第一篇:教学反思—和倍差倍问题
教学反思
一.成功之处
让学生经历解决问题的全过程,采用讨论交流的形式,掌握解决此类问题的方法。本节课我本着“数学来源于生活,又服务于生活”这一教学理念,从学生的实际出发,抓住了列方程和解方程这一双重任务。整节课自始至终关注学生想要的数学方法(如:如何设未知数和如何找等量关系式等)来教学,使学生在轻松快乐的学习氛围中学习数学,从而把知识转化、内化为学生的智慧和品质。
给学生思维的开放空间,让学生寻求多种解题途径。在寻求解决问题的方法时,以独立解决、小组交流的方式进行。在交流中,学生能得到多种方法,这样能拓展学生的发散思维能力。二.不足之处
在解决第二个问题时,应先找单位“1”,再找等量关系,忽略了找单位“1”这一过程。同时应注意教姿教态和语音语调。三.教学再设计
再教这个内容时,要按照思维过程整理思路,并充分体现线段图的作用,在反复的练习中,让学生能熟练掌此类题型的解题方法。
第二篇:和差问题、和倍问题、差倍问题(实用)
第三、四讲:和差问题、和倍问题、差倍问题
教学目标:通过本次课的的学习,正确运用和差问题、和倍问题、差倍问题的有关公式,理清题意,解决实际问题。
教学重点:分清类型,正确运用不同类型的数量关系。
教学难点:理清题意,准确判断题目是“和差问题、和倍问题、差倍问题”中的哪一类,然后正确运用相关的数量关系
需要课时:4课时 教学过程:
一、和差问题:
已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。基本数量关系是:
(和+差)÷2=大数(和-差)÷2=小数
解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?
分析:根据公式,我们要找出两个数的和与差,就能解决问题。由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。甲的煤多,甲是大数,乙是小数。故解法如下:
甲:(52+4)÷2=28(吨)乙:28-4=24(吨)
例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?
分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。
甲:(15+5)÷2=10(只)乙: 15-10=5(只)
练习:
1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?
2、黄茜和胡敏两人今年的年龄 是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?
3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。长和宽各是多少厘米?
二、和倍问题
已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。
解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。基本数量关系:
小数=和÷(n+1)
大数=小数×倍数 或 和-小数=大数
例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?
分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
乙:160÷(3+1)=40(本)甲:160-40=120(本)
例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?
分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。梨树的棵数:171÷3=57,求桃树的棵数时要减去6棵。桃树:171-57-6=108 梨树:(165)÷(2+1)=57(棵)桃树:171-57-6=108(棵)练习:
1、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书多少本?
2、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?
3、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库?
4、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?
三、差倍问题
已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。
解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量 3
关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。
基本数量关系:
小数=差÷(n-1)大数=小数×n 或 大数=差+小数
例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?
分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:
椅子的价格:60÷(3-1)=30(元)桌子的价格:30+60=90(元)
例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?
分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2.乙筐现有苹果:(19-7)÷(3-1)=6(千克)乙筐原来有:6+19=25(千克)甲筐原来有25千克。
练习:
1、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。两桶酒原来各多少千克?
2、六、一班有花盆的数量是六、二班的3倍,如果六、一班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?
作业:
1、甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好相等。求两桶油原来各有多少千克?
2、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。求原来两箱洗衣粉各有多少袋?
3、刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,问这个操场的面积是多少平方米?
4、小强今年15岁,小亮今年9岁。几年前小强的年龄是小亮的3倍?
5、有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第一根剩下的3倍,两根绳子原来有多长?
6、老猫和小猫去钓雨,老猫钓的鱼是小猫的3倍,如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓了多少条鱼?
第三篇:差倍问题(简单)
差倍问题
例题1 妈妈从超市买来苹果和梨,已知苹果的个数是梨的3倍,苹果的个数比梨多18个,妈妈买的苹果和梨各多少个?
练习1 新华小学三(1)班的男同学是女同学的4倍,男同学比女同学多27人,新华小学三(1)班的男同学和女同学各多少人?
例题2 哥哥的数学本比弟弟多20本,妈妈又给弟弟买了2本数学本以后,哥哥的数学本是弟弟的3倍。哥哥和弟弟原来有多少本数学本?
练习2 弟弟的故事书比哥哥多18本,哥哥不小心丢了3本,这时哥哥的故事书是弟弟的3倍。哥哥和弟弟原来有多少本故事书?
例题3 甲、乙两筐的苹果个数一样多,如果再放入甲筐18个苹果,甲筐的苹果个数是乙筐苹果个数的7倍。原来甲、乙两筐各有苹果多少个?
练习3 甲、乙两筐的苹果个数一样多,如果从乙筐拿走18个苹果,甲筐的苹果个数是乙筐苹果个数的4倍。现在甲、乙两筐各有苹果多少个?
例题4 甲、乙两筐的苹果个数一样多,如果从乙筐拿走18个苹果,甲筐放入14个苹果,甲筐的苹果个数是乙筐苹果个数的5倍。原来甲、乙两筐各有苹果多少个?
练习4 李明和小华相同本数的故事书,李明借给同学3本故事书,小华借同学5本故事书,这时小华的故事书本数是李明的3倍。原来李明和小华各有多少本故事书?
例题5 甲筐的苹果个数是乙筐苹果个数的3倍,如果从甲筐中拿出6个放进乙筐,甲、乙两筐的苹果个数一样多,原来甲、乙两筐各有苹果多少个?
练习5 哥哥和弟弟有相同本数的漫画书,哥哥给弟弟20本以后,弟弟的漫画书是哥哥的6倍。哥哥和弟弟原来有多少本漫画书?
例题6 哥哥的数学本比弟弟多10本,弟弟给哥哥20本数学本以后,哥哥的数学本是弟弟的6倍。哥哥和弟弟原来有多少本数学本?
练习6 哥哥的故事书比弟弟多8本,弟弟给哥哥1本故事书以后,哥哥的故事书是弟弟的6倍。哥哥和弟弟原来有多少本故事书?
例题7 两数相除,商是7,被除数比除数大24。被除数、除数各是多少?
练习7(1)被除数比除数大63,商是8。被除数、除数各是多少?
(2)被除数比除数大72,商是9。被除数、除数各是多少?
(3)两数相除,商是7,除数比被除数小54。被除数、除数各是多少?
例题8 两数相除,商是10,余数是2,被除数比除数大83。被除数、除数各是多少?
练习8(1)被除数比除数大27,商是6,余数是2。被除数、除数各是多少?
(2)被除数和除数相差70,商是9,余数是6。被除数、除数各是多少?
(3)除数比被除数小79,商是10,余数是7。被除数、除数各是多少?
第四篇:《“和倍”“差倍”问题》教学设计
《“和倍”“差倍”问题》教学设计
海南师范大学实验小学 刘飞
一、教学内容:人教版小学数学教材六年级上册第41~42页例6及相关练习。
二、教材分析:《含有两个未知数的和(差)倍问题》是人教版小学数学六年级上册《分数除法》这一单元中的内容,这部分教材其实是在五年级学生已经初步学会列方程解含有两个未知数的解决问题的基础上,来学习含有两个未知数的分数解决问题的解法。这一知识在算术中称为“和倍”和“差倍”问题,考虑到新课标要培养学生的发散思维能力,抽象思维能力创新能力,同时为学习比的应用做好铺垫,所以学习了算术法。从算术到代数是人们对现实世界的数量关系认识过程中的一个飞跃,在数学方法上也是一次突破。教材以篮球比赛上、下半场得分为素材引出含有两个未知数的实际问题。这样的问题如果用算术方法解决,需要逆向思考,比较抽象,思维难度大,容易出错,列方程来解决更符合顺向思维。在教学时,要让学生经历理解题意、分析解答、回顾反思的全过程。本节课教材用三个层次对学生用数学解决问题的过程给予指导,引导学生体会解决一个数学问题所要经历的步骤,了解解决问题的一般步骤和方法,学会在生活中发现并提出数学问题、解决问题,发展解决实际问题的能力。本节课主要用到的解题策略是画线段图,让学生通过画线段图分析上、下半场之间的数量分析,正确分析题意,进一步体验问题解决的一般过程和方法。本节课运用课件创设情境,指导学生多读理解题意,提高学生收集、处理、分析有效的数学信息的能力。分折问题时让学生用画一画、议一议的方式来表示条件和问题,体会画线段图的简洁明了。最后让学生列方程解答,并指导学生反思解决问题的过程。
三、教学目标:
1、知识与技能:会通过线段图理解题意,并根据关键句弄清数量关系设未知数,能列方程解答“和倍、差倍”的实际问题,理解解答思路,掌握解题方法。
2、过程与方法:让学生经历用方程解应用题的过程,培养学生的发现问题、提出问题、分析问题、解决问题能力、画图能力、表达能力和发散思维能力,抽象思维能力。
3、情感态度与价值观:让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣及成就感。
四、教学重点:正确设未知数和列出方程,关键要找出单位“1”和等量关系,转化单位“1”和用多种策略解决问题,掌握这类应用题的解题思路和多种解题方法。
教学难点:正确分析题目中的数量关系,掌握这类应用题的多种解题方法。
五、设计意图:本节课的设计从让学生自己发现问题到提出问题,最后独立分析问题和解决问题,整过设计过程都让不同层次的学生自动参与到学习中来,满足了不同学生在学习上不同的进步。符合了新课程标准的提出的基本理念,数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
六、教学过程
(一)、复习旧知,引入问题
1、甲数是乙数的 ,同学们想到了什么?
甲数:
乙数:
2、如上图,用含有字母的式子表示,如果甲数是,乙数是(3 ),甲乙两数的和是(+ 3),甲数比乙数多(3- ).如果乙数是,甲数是(),甲乙两数的和是(+ ),甲数比乙数多(- ).
3、同学们喜欢玩篮球吗?你们知道篮球比赛的规则和其它事项吗?篮球比赛的分数中也蕴涵着数学问题,今天我们就来共同探讨解决。板书课题:和倍、差倍问题。
设计意图:让学生从具体的量中抽象出数量之间的关系,最后让学生通过用线段图来表示,更加直观明了也加深了对数量关系的理解。通过复习用字母表示数量关系,分解了本课的重难点,为后面环节的列方程解答做好铺垫。
(二)、自主探究,获取新知。
1、课件出示情境图。
同学们你从图中你获得了哪些信息?根据已有的信息,你能提出哪些数学问题?
2、出示例题:六(1)班参加篮球比赛,全场得分为42分,下半场得分只有上半场的一半。六(1)班上半场和下半场各得多少分?
设计意图:这一环节主要是在例题情景中培养学生捕捉信息和语言概括的能力,明确例题中的已知条件与问题,为后面的解答做好铺垫。
3、画一画线段图。
(1)根据题意,请学生把线段图画在草稿本上,其中一个学生黑板上板演。
(2)对照板演的同学,检查自己的线段图有什么不足之处。
4、想一想:如果用方程来解答这道题目,你能在题中找出怎样的等量关系?
根据学生的回答板书:上半场的分数+下半场的分数=425、说一说:根据这些等量关系,应该把哪个量设为未知数?另一个量又可以怎样表示?
6、做一做:尝试用方程完整地解答例题,并请学生板演。
学生用方程解答预设:
方程法一:①解:设上半场得分。+=48 =32 下半场得分48-32=16(分)或32×=16(分)。
方程法二:②解:设下半场得分。+2=48 =16 上半场得分48-16=32(分)或16×2=32(分)。
讨论:为什么同一道题目列出的方程不一样呢? 区别在哪里?
从不同的等量关系出发,我们可以列出不同的方程,关键是要从题目信息中找准数量关系。
7、根据线段图,你能用算术法解答吗?
(1)学生尝试独立解答,教师巡视,收集学生不同的解题方法,出示在实物投影上。
(2)解题方法预设:
算术法一(用份数):下半场得分48÷(1+2)=16(分)上半场得分48-16=32(分)或16×2=32(分)。
算术法二(用分数)方法三:上半场得分48÷(1+)=32(分)下半场得分48-32=16(分)或32×=16(分)。
师生共同小结。通过刚才的例题的学习,我们知道了如何求“和倍”问题的的解答方法,在解题时,我们应先找准题目中的等量关系,设其中一个量为未知数,用两种量之间的关系表示出另一个量,再列出方程进行解答,也可以用算术的方法进行解答。
8、让同学们比较这方程法和算术法,选择你最容易理解最喜欢的方法。
设计意图:线段图是解决问题的一种重要手段,尤其到了六年级,线段图的教学尤为重要。教师在教学解决问题时,要尽可能给学生创造画线段图的机会,为分数应用题教学分散难度。例6的教学,有线段图做铺垫,学生并不困难,因此,可以放手让学生自己解决。但本节课的重点是如何用方程解决“和倍问题”所以教师要适时把学生引导到用方程解决问题的思路上来。不但要鼓励学生用多种思路设未知数列方程,还要能引导学生理清思路。让学生尝试用不同的方法解决同一道题目,既培养了学生分析问题和解决问题的能力,又培养了学生的发散性思维。最后让学生选取喜欢的方法进行解答,有利于解题方法的最优化。
9、回顾反思
师:怎样验证我们的结果是否正确? 生:把问题变成条件,其中的一个条件变成问题。学生验证,交流汇报。生1:28+14=42,全场得分确实是42分,解答是正确的。生2:14÷28 =,下半场得分确实是上半场的一半,解答是正确的。
设计意图:让学生对自己的探索过程进行回顾与反思,是对自己的学习活动进行的有效自我调节,是智慧成熟的标志。可以培养学生反思的意识,使学生养成反思的习惯,提高学生反思的能力,进而使学生调整学习过程,改善学习策略。
(三)自主小结,得出方法
特点:已知两个量的和,其中一个量是另一个量的几分之几,求这两个量。
解题方法:方程(几分之几或几倍),算术(份数、分数)
解题步骤:一、审 二、画 三、找 四、列 五、验
(四)、巩固练习,强化提高
1、仔细想,认真填。
一套桌椅160元,椅子价钱是桌子价钱的,设桌子价钱为x元,则椅子价钱为()元,列方程为()+()=160,设椅子价钱为x元,则桌子价钱为()元,列方程为()+()=160。
2、看图解决问题。请用不同的方法解答。
3、美术小组比航模小组多15人,美术小组的人数是航模小组的,美术小组和航模小组各多少人?
这道题和前面的解决问题相比,这道题有什么不同?你会解答吗?
4、选择。如果设科技书为X本。
①、文艺书和科技书共25本,文艺书是科技书的,求科技书的方程是()。.
②、文艺书比科技书少25本,文艺书是科技书的,求科技书的方程是()。
A、 B、 C、 D、
5、拓展题:学校买来篮球和排球共50个,篮球的个数比排球多。学校买来篮球和排球各多少个?
设计意图:通过练习让学生掌握巩固所学的新知,第3题是变式题由已知两个量的和变成已知两个量的差,变成“差倍”问题,旨在培养学生仔细审题的习惯,同时注重培养学生举一反三的能力。练习中基本上采用全部放手的做法,让学生独立分析解答,教师引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。
(五)、总结延伸,布置作业
1、通过这节课的学习,你们有什么收获?
特点:已知两个量的和(差),其中一个量是另一个量的几分之几,求这两个量。
解题方法:方程(几分之几或几倍),算术(份数、分数)
解题步骤:一、审 二、画 三、找 四、列 五、验
2、列方程解答应用题要注意哪些问题?
3、完成教材第44页练习九第1题至第5题。
设计意图:让学生通过自己总结本节课的学习内容,加深了对本节课所学知识的理解和巩固又培养了学生的总结概括的能力。
六、板书设计:
例6:一次篮球比赛中,全场得分是48分,下半场得分是上半场得分的。上、下半场各得多少分?
方程法一:①解:设上半场得分。
+=48 =32
下半场得分48-32=16(分)或32×=16(分)。
方程法二:②解:设下半场得分。
+2=48 =16
上半场得分48-16=32(分)或16×2=32(分)。
算术法一(用份数):下半场得分48÷(1+2)=16(分)
上半场得分48-16=32(分)或16×2=32(分)。
算术法二(用分数):上半场得分48÷(1+)=32(分)
下半场得分48-32=16(分)或32×=16(分)。
答:上半场得分32分,下半场得分16分。
第五篇:《“和倍”“差倍”问题》教学设计(推荐)
《“和倍”“差倍”问题》教学设计
浙江省诸暨市暨阳街道浣纱小学 祝锡炯(初稿)浙江省诸暨市实验小学教育集团 陈菊娣(修改)浙江省诸暨市教育局教研室 汤 骥(统稿)
教学内容:人教版小学数学教材六年级上册第41~42页例6及相关练习。
教学目标:
1.会通过线段图理解题意,并根据关键句弄清数量关系设未知数,能列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题,理解解答思路,掌握解题方法。
2.从解题过程中切实理解用方程解应用题的优越性,提高学生列方程解决问题的自觉性与积极性。
3.让学生对生活中的有关数学信息予以选择、加工,进而解决问题,感悟稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的内在联系,培养学生分析问题、解决问题的能力。
教学重点:列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题,理解解题思路,掌握解题方法。
教学难点:正确分析题目中的数量关系,会设未知数。
教学过程:
一、复习旧知,引入问题
1.根据题意,写出关系式。
(1)白兔的只数是灰兔的;
(2)美术小组的人数是航模小组的;
(3)小明的体重是爸爸的
;
(4)男生人数是女生的一半。
2.根据线段图,列出方程
想一想:线段图相同,列出的方程为什么不同?
你为什么这样列方程?你能用一句话概括两幅线段图中甲和乙的关系吗?
3.教师说明:今天我们就要来学习解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。
【设计意图】准备题的设置,是从学生已有知识经验出发的。一方面复习了找单位“1”、分析数量关系和如何列方程,分解了本课的重难点;另一方面,为后面环节的对比分析、沟通联系做好铺垫。
二、探索交流,解决问题
(一)出示例6
1.课件出示例6图片。
2.提问,你从图中获得了哪些信息?
(1)知道了我们班全场的总得分;
(2)知道了下半场得分是上半场的。
3.想一想,根据已有的信息,你能提出哪些数学问题?
引导学生提出:上半场和下半场各得多少分?
4.请学生概括图片信息,编出完整的应用题。
引导学生概括:六(1)班参加篮球比赛,全场得分为42分,下半场得分只有上半场的一半。六(1)班上半场和下半场各得多少分?
【设计意图】这一环节主要是在例题情景中培养学生捕捉信息和语言概括的能力,明确例题中的已知条件与问题,为后面的解答做好铺垫。
(二)解答例题
1.画线段图。
(1)根据题意,请学生把线段图画在草稿本上,其中一个学生黑板上板演。
(2)对照板演的同学,检查自己的线段图有什么不足之处。
2.独立解答。
(1)学生尝试独立解答,教师巡视,收集学生不同的解题方法,出示在实物投影上。
(2)解题方法预设:
方法一:
方法二:
(3)学生逐题讲解解题思路,教师配合线段图加以说明。
3.教学用方程解答例6。
(1)想一想:如果用方程来解答这道题目,你能在题中找出怎样的等量关系?
根据学生的回答板书:
上半场的分数+下半场的分数
;
下半场的分数=上半场的分数;
;
上半场的分数=下半场的分数
下半场的分数=上半场的分数;
„„
(2)说一说:根据这些等量关系,应该把哪个量设为未知数?另一个量又可以怎样表示?
①把上半场设为分,那么下半场可以表示为
②把下半场设为分,那么上半场可以表示为
分或分或
分; 分。
(3)做一做:用方程完整地解答例题,并请学生板演。
学生用方程解答预设:
①解:设六(1)班上半场得分为,则下半场得分为。
②解:设六(1)班下半场得分为,则上半场得分为。
③解:设六(1)班上半场得分为,则下半场得分为
。。
④解:设六(1)班下半场得分为,则上半场得分为。
。
(在PPT中呈现教材中的解答过程。)
(4)如何验证方程的结果是否正确?
(5)比一比:此题不同的列方程解答方法的联系和区别是什么?
教师引导:从不同的等量关系出发,我们可以列出不同的方程,关键是要从题目信息中找准数量关系。
(三)小结
通过刚才的例题的学习,我们知道了如何求稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解答方法,我们也可以把今天学习的这类题型叫做“和倍”问题。在解题时,我们应先找准题目中的等量关系,设其中一个量为未知数,用两种量之间的关系表示出另一个量,再列出方程进行解答。
【设计意图】线段图是解决问题的一种重要手段,尤其到了六年级,线段图的教学尤为重要。教师在教学解决问题时,要尽可能给学生创造画线段图的机会,为分数应用题教学分散难度。例6的教学,有线段图做铺垫,学生并不困难,因此,可以放手让学生自己解决。但本节课的重点是如何用方程解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题,所以教师要适时把学生引导到用方程解决问题的思路上来。不但要鼓励学生用多种思路设未知数列方程,还要能引导学生理清思路。
三、巩固练习,强化提高
(一)基本练习
1.完成练习九第2、4题。
2.鼓励学生列方程解答。
(二)拓展提高
1.把练习九第3题进行适当改编,拓宽学生思路。
学校美术小组的人数是航模小组人数的,美术小组比航模小组多15人,美术小组和航模小组各多少人?
2.比较这一题与前面的习题有什么不同?
3.小结:前面的习题称为“和倍”问题,这题我们可以称之为“差倍”问题。我们在学习数学时,应该举一反三,做到融会贯通。
【设计意图】习题设计上,我们需要做到循序渐进。练习九的第1、2、4、5题基本上同例题一样属于“和倍”问题,鼓励学生用方程解答,不但强化了这节课的重点,也为后续的学习奠定了基础。其次,把练习九的第3题稍加改动,变成“差倍”问题,旨在培养学生仔细审题的习惯,同时注重培养学生举一反三的能力。练习中基本上采用全部放手的做法,让学生独立分析解答,教师引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。
四、总结延伸,布置作业
1.这节课你有什么收获?
2.列方程解答应用题要注意哪些问题?
3.完成教材第44页练习九第1题、第5题。