探地雷达隧道检测报告

时间:2019-05-14 01:11:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《探地雷达隧道检测报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《探地雷达隧道检测报告》。

第一篇:探地雷达隧道检测报告

探地雷达测试报告

编 号:少微山-2012-2

项 目 名 称: 少微山隧道衬砌质量无损检测

委 托 单 位:丽水市中恒工程检测有限公司

地 点: 丽 水 市 紫 金 路

单 位: 丽水市中恒工程检测有限公司

二0一二年二月十九日

注 意 事 项

1.复制的报告或有涂改的报告无效。2.报告无审核人及批准人签字无效。

3.对报告若有异议,应于收到报告之日起十五日内向检测单位提

出。

地址:丽水市开发北路149号 邮政编码:323000 电话:0578-2058979 传真:0578-2058977 电子邮箱:318389752@QQ.com

丽水中恒工程检测有限公司隧道无损检测报告

项目名称: 少微山隧道衬砌质量无损检测 委托单位: 丽水市中恒工程检测有限公司

检测人员:

报告编写:

报告审核:

I

丽水中恒工程检测有限公司隧道无损检测报告

目 录

1.工程概况............................................................3 2.检测依据............................................................3 3.检测精度要求........................................................3 4.检测原理............................................................3 5.采用的仪器和设备....................................................3 6.测线布置............................................................7 7.数据处理和解释......................................................7 8.探地雷达检测结果....................................................9 9.探地雷达检测结果...................................................20

II

丽水中恒工程检测有限公司隧道无损检测报告

青岛LTD探地雷达检测报告

1.工程概况

2.检测依据

根据

TB 10223-2004

J341-2004《铁路隧道衬砌质量无损检测规程》

JTG F60-2009《公路隧道施工技术规范》

JTG F80/1-2004《公路工程质量检验评定标准》第一册 土建工程

3.检测精度要求

厘米级

4.检测原理

(1)地质雷达(GroundPenetratingRadar,简称GPR)检测原理

地质雷达方法是一种用于确定地下介质分布的广谱(1 MHz一1GHz)电磁技术。可广泛地应用于浅层的混凝土结构、构造以及于浅层的地质结构、构造和岩性检测。它是利用超高频脉冲电磁波为震源,多以自激自收的形式,可采用连续、间断两种方式探测地下介质分布的一种地球物理勘探方法。具有快速、无损、连续检测、实时显示等特点。

地质雷达检测原理是根据地质雷达这一超高频短脉冲(106-109Hz)电磁波在结构介质中传播规律确定的。质中传播规律确定的。

电磁波在介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性质及几何形态而变化。因此,根据接收到波的旅行时间(亦称双程走时)、幅度与波形数据,可推断介质的结构。

由于地质雷达的发射天线与接收天线之间距离很小,甚至合二为一。当被检结构倾角不大时,反射波的全部路径几乎是垂直平面的。因此,在测线不同位置

丽水中恒工程检测有限公司隧道无损检测报告

上法线反射时间的变化就反映了被检结构的构造形态。地质雷达工作频率高,在工程及地质介质中以位移电流为主。因此,高频宽带带电磁波传播,实质上很少频散,速度基本上由介质的介电性质决定。因此,电磁波传播理论与弹性波的传播理论有许多类似地方。两者遵循同一形式的波动方程,只是波动方程中变量代表的物理意义不同。地质雷达检测理论是基于地质雷达两者遵循同一形式的波动方程,只是波动方程中变量代表的物理意义不同。地质雷达检测理论是基于地质雷达介电常数有关,雷达检测的探测效果主要取决于不同介质分接口的电性差异的大小,即介质层间介电常数差异越大,则探测效果越好,介质异常在雷达剖面上反映也就越明显,从而易于识别。实测时雷达波通过天线进入衬砌及围岩中,图1 雷达探测原理示意图

遇到材质有差别的介质时,产生接口反射,接收天线接收到反射波,测出反射波

4z2x2的入射、反射双向走时t,就可计算出反射波走过的路程长度,从而

v求出天线距反射面的距zvt(图1)。式中 z为天线到反射面的距离(m);t2为雷达波从发射至接收到反射波的走时,用ns(纳秒计),1ns=10-9秒;x为收发天线间距离(m);v 为雷达波的行走速度(m/ns);可以用几何光学的概念来看待

c直线传播的雷达波的透射和反射。v0。其中 C0 为雷达波在空气中的传播速度约30cm/ns;ε为介电常数,由波所通过的物质决定。(2)超声波法检测原理

混凝土的物理力学性质受其内部结构特性与外部环境条件等多种因素制

丽水中恒工程检测有限公司隧道无损检测报告

约,其声波传播特性反映了混凝土的应力应变关系。根据弹塑性介质中波动理论,应力波波速为:

VPE(1)

(1)(12)其中E为介质的动态弹性模量,ρ为密度,μ为泊桑比。而弹性模量与介质的强度之间存在相关性。超声波在混凝土中的传播参数(声时值、声速、波幅、衰减系数等)与混凝土介质的物理力学指标(动弹模、密度、强度)之间的相关关系就是超声检测的理论依据。当混凝土介质的构成材料、均匀度、施工条件等内外因素基本一致时,超声波在其中的传播参数应基本一致;而介质中存在缺陷时,超声波则在传播过程中产生绕射、反射、衰减等变化现象,使其声时、声速、频谱等产生变化。高精密声波反射—接收仪器及传感器可记录与描述混凝土的内在质量。

5.采用的仪器和设备

根据使用领域的要求,我们使用LTD-2100型探地雷达主机配置400MHz,1500MHz屏蔽天线。

探地雷达不同频率天线的测深能力不同,频率越低,探测深度越大,但是分辨率会降低;频率越高,探测深度越浅,分辨率会提高。探地雷达探测参数设置:

400 MHz屏蔽天线,采样点512,采集时窗70ns,手动迭加4次,采用测距轮触发探测方式,有效检测深度为2~3米,检测精度和深度可满足混凝土结构工程要求。

1500MHz屏蔽天线,采样点512,采集时窗20ns,手动迭加4次,采用测距轮触发探测方式,有效检测深度为0.1~0.5米,检测精度和深度可满足钢筋混凝土结构工程要求。

检测设备及现场照片如下图所示:

丽水中恒工程检测有限公司隧道无损检测报告

图(1)LTD-2100型探地雷达主机

图(2)400MHZ屏蔽天线

图(3)1500MHZ屏蔽天线

丽水中恒工程检测有限公司隧道无损检测报告

6.测线布置

根据测试要求,在丽水市少微山隧道进行了二衬数据采集测试。

数据处理和解释:

探测的雷达图形以脉冲反射波的波形形式记录,以波形或灰度显示探地雷达垂直剖面图。探地雷达探测资料的解释包括两部分内容:一为数据处理,二为图像解释。由于地下介质相当于一个复杂的滤波器,介质对波的不同程度的吸收以及介质的不均匀性质,使得脉冲到达接收天线时,波幅减小,波形变得与原始发射波形有较大的差异。另外,不同程度的各种随机噪声和干扰,也影响实测数据。因此,必须对接收信号实施适当的处理,以改善资料的信噪比,为进一步解释提供清晰可变的图像,识别现场探测中遇到的有限目标体引起的异常现象,对各类图像进行解释提供依据。

图像处理包括消除随机噪声、压制干扰,改善背景;进行自动时变增益或控制增益以补偿介质吸收和抑制杂波,进行滤波处理除去高频,突出目标体,降低背景噪声和余振影响。

图像解释和识别异常是一个经验积累的过程,一方面基于探地雷达图像的正演结果,另一方面由工程实践成果获得。只有获得高质量的探地雷达图像并能正确的判别异常,才能获得可靠、准确的探测解释结果。

识别干扰波及目标体的探地雷达图像特征是进行探地雷达图像解释的核心内容。探地雷达在接收有效信号的同时,也不可避免地接收到各种干扰信号,产生干扰信号的原因很多,干扰波一般都有特殊形状,在分析中要加以辨别和确认。

主要判定特征:

1.密实:衬砌信号幅值较弱,波形均匀,甚至没有界面反射信号; 2.不密实:衬砌界面反射信号强,信号为强反射信号,同相轴不连续,错断,一般区域化分布;

3.空洞:衬砌界面反射信号强,呈典型的孤立体相位特征,通常为规整或不规整的双曲线波形特征,三振相明显,在其下部仍有强反射界面信号,两组信号时程差较大;

4.脱空:衬砌界面反射信号强,呈带状长条形或三角形分布,三振相明显,通常有多次反射信号;

丽水中恒工程检测有限公司隧道无损检测报告

5.钢筋网:有规律的连续的小月牙形强反射信号,月牙波幅较窄; 6.钢拱架:单个的月牙形强反射信号,月牙波幅较宽; 7.钢格栅:连续的两个双曲线强反射信号。

丽水中恒工程检测有限公司隧道无损检测报告

7.探地雷达检测结果

⑴ 少微山隧道二衬边墙钢筋网分布测试: ① GC400MHz屏蔽天线钢筋测试结果:

② GC400MHz屏蔽天线二衬缺陷测试结果

丽水中恒工程检测有限公司隧道无损检测报告

⑵少微山隧道边墙二衬厚度测试: ①GC400MHz屏蔽天线测试结果:

②GC400MHz屏蔽天线测试厚度报表:

丽水中恒工程检测有限公司

2012年2月19日

丽水中恒工程检测有限公司隧道无损检测报告

第二篇:探地雷达

探地雷达原理及应用读书报告

班级:061094班 姓名:洪旭程 学号:20091001724

探地雷达探测是一种先进的测试技术,是近十余年发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在今后的工程探测领域发挥着愈来愈重要的作用。因此,对广大工程技术人员来说,了解和学习探地雷达的原理及应用是非常必要的。

探地雷达探测技术在方法、仪器等方面仍在发展,其分辨率和探测范围也在不断的提高和扩大,比如美国地球物理调查系统公司(Geophysical Survey System Inc.)的SIRO10H 仪器,其标称的最小探测深度为4 cm ,最大探测深度为50 m ,最小可探测对象尺度为毫米级。但探地雷达探测技术与其它的地球物理勘查技术一样,其探测效果与其应用条件密切相关。

一、探地雷达的工作原理

探地雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回到地面时由接收天线所接收。在对接收天线接收到的雷达波进行处理和分析的基础上,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示)。这是一种非破坏性的探测技术,可以安全地用于城市建设中的工程场地,并具有较高的探测精度和分辨率。

图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录,通过主机的回放处理,就可以得到雷达记录的回波曲线(如图2 所示)。

图2 中横坐标的单位为m ,横轴代表地表面的探测距离,在地表面均匀打点可以得到相应点位的地下介质分布情况;纵坐标

代表的是电磁波从发射到遇见地下目标体或基岩时反射回地面并被仪器接收所需要的时间。有了雷达记录的双程反射时间即可据公式(1)算出该界面的埋藏深度H :

H =(t·c)2 εr(1)其中, t 为目标层雷达波的反射时间;c 为雷达波在真空中的

传播速度(0.3 m/ ns);εr 为目标层以上介质相对介电常数均值。

二、探地雷达数据采集及处理

2.1 数据采集

探地雷达采用高频电磁波的形式进行地下介质的探测,其运动学规律与地震勘探方法类似,因而地震勘探的数据采集方法可以被借鉴到探地雷达野外测量中,其中包括反射﹑折射和透射测量方式。在反射测量方式中以剖面法多次覆盖技术为主,其他方法为辅。剖面法是发射天线和接收天线以固定间距沿测线同步移动的一种测量方式。剖面法的测量结果用探地雷达时间剖面图像来表示。当天线距离很小时,相当于自激自收的数据采集方式,得到的记录能较准确地反映测线处各反射界面的形态和介质体的空间位置等信息。然而,由于地下介质对电磁波的吸收,来自深处界面的反射波会由于信噪比过低而不易识别,这时需应用不同天线距的发射-接收天线在同一测线上进行重复测试,然后将测试记录中相同位置的记录进行叠加,以增强对深部介质探测的分辨率。在探地雷达探测过程中,可以根据现场地形﹑设备状况以及实际需要来选择不同的测量方式。

2.2 数据处理

探地雷达数据处理的目的主要是压制各种噪声,增强有效信号,提高资料信噪比,以最大可能的分辨率在探地雷达图像剖面上显示反射波,以便从数据中提取速度、振幅、频率、相位等特征信息,帮助解释人员对资料进行有效的地质解释。探地雷达的数据处理流程一般分两部分:第一部分为数据编辑,包括数据合并、废道剔除、测线方向一致化、漂移处理;第二部分是常规处理以及探地雷达图像增强处理,包括数字滤波、振幅恢复、均衡、归一化、小波变换、时深转换等。

三、影响探地雷达的因素

影响探地雷达的探测深度、分辨率以及精度的因素主要包括内在与外在的两方面。内在 因素主要是指探测对象所处环境的电导率,介电常数等因素;外在因素主要与探测方法有关, 如探测所采用的频率,采样速度等。在实际应用中,综合考虑这些因素,采用适当的方法技术, 是探测成功与否的关键。本文主要就环境电导率、介电常数以及探测频率的影响做一些探讨。

3.1 环境电导率的影响

环境电导率是影响探地雷达探测深度的重要因素,高频电磁波在地下介质的传播过程中 会发生衰减。由于探地雷达的工作频率较高,一般认为,高频电磁波在地下介质的传播过程满 足介电极限条件,即ωεmσ。ω为电磁波的频率;ε为环境的介电常数;σ为环境的电导率。高频电磁波的衰减系数满足

(1)

其趋肤深度

(2)

实际上,由于大地电阻率一般都比较低, 达不到介电极限条件, 其工作条件介于准静态极限(ωεnσ)与介电极限条件之间。对于静态极限,其趋肤深度

(3)

可见,不管工作条件是在介电极限还是在准静态极限条件,或者是界于两者之间,其趋肤深度 都是随电导率的增大而减少,即环境的电导率越低,高频电磁波的衰减越慢,探测深度越大。在工程实践中,环境电导率的值一般在4~10s)σa + ns σw +(1s)εa + ns εw +(1ε2)/(ε1 + ε2),(7)由于探地雷达是接受反射波的信息来探测目标体,而反射信号的强弱取决于介电常数的差异,因此,介电常数的差异是探地雷达应用的先决条件。

3.3 探测频率的影响

一般的探地雷达都拥有多种频率的天线,一些厂家的天线中心频率低频可达到16 MHz ,高频可达到2 GHz。通常,把探测时所采用的天线中心频率称为探测频率,而其实际的工作频率范围是以探测频率为中心的频带,探测频率主要影响探测的深度和分辨率。当探地雷达工作在介电极限条件时,高频电磁波的衰减几乎不受探测频率的影响,比如,电磁波在空气中传播,由于不存在传导电流,电磁波不发生衰减。但实际上,由于大地电阻率一般都比较低,其工作条件达不到介电极限条件。由于传导电流的存在,高频电磁波在传播过程中发生衰减,其衰减的程度随电磁波频率的增加而增加。因此,在实际工作时,必须根据目标体的探测深度选用合理的探测频率。在工程地质勘察中,勘察深度一般在5~30 m ,选择低频探测天线,要求探测频率低于100 MHz。对于浅部工程地质,探测深度在1~10 m ,探测频率可选择100~300 MHz;对于探测深度在0.5~3.5 m 的工程、环境以及考古勘察工作,探测频率可选用300~500 MHz;对于混凝土、桥梁裂缝等厚度在0~1 m 左右的检测,探测频率一般选用900 MHz~2 GHz。

探测频率是制约探测深度的一个关键因素,同时也决定了探测的垂直分辨率,一般是探测频率越高,探测深度越浅,探测的垂直分辨率越高。对于层状地层,以Tm 表示可分辨的最小 层厚度,λ为高频电磁波的波长, 则有Tm = 0.5λ, 由于λ= v/ f , 其中, v 为电磁波的传播速度, f 为电磁波的频率,而又因(6)式,于是Tm = c/ 2 f ε。由此可见,探测频率和介质的介电常数是决定垂直分辨率的两个主要因素。对于金属圆柱体,其可探测的最小直径约为埋深的8 % ,埋深大于3 m,其可探测的最小直径约为埋深的50 %。探测频率也是制约水平分辨率的一个关键因素。探地雷达向地下传播是以一个圆锥体区域向下发送能量, 如图1 所示。电磁波的能量主要聚集在能量区, 而不是一个单点上。在能量区的中央有一个称为第一Fresnel 带的区域。雷达接收的反射波能量主要来自该区域,因此,反射波的信号反映的是反射区内介质的平均效应,也就是说,当水平尺度小于反射区尺度时,雷达是难以分辨的,而反射区的半径Rf 主要由电磁波的波长λ和反射面的深度R0 决定,其关系为Rf =(λR0 + 1/ 42λ)1/ 2。电磁波频率越高,波长越短,反射区的半径越小,水平分辨率高。

四、探底雷达的应用实例

4.1管线探测中的运用

地质情况

沪宁高速公路改造工程, 在跨越丹阳运河时需进行大口径灌注桩的施工。由于石油天然气管道在设计的桩位附近, 准确位置不详, 为保证打桩工程的安全实施, 需查明该管线精确的水平位置。为了穿越运河, 管线的埋深相当大, 属于超深管线, 所以探测难度较大。

推断解释

采用探地雷达型号为加拿大Sensor & Soft-w are Inc.生产的PU LSE EKKO-4 型。沿着管线的走向一共布置了三条剖面, 每条剖面走向垂直于管线走向, 剖面按照对应的桥桩进行编号, 即分别为55#、52# 和50#。使用天线频率为50MH z, 天线间距为1m, 测点间距为0.25m。探测结果分别如图

3、图4 和图5 所示,雷达探测波形图的水平坐标为距离(单位: m), 左侧纵坐标为雷达波双程传播时间(单位: ns), 右侧

纵坐标为深度(单位: m)。55# 雷达剖面(图3)中, 在水平位置13.5~15.5m、深度方向16~ 18m 区域出现较为明显的异常反射波;在该深度区域内, 所圈定的异常范围内其反射波振幅明显强于周围介质的反射波的振幅, 表明此位置处的确存在强反射体, 即天然气管 道。

52# 雷达剖面(图4)中, 在水平位置19.0~21.0m、深度方向26~ 28m 区域出现较为明显的异常反射波;在该深度区域内, 所圈定的异常范围内其反射波振幅明显强于周围介质的反射波振幅, 表明此位置处的确存在强反射体, 即天然气管道。

50# 雷达剖面(图5)中, 在水平位置17.0~18.75m、深度方向26~ 28m 区域出现较为明显 的异常反射波;在该深度区域内, 所圈定的异常范围内其反射波振幅明显强于周围介质的反射波振幅, 表明此位置处的确存在强反射体, 即天然气管道;此处应当说明的是, 在本条雷达剖面的结束位置处仍没未看到天然气管道反射波与另一侧周围介质的分界面, 是因为该剖面结束位置处有一水沟, 导致测线只能在该位置结束, 因此剖面未能显示出全部异常区。根据本次探测结果, 高速公路桥的基桩距探地雷达探测到的天然气管道中心地面投影位置最小达3.5m, 桩基施工只要控制好垂直度, 不会触及到天然气管道, 可以安全施工。

4.2隧道超前预报中的运用

地质情况

在宜万铁路某施工隧道进行超前预报,测区属构造剥蚀—溶蚀深切割中山,基本地形配置为台原山地和深切峡谷。地势北高南低,山顶高程1 593~1 100 m ,河谷切割深度200~700 m ,山脉一般沿NE 向和EW 向延伸。地形条件对区内岩溶发育起明显控制作用,岩溶发育总体呈深切峡谷型特征。测区地处亚热带温暖湿润气候区,四季分明,冬季干冷少雨,夏季湿热多雨,其气候条件有利于岩溶发育。

推断解释

图2(a)是使用瑞典RAMACPGPR 探地雷达100MHz 主频天线采集的雷达数据,采样频率995 MHz ,采样点数为512 ,天线间隔110 m ,采样间隔011 m。从图上可以明显看出,在掌子面前方519~718 m 和1114~1410 m 之间分别各有一个明显异常。后经开挖验证,第一处异常为不同岩性的界面,第二处异常是一夹泥薄层,并与隧道顶部的一个大溶洞相通,因该地区在预报检测之后发生过大的降雨,在实际开挖时发生了突泥。由于事先采取了有效的防范措施,所以未造成任何工程事故。探地雷达的隧道超前预报工作为隧道安全施工起到了保驾护航的作用。图2(b)是用瑞典RAMACPGPR 探地雷达50 MHz主频天线采集的雷达数据,采样频率为499 MHz ,采样点数为480 ,天线间隔110 m ,采样间隔011 m。

从图上可以看出, 在掌子面前方810~1615 m 处有一处明显异常。数据采集过程中,发现隧道已开挖部分大多为碳质灰岩,而在接近掌子面的地段,碳质灰岩中夹杂的方解石明显增多,这是岩溶发育或裂隙发生的初步特征,因此判断该处异常可能是富含水。经开挖验证,现场情况与预报结果相符。

4.3水坝渗漏检测中的运用

地质情况

黑龙江省甘南县某水库始建于1958 年, 为省内大型水库。该水库的坝型为粘土均质坝, 表层为块石护坡。1998 年遭受超百年不遇洪水, 库区水位达205.69 m, 土坝后坡在高程193~ 200 m 范围内发生33 处面积不等的严重散浸(散浸是指在坝体下游出现零星分布的多处浸水现象)和局部的集中渗流。

推断解释

为了查明造成散浸的原因, 查明散浸点在坝体内的分布情况, 采用地质雷达方法对坝体进行了全面的检测。在平行坝轴线在坝顶、前坡马道、后坡马道共布置5 条地质雷达测线。地质雷达工作频率为40 MHz, 时间窗口为900 ns, 64 次迭加, 天线间距1 m, 采样点距1 m。坝顶测线的雷达检测结果显示, K 0+ 060-K 0+ 120 及K0+ 240-K0+ 400 桩号的雷达图像中出现多处无规律地呈零星分布的强反射, 图1 为桩号K0+ 240-K0+ 400 的雷达测量剖面图。图中强反射区距坝顶埋深约10~ 12 m。由于该水坝是均质土坝, 雷达工作场地也没有其他干扰因素, 因此, 这种呈零星分布的强反射只能是坝体局部粘土受水浸润处于相对饱和状态, 与周围未受到水浸润的粘土形成明显的电性界面所形成。可见, 在带压力的水体作用下, 长期受浸泡的土体粘粒形成泥浆, 并向坝体下游逐渐渗出, 形成散浸。后期的钻探取心表明,桩号K0+ 235-K0+ 400 处坝顶11 m 以下的粘土含水量明显大于其它地段, 是发生散浸的严重区段。散浸现象在雷达图像上表现为断断续续的强反射,呈零星的条带状分布, 强反射处雷达波的视频率变低, 波形变宽, 并伴有较强的多次波出现。

参考文献

[1] 李大心.探地雷达方法及应用[ M ].北京: 地质出版社, 1994.[2] 陈军, 赵永辉, 万明浩.探地雷达在地下管线探测中的应用.(同济大学海洋与地球科学学院)[3]王正成1 ,谭巨刚2 ,孔祥春3 ,汪桂荣3 ,纪勇鹏3.探地雷达在隧道超前预报中的应用(11 中国地质大学(北京),北京 100083;21 湖南省地球物理地球化学勘查院,长沙 410000;31 北京鑫衡运科贸有限责任公司,北京 100029)[4] 董延朋,孔祥春.影响探地雷达工作的因素分析.(1.山东省水利科学研究院,山东济南250013;2.北京鑫衡运科贸有限责任公司)[5] 刘立春.岩溶隧道探地雷达超前预测预报技术.(中铁十三局集团有限公司, 吉林长春130033)[6] 肖宏跃1,雷 宛1,杨 威2.探地雷达特征图像与典型地质现象的对应关系.(1.成都理工大学信息工程学院,四川 成都 610059;2.中国水电顾问集团成都勘测设计研究院,四川 成都610072)[7] 李大洪.探地雷达的应用现状及发展前景.(煤炭科学研究总院重庆分院 630037)[8] 常铮.探地雷达的工作原理及应用

戴前伟 ,吕绍林 ,肖彬.探地雷达的应用条件探讨.(1.中南工业大学,长沙 410083;2.深圳市勘察研究院,深圳 518026)[10] 薛建1, 王者江1, 曾昭发1, 田钢1, 董彦明2, 李连杰2, 宋克民2.地质雷达方法在水坝渗漏检测中的应用(1.吉林大学地球探测与信息技术学院, 吉林长春130026;2.吉林省水利水电勘察设计研究院, 吉林长春130012)

第三篇:探地雷达的发展与现状

探地雷达的发展与现状

探地雷达的历史最早可追溯到20世纪初。1904年,德国人Hülsmeyer首次将电磁波信号应用于地下金属体的探测。1910年,Leimback和Löwy以专利形式提出将雷达原理用于探地,他们用埋设在一组钻孔中的偶极天线探测地下相对高导电性质的区域,正式提出了探地雷达的概念。1926年Hülsenbeck第一个提出应用脉冲技术确定地下结构的思路,他指出介电常数不同的介质交界面会产生电磁波反射。由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的 多,之后二三十年尽管在美国出现过一些相关的专利,这项技术很少被运用到其它领域,直到50年代后期,探地雷达技术才慢慢重新被人们所重视。探地雷达在矿井(1960,J.C.Cook)、冰层厚度(1963,S.Evans)、地下粘土属性(1965,Barringer)、地下水位(1966,Lundien)的探测方面得到了应用。1967年,一个与stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年Procello将其于探测月球表面结构。同样在1972年,Rex Morcy和Art Drake开创了GSSI(Geophysical Survey Systems Inc.)公司,主要从事商业探地雷达的销售。随着电子技术的发展,数字磁带记录问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探地雷达的实际应用范围在70年代以后迅速扩大,其中有 :石灰岩地区采石场的探测(1971,Takazi;1973,kithara;)、淡水和沙漠地区的探测(1974,R.M.Morey;1976,P.K.Kadaba)、工程地质探测(1976,A.P.Annan和J.L.Davis;1978,G.R.Olhoeft,L.T.Dolphin)、煤矿井探测(1975,J.C.Cook)、泥炭调查(1982,C.P.F.Ulriken)、放射性废弃物处理调查(1982,D.L.Wright;1985,O.Olsson)、以及地面和井中雷达用于地质构造填图(1997,M.Serzu)、水文地质调查(1996,A.Chanzy;1997,Chieh-Hou Yang)、地基和道路下空洞及裂缝调查、埋设物探测、水坝的缺陷检测、隧道及堤岸探测等。

自70年代以来、许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国Geophysical Survey System Inc公司的SIR系统、Microwave Associates 的MK系列,加拿大Sensor & Software的Pulse Ekko系列,瑞典地质公司(SGAB)的RAMAC/GPR系列,日本应用地质株式会社OYO公司的GEORADAR系列及一些国内产品(电子工业部LTD系列,北京爱迪尔公司CR-20、CBS-900等)。这些雷达仪器的基本原理大同小异,主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,多态雷达系统,层析成像雷达系统等。

国内探地雷达的研究始于70年代初。当时,地矿部物探所、煤炭部煤科院,以及一些高校和其他研究部门均做过探地雷达设备研制和野外试验工作,但由于种种原因,这些研究未能正式用于实际。90年代以来,由于大量国外仪器的引进,探地雷达得到了广泛的应用与研究。1990-1993年,中国地质大学(武汉)在国家自然科学基金资助下,开展了大量的理论研究和工程实践,取得了不少成果。探地雷达主要应用领域有隧道(1998,隋景峰 ;2001,刘敦文等)、水利工程设施(1997,赵竹占等)、混凝土基桩(2000,李梁等)、煤矿(1998,刘传孝等)、公路(1996牛一雄等 ;1997,沈飚等);岩溶(1994,王传雷,祁明松 ;1995,李玮,梁晓园);工程地质(1994,胡晓光 ;1999,刘红军,贾永刚);钻孔雷达(1999,宋雷,黄家会)等。

第四篇:市财政局探索运用雷达探地技术 加强工程结算审核工作

市财政局探索运用雷达探地技术 加强工程结算

审核工作

发布时间: 2011-08-30 07:57:29来源: 市财政局浏览次数:3401字号:大 中 小

多年来,我市对市政道路工程检测一直采用传统的钻孔取芯法进行。此种方法对路面面层具有一定的破坏性,而且由于所选取的面层具有很大的随机性,在道路工程、隐蔽工程施工中存在的偷工减料、虚假签证等现象,给财政投资审核工作带来很大难度。

为减少上述现象的发生,确保工程结算审核科学合理、高效精确,避免财政资金不合理支出,从今年4月份开始,市财政投资审核中心在市财政局创新理财思路指导下,转变工作方法,创新工作思维,在市政道路工程审核上由依靠传统方法转向依靠科技手段,会同市工程质量监督站等相关部门,组成课题研究小组,采用“探地雷达”技术对我市市政道路面层厚度开展无损检测实验,根据雷达探测到的数据进行审核测定。经过4个半月的大量实验,这项技术在我市工程审核工作中已初步显示了科学与实用价值,据了解,目前我省其他市在道路工程审核工作中还未采用此项技术。

运用雷达探地技术对道路路面进行无损检测,可以快速、准确、直观显示道路内部结构,改变以往对于隐蔽工程进行审核测量只能采用破坏拆除的方式,具有探测数据精确、探测效率高的优点,可以有效避免一些人为因素,同时不破坏已完工程结构。这项技术将在控制市政道路施工质量、改善路面设计、优化道路改造方案及提高路网养护水平等方面发挥重要作用。今后,市财政投资审核中心将通过探索制定雷达探地检测规范标准、操作规程和检测规程,使这项技术在财政审核过程中运用的更科学、更规范,并在工作中积极探索,不断创新,使更多新技术运用于财政审核工作。

第五篇:检测曲线 雷达原理大作业

型目标检测曲线仿真

姓 名: 杨宁 学 号:14020181051

专 业: 电子信息工程 学 院: 电子工程学院

swerlingI

一、基本原理:

(1)第一类称SwerlingⅠ型, 慢起伏, 瑞利分布。

接收到的目标回波在任意一次扫描期间都是恒定的(完全相关), 但是从一次扫描到下一次扫描是独立的(不相关的)。假设不计天线波束形状对回波振幅的影响, 截面积σ的概率密度函数服从以下分布:

1p()e式中,σ为目标起伏全过程的平均值。式(5.4.14)表示截面积σ按指数函数分布, 目标截面积与回波功率成比例, 而回波振幅A的分布则为瑞利分布。由于A2=σ, 即得到

Ap(A)2A0A222A01(2)第二类称SwerlingⅡ型, 快起伏, 瑞利分布。

目标截面积的概率分布为快起伏, 假定脉冲与脉冲间的起伏是统计独立的。

(3)第三类称SwerlingⅢ型, 慢起伏, 截面积的概率密度函数为

p()2exp24这类截面积起伏所对应的回波振幅A满足以下概率密度函数(A2=σ):

且有σ=4A20/3。

(4)第四类称SwerlingⅣ型, 快起伏。

3A29A3p(A)exp22A042A0第一、二类情况截面积的概率分布, 适用于复杂目标是由大量近似相等单元散射体组成的情况, 虽然理论上要求独立散射体的数量很大, 实际上只需四五个即可。许多复杂目标的截面积如飞机, 就属于这一类型。

第三、四类情况截面积的概率分布, 适用于目标具有一个较大反射体和许多小反射体合成, 或者一个大的反射体在方位上有小变化的情况。用上述四类起伏模型时, 代入雷达方程中的雷达截面积是其平均值σ。

本次主要对swerling I型目标的检测概率曲线进行仿真。

二、仿真设计:

Swerling I 型目标的特点是目标回波在任意一次扫描期间都是恒定的(完全相关),但是从一次扫描到下一次扫描是独立的(不相关的)。下面在虚警概率为1e-8的情况下仿真其检测曲线,结果如下图所示:

三、源程序:

主函数部分:

clear all SNRdB=-10:0.5:20;SNR=10.^(SNRdB/10);N=10;i=1;Pd1(i,:)=Pd_swerling1(N);

这个函数用来得出Pd的表达式。

function Pd=Pd_swerling1(N)SNRdB=-10:0.5:20;SNR=10.^(SNRdB/10);%信噪比 n=length(SNR);Pf=1e-8;

T=threshold(Pf,N);%调用threshold(Pf,N)计算门限

Pd=(1+1./(N*SNR)).^(N-1).*exp(-T./(1+N*SNR));这个函数用于迭代得出门限。

function T=threshold(Pf,N)

Nf = N * log(2)/ Pf;

sqrtPf = sqrt(-log10(Pf));sqrtN = sqrt(N);

T0=N-sqrtN+2.3*sqrtPf*(sqrtPf+sqrtN-1.0);%递归初值 T=T0;delta=10000;eps=1e-8;

while(abs(delta)>= T0)igf = gammainc(T0,N);num=0.5^(N/Nf)-igf;temp=1;

for i=1:N-1;%由于N取大值时计算易发散,所以将阶乘(N-1)!分解计算

temp1=T0/i/exp(1);temp=temp*temp1;end deno = exp(-T0+N-1)*temp;

T =T0+(num/(deno+eps));delta = abs(T-T0)* 10000.0;T0=T;end

下载探地雷达隧道检测报告word格式文档
下载探地雷达隧道检测报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2013试验检测考试《隧道》大纲

    试验检测工程师考试大纲 第五章 隧道工程 (一)考试目的与要求 本科目要求考生全面、系统地掌握公路隧道工程试验检测的内容、基本原理和方法,并具备较强的实际操作和分析实际......

    雷达实习报告2015-2016-2

    气象雷达资料处理及应用实习报告 姓名: 学号:完成时间: 1 实习目的 熟悉气象雷达软件终端的操作,进行雷达回波产品的显示和解析,分析降水过程的天气形势。 2 实习过程 1)安装PUP与......

    洞内瓦斯隧道检测制度(最终版)

    隧道瓦斯检测制度 1、设立隧道瓦斯检测班组,建立瓦斯监控室。 2、瓦斯检测人员必须经过培训、考核合格后持证上岗作业,必须严格遵守瓦斯检测的操作规程,熟悉瓦斯监测设备性能,随......

    隧道实习报告

    隧道生产实习报告 1、序言 通过公路隧道生产实习,初步掌握了隧道设计的外业勘测基本过程,加深理解和巩固所学知识,培养分析和解决工程实际问题的能力,并提出自己的创新见解和建......

    隧道述职报告[定稿]

    隧道施工个人工作总结 我叫自从1月份到中交二公局lys—5标。来到这里我学到了很多东西,也了解了隧道施工的过程以及工序,也真心的希望自己能成为这个单位的一名骨干人员,那样......

    隧道贯通报告

    报 告 山西太兴铁路有限公司: 在贵公司的大力支持与帮助下,我单位在太兴铁路二标段建设中顺利贯通7条隧道,自从参建以来,我单位始终贯彻落实贵公司各项管理制度,严格按照铁路建设......

    隧道述职报告

    篇一:隧道施工个人工作总结 隧道施工个人工作总结 我叫自从1月份到中交二公局lys—5标。来到这里我学到了很多东西,也了解了隧道施工的过程以及工序,也真心的希望自己能成为......

    隧道实习报告

    隧道实习报告1 作为新生的我们,必须要对我们所学习的专业有个感性的认识,因此,学校给我们大一新生安排了为期十天的土木工程认识实习。为期两天的隧道工程认识实习现在已结束......