说说化简过程。
2、质疑。
(四)小结。通过这节课的学习,你觉得应怎样化简比?
(五)巩固练习
课本第53页第1、2、3题。
板书:
比的化简
a:b=a÷b=a/b
0.4÷0.5=4÷5(根据商不变的性质)
4/6=2/3(根据分数的基本性质)
40:36=40/360=1/9=1:9
2:18=2/18=1/9=1;9
比的化简教学设计4
教学内容:
北师大版六年级上册第70页到第73页的内容。
教学目标:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。
3、培养学生的抽象概括能力,渗透转化的数学思想。
教学重点:正确应用比的基本性质化简比。
教学难点:让学生学会熟练进行化简比。
教学过程:
一、复习
1、回顾比、除法和分数的联系。
3:5=÷()=()/
2、复习商不变的规律、分数的基本性质。
A、10÷5=20÷()=()÷1=()【归纳商不变的规律】
B、12/18=6/()=()/3【归纳分数基本性质并说明最简分数】
3、利用B引导学生归纳比的基本性质。
4、问题:男孩和女孩各自调制了一杯蜂密水,请问哪杯水更甜?
过程:互相讨论,发表看法,如何比较。(学生发言老师板书)
小结:比较的结果一样甜。
二、新授
1、尝试把下面的比化成最简单的整数比
24:42⑵0.7:0.8⑶2/5:1/4
你是怎么想的?
(1)能不能把整数比化简成最简单的整数比?如何化?
(2)能不能把小数比化简成最简单的整数比?如何化?
(3)能不能把分数比化简成最简单的整数比?如何化?
(4)学生交流
①化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
②如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
③怎样把分数比化成最简单的'整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
三、尝试练习
1、P71页化简下面各比。(独立完成,集体评讲)
2、练习:做书上练一练的第1、2题。
3、各把下面的比化成最简比:
12:30.5:1/20.25:1
4、他们的说法对吗?
⑴0.48∶0.6化简后是0.8。()
⑵3/4:1/2化简后是1。()
⑶0.4∶1化简后是2/5。()
四、拓展练习
一项工程,甲单独做20天完成,乙单独做30天完成。
⑴写出甲、乙两队完成这项工程所用的时间比,并化简。
⑵写出甲、乙两队工作效率比,并化简。
五、小结
根据比与除法、分数之间的关系,利用商不变的规律、分数的基本性质和比的基本性质来化简比。
五、板书设计
比的化简
比、除法与分数的关系
商不变的规律
分数的基本性质
比的基本性质:
【比的前项和后项同时乘或者除以相同的数(0除外),比值不变。】
最简单的整数比:比的前项和后项的最大公因数是1。
比的化简教学设计5
教材分析
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的.仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点
重点:学生掌握比的基本性质,并正确地化简比。
难点:灵活应用比的基本性质化简比。
教学过程
一、情景激趣,提出问题
1、出示例3的表格
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知
1、讨论一:如果第五瓶溶液的质量和体积的比值也是4/5,你觉得它的质量和体积的比会是几比几呢?为什么?
2、讨论二:可以写出多少个比值是4/5的比呢?
3、讨论三:小组用比的基本性质解释一下,第一瓶、第二瓶、第四瓶以及第五瓶液体为什么分为一类/这些比中哪一个最简洁?
三、尝试运用,解决问题
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结
师:通过这节课的学习,你有什么收获?
比的化简教学设计6
一、教学内容分析
本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。
二、学生分析
学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。
三、学习目标(以学生为主语)
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。
四、教学活动(此环节可以是课堂实录)
1.导入
问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?
过程:互相讨论,发表看法,如何比较。(学生发言老师板书)
小结:比较的结果一样甜,分数可以约分比也可以化简。
2.新授
①引入“最简单整数比”的概念。
最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。
②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!
③出示问题尝试并讨论:
12:8 0.7:0.8 2/5:1/4
1.能不能把整数比化简成最简单的整数比?如何化?
2.能不能把分数比化简成最简单的整数比?如何化?
3.能不能把小数比化简成最简单的`整数比?如何化?
④交流
1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
⑤介绍比的基本性质
3.练习
1、P51页化简下面各比。(独立完成,集体评讲)
2、练习:做书上练一练的第1、2题。
五、教师反思
比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。
比的化简教学设计7
教学目标:
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
教学重难点:
1、运用商不变的性质或分数的基本性质化简比。
2、解决一些简单的实际问题。
学习目标:
1、理解比的意义,感受比与除法、分数之间的关系,体会化简比的必要性。
2、学会化简比的方法。
教学准备:
ppt课件
教学过程:
一、导入
(一)导情趣(抢答式复习)
1、60÷10 = 600÷( )= ( )÷1 = 0.6÷( )
说一说:解答这两道题你用的是什么知识?
(除法中商不变的性质和分数的基本性质)
除法中商不变的性质是什么?分数的基本性质又是什么?
2、比与除法、分数有什么关系?
(用字母表示:a:b=a÷b=a/b)
(二)导目标
除法中有商不变的性质,分数中有分数的基本性质,那么比有什么性质呢?今天我们就一起来研究——比的化简。(板书:比的化简)
下面请同学们一起来看一看本节课的学习目标。(课件出示目标)
学习目标:
1、理解比的意义,感受比与除法、分数之间的关系。
2、体会化简比的必要性,学会化简比的方法。
二、分组自学目标1
(出示情景图)
淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?
1、导学法
估一估、想一想、算一算
2、小组互相讨论,发表看法。
40 :360 2:18
3、质疑问难
直接比较他们俩谁调制的蜂蜜水更甜还是有困难的,那么你能不能联系比与除法和分数的关系,来想办法解决呢?小组讨论一下,该如何来计算并比较呢?
4、各组自学,交流汇报。
你们运用了什么好方法?都学会了什么?
学生边汇报,老师边板书。
40:360=40/360=1/9=1:9
2:18=2/18=1/9=1:9
5、小结:比较的结果一样甜,由此可见,比的化简对我们解决生活中的实际问题是有很大帮助的,从中我们也体会到了化简比是有必要的。那么到底什么样的比才是最简单的整数比呢?我们来看大屏幕。
6、导入“最简单整数比”的概念。
比的前项与后项只有公因数1,这样的整数比就是最简整数比。也就是说,
最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。
你能列举出几个最简整数比吗?(指名回答)
7、同学们,你们想知道这些最简单的整数比是用什么方法化简得到的吗?下面我们就来学习第二个目标。(出示目标)
三、分组自学目标2
1、出示问题:化简比
24:42 0.7:0.8 2/5:1/4
2、导学法
学法指导:
每组任选一题、分析比的类型、个人独立解答、交流解题依据、组内总结方法
3、各小组自学,交流讨论。
4、汇报交流
你们组是用什么方法学习的?是怎样学的?都学会了什么?
(指名板书计算过程)
5、指导总结化简比的'方法
(1)化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
(2)怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
(3)如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
6、智力大比拼:总结比的基本性质
你能根据商不变的性质和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
利用比的基本性质也可以化简比:
14:21 = (14÷7) :(21÷7) =2:3
7、老师小结:看来,化简比的方法不,不过都有一个共同目标:化简成最简单的整数比;那么化简比与求比值有什么区别呢?(课件)
四、练习(课件)
1、化简比:
15:21 0.12:0.4 2/3:1/2 1:2/3
2、连一连
3、判断
4、写出各杯中糖与水的质量比。
5、解决问题
五、回顾学习目标,进行本课总结
回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
小结:生活中有很多问题需要通过化简比来解决,因此我们必须学会根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。
板书:
比的化简
a:b=a÷b=a/b
40:36=40/360=1/9=1:9
2:18=2/18=1/9=1:9
第五篇:比的化简教学设计
《比的化简》教学设计
西堡小学
王淑芳
一、教材分析
《比的化简》是义务教育课程标准实验教科书(北师大版)六年级上册第52——53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。
二、学生分析
在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识
三、设计理念
在教学中通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。先尝试,再总结;从独立尝试到师生讨论解决,既让学生感受到化简比的三种类型:整数与整数的比;小数与小数的比;分数与分数的比,又让学生在寻求不同题目的解决方法中巩固化简比的方法,培养学生的合作能力,鼓励学生归纳化简比的方法,力图培养学生的概括能力,并使学生体验到知识的相通性。
四、教学目标:
1、在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
2、在观察、比较中理解什么是化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、体验知识的相通性以及数学与生活的联系。
五、教学重难点:正确运用商不变的性质或分数的基本性质来化简比。
六、教学准备:多媒体课件 教学过程:
(一)情境引入
老师:我班开展了“学会感恩”主题班队会,你们做了哪些感恩活动?淘气和笑笑也参与了感恩活动,他们分别为家人调制了蜂蜜水,老师想知道谁调制的更甜?你们能帮帮
老师吗?用什么方法比较哪杯水更甜?
生答:用除法或分数来比较。
联系最近我们所学的知识,你想到了什么?(用比的知识)引出课题
(先是直接结合情境提出问题“哪杯蜂蜜水更甜”,意在调动学生已有的生活经验,使其自己意识到,不知道两杯蜂蜜水中蜂蜜与水的具体含量,是不容易判断的。而后又引导学生联系最近所学,想到用“比”来表示每个杯子中蜂蜜与水的关系。借此体验数学与生活的联系,培养学生的问题意识,发挥学生学习主动性。)
(二)探索新知
1、体会化简比的必要性。再次提出问题:
哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题? 想想办法,先和同桌交流。
全班交流:你的想法与依据。(随学生回答板书)2:18=2÷18=2/18=1/9 30:270=30÷270=30/270=1/9 比的比值都是九分之一,也就是说,两个杯子中的蜂蜜与水的比其实都是是1:9。(式子后板书:1:9)
2:18=2÷18=2/18=1/9=1:9 30:270=30÷270=30/270=1/9=1:9
说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?
小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。
(在发现、解决实际问题的过程中,加深对比的意义的理解,体会化简比的必要性。)
2、理解化简比,揭示课题。
观察、比较:原来的比与后来得出的比有什么联系与区别? 根据学生发言,师板书:最简单的整数比 你能列举几个“最简整数比”吗?
通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。
指化简过程,揭示课题:比的化简
你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)刚才化简比时,用到了以前学的什么知识?
小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。
(通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。让学生谈谈自己对化简比的理解,一方面照顾到学生的个性发展,一方面促进学生知识的内化。)
3、化简比的方法。1)化简整数之比: 14︰21
(1)学生尝试(2)交流方法(3)小结归纳 化简整数之比:(1)改写成分数的形式,再进行约分,直到不能再约分为止,最后还原成比的形式;(2)或者把比的前项和后项同时除以它们的最大公约数; 2)化简小数、分数之比: 0.7:0.8
2/5:1/4 这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
3)全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)化简分数之比:(1)用比的前项除以比的后项;(2)或者把比的前项和后项同时乘以它们的最小公倍数 化简小数之比:(1)先把小数比改写成小数除法,再根据商不变的性质化简成最简整数比;(2)或者把小数改写成分数形式,再用分数的基本性质进行约分化简;
4、归纳:
(1)化简比应注意哪些问题?
注意:化简比的最后结果仍然是比,而不是数,因而不能写成带分数,整数形式。(2)化简比与求比值有什么区别?
化简比的最终结果是一个最简单的整数比;
求比值的最终结果是一个数,可以是分数、小数或整数。
(从独立尝试到师生讨论解决问题,既让学生感受到化简比的三种类型:整数与整数的比;小数与小数的比;分数与分数的比,又让学生在寻求不同题目的解决方法中巩固化简比的方法,还发挥小组骨干引领作用,培养学生的合作能力。最后鼓励学生归纳化简比的方法,力图培养学生的概括能力,并使学生体验到知识的相通性。)
(三)巩固、提高
1、填空
(1)、把7.2∶3.6化成最简单整数比是()比值是()。(2)、3∶4=6:()=()∶20=
()=()
(3)、一个比的比值是9,如果前项和后项同时除以3,比值();如果比的前项乘以4,要想使比值不变,比的后项要()。
2、选择
(1)0.75:0.1化简后的最简整数比()• A、7.5:1
B、75:10
C、15:2(2)比的前项是8,后项是2,比值是()A、4:1
B、4
C、1:4(3)4和它的倒数的最简整数比是()• A、4:1
B、1:4
C、16:1(4)5:2前项扩大为原来的3倍,要使比值不变,后项应当()。• A、增加3倍
B、扩大为原来的3倍
C不变
3、小丽的身高是1米,她妈妈的身高是160cm,小丽说她和她妈妈的身高比是1:160,你说对不对?你认为是多少?
4、商店一共运来8吨水果,后来又运来4.5吨苹果。写出运来苹果的重量和水果总重量的比。
5、身高与脚长的比大约是7:1,犯罪分子在现场留下的脚印长25cm,这个人的身高应该是多少?
(四)总结
回顾这节课,你有什么收获? 利用所学的比,你能解决生活中什么样的问题?
2012年10月23