雷达实习报告2015-2016-2

时间:2019-05-14 06:33:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《雷达实习报告2015-2016-2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《雷达实习报告2015-2016-2》。

第一篇:雷达实习报告2015-2016-2

气象雷达资料处理及应用实习报告

姓名: 学号:

完成时间: 实习目的

熟悉气象雷达软件终端的操作,进行雷达回波产品的显示和解析,分析降水过程的天气形势。实习过程

1)安装PUP与RPG,用RPG处理雷达基数据,保存在D: Archive2路径下,生成的文件(产品文件在D:Product目录下)有:

基本反射率(19、20)、基本速度(27)、基本谱宽(30)、用户可选降水(31)、混合扫描反射率(33)、组合反射率(37、38)、组合反射率等值线(39)、回波顶(41)、回波顶等值线(42)、强天气概率(47)、风廓线(48)、风暴相对平均径向速度(56)、垂直积分液态含水量(57)、风暴追踪信息(58)、冰雹指数(59)、中尺度气旋(60)、龙卷涡度特征(61)、风暴结构(62)、分层组合反射率(67)、1小时累积降水(78)、3小时累积降水(79)、风暴总累计降水(80)、补充降水数据(82)、速度方位显示(84)、综合切变(87)、综合切变等值线(88)、CAPPI反射率(110)、CAPPI速度(113)、CAPPI谱宽(115)。

打开PUP和RPG,连接成功时,在RPG中应该出现绿灯,然后把基数据放入D: Archive2文件目录下,把基数据的文件名改成相应的格式(名称),点击RPG中的REPLAY BASEDATA 按钮,RPG的绿灯出现闪烁,表示RPG处在工作状态,正在对雷达的基数据文件进行处理。

2)(典型个例分析)——选取2002.05.13日06:59---12:37时的雷达回波图分析(下图)。

从2002.05.13日06:59时刻的反射率图来看,强回波区位于安徽的偏西北部。有两条比较明显的带状回波区。

06时回波

7:47左右的零风速带在安徽西北部,折点在300°左右。对应的锋后有较强的回波。07时回波

08时回波

09:29左右时零风速带在站点的西北偏北部,此时风向随高度顺转,在对应的安徽西北部 有强回波区。09时回波

10时回波

10时回波

10:24时左右,锋面开始经过安徽,此时零风速带接近在330度左右。

11时回波

11:00时速度图和反射率图可以看出锋面经过安徽,而且强度此时较强,呈东北-西南 走向。

12时回波

12:37以后锋线离开安徽向西南方向移动。

以上除9时反射率图均为0.5度仰角反射率图。实习结果

1)通过此次实习,掌握了一些使用RPG和PUP的基本技能,以及对雷达产品图的分析和应用。

2)通过雷达产品分析,了解了本次锋线过程的一些物理特征和其在雷达反射率图、速度图上的对应显示特征。

第二篇:汽车倒车雷达汽车倒车雷达市场调研报告

汽车倒车雷达市场调研报告

一、调查目的:

随着汽车的普及,越来越多的家庭拥有了汽车。交通拥挤状况也随之出现,撞车事件也是经常发生,人们在享受汽车带来的乐趣和方便的同时,更加注重的是汽车的安全性,许多“追尾”事故都与车距有着密切的关系。为了解决这个安全问题,设计一种汽车测距防撞报警系统势在必行。

二.调查意义

根据相关资料对各年汽车事故的分析结果,得出在驾驶员、汽车和道路三个环节中,驾驶员这一环节的可靠性低于另外两个环节。80%以上的车祸是由于驾驶员反应不够迅速或者误判所引起的,特别是在汽车高速行驶情况下,超过65%的车辆相撞是追尾相撞。此外汽车倒车,仅靠后视镜有视觉盲区,亦常出现撞车、撞人、撞物的意外事故。据统计, 在危险情况下, 如果能给驾驶员0.5s的预处理时间, 则能够减少30%的汽车追尾事故、50%路面相关事故、60%的迎面撞车事故, 这说明了安全报警系统的作用, 因而在汽车防撞装置还应具有报警系统。

汽车倒车防撞系统可以在司机倒车时,检测后方靠近车身的障碍物,在距离过短时及时以报警的方式告知驾驶员,可以避免因后视镜的视觉盲区而出现与障碍物的碰撞,起到倒车辅助功能。在汽车前进时也

可以开启倒车防撞系统,用以检测后方靠近的车辆,及时提醒驾驶员做出判断。因此,研究开发汽车防撞等主动式汽车辅助安全装置,对

于减少交通事故和经济损失具有重要意义。

三、倒车雷达的市场状况

(一)倒车雷达的市场前景

中国国家汽车行业“十五”规划研究组预测; 2005年和2010

年,全国轿车保有量将分别达到843—869万辆和1423—1542万辆。2004年我国轿车的销售量为232万辆,2005年我国轿车的销量预计高达275万辆,同比增长18.5%;未来五年,国内轿车需求量以两位数的速度快速增长,尤其值得关注的是中高档轿车的私人消费迅速升温,中高档轿车已成为市场需求主流。另据国际汽车制造商协会(DICA)最近预测,中国将成为第四大汽车市场,同时也将成为全球汽车配套服务产业的第四大市场,汽车用品及服务行业正赶上历史上从未有过的空前繁荣期。根据国际惯例,汽车生产厂商的利润与汽车用品及今后服务行业的利润之比在1:10以上,另据有关专业机构统计,目前有车一族用于每辆新购汽车的平将装璜费用4500元。在欧美国家,轿车倒车雷达的安装使用率达80%以上,而我国目前轿车(高、中、低档次的轿车)的平均安装率只有10%左右。随着国产中高档车产量和需求量的快速攀升,倒车雷达的需求量将进入快速增长期,倒车雷达市场前景广阔。

(二)系统组成和工作原理

(1)功能:功能较齐全的倒车雷达应该有距离显示、声音/语音报警、区域警示和方位指示、探头自动检测等。

(2)性能:性能主要从探测范围、准确性、显示稳定性和捕捉目标速度来考虑,要求是测得准、测得稳、范围宽和捕捉速度快。

(3)外观工艺:作为汽车的内外装饰件,要考虑显示器和探头安装后是否美观,与车是否协调。从探头外形看,可以选择的有纽扣式和融合式两种。纽扣式的探头表面是平的,融合式探头表面是有造型变化的,追求与后保险杠的自然过渡。从尺寸上看,有超小型、中型和较大尺寸的,主要取决于车后保险杠的大小和个人偏好。从颜色上看,应选择与汽车保险杠相同或相近的颜色。

显示器应根据驾驶员的倒车习惯选用前置式或后置式的,有的产品可以同时使用两个显示器。

(4)质量与可靠性:倒车雷达作为汽车用品,对其质量和可靠性应有比较高的要求,尤其是探头的质量直接关系到倒车雷达所应起的作用,特别是产品的灵敏度、是否存在盲区、产品是否正常工作等。此外,质量好的产品提供的服务较好,承诺的包换期和包修期比较长。

(三)汽车倒车雷达的发展 水平

倒车雷达的快速发展始于20世纪末21世纪初,经过几年的时间,随着技术发展和用户需求的变化,倒车雷达在几年的时间里大致经过了六代的演变。

第一代:倒车时通过喇叭提醒。“倒车请注意”!想必不少人还记得这种声音,这就是倒车雷达的第一代产品,只要司机挂上倒档,它就会响起,提醒周围的人注意,不能算真正的倒车雷达,基本属于淘汰产品。

第二代:采用蜂鸣器不同声音提示驾驶员。这是倒车雷达系统的真正开始。倒车时,如果车后1.8m~1.5m处有障碍物,蜂鸣器就会开始工作。蜂鸣声越急,表示车辆离障碍物越近。但没有语音提示,也没有距离显示,虽然司机知道有障碍物,但不能确定障碍物离车有多远,对驾驶员帮助不大。

第三代:数码波段显示具体距离或者距离范围。这代产品比第二代进步很多,可以显示车后障碍物离车体的距离。如果是物体,在1.8m开始显示;如果是人,在0.9m左右的距离开始显示。这一代产品有两种显示方式,数码显示产品显示距离数字,而波段显示产品由3种颜色来区别:绿色代表安全距离;黄色代表警告距离;红色代表危险距离,必须停止倒车。第三代产品把数码和波段组合在一起,比较实用,但安装在车内影响美观。

第四代:液晶屏动态显示。不用挂倒档,只要发动汽车,显示器上就会出现汽车图案以及车辆周围障碍物的距离,色彩清晰漂亮,外表美观,可以直接粘贴在仪表盘上,安装很方便。不过LCD外观虽精巧,但灵敏度较高,抗干扰能力不强,所以误报也较多。

第五代:魔幻镜倒车雷达。结合了前几代产品的优点,采用了最新仿生超声雷达技术,配以高速电脑控制,可全天候准确地测知2m以内的障碍物,并以不同等级的声音提示和直观的显示提醒驾驶员。魔幻镜倒车雷达可以把后视镜、倒车雷达、免提电话、温度显示和车内空气污染显示等多项功能整合在一起,并设计了语音功能。因为其外形就是一块倒车镜,所以可以不占用车内空间,直接安装在车内后视镜的位置。而且颜色款式多样,可以按照个人需求和车内装饰选配。

第六代:专为高档轿车生产。第六代产品在第五代的基础上新增了很多功能:外观上看,比第五代产品更为精致典雅;功能上看,它除了具备第五代产品的所

有功能之外,还整合了高档轿车具备的影音系统,可以在显示器上观看DVD影像。

(四)发展前景

(1)由加装向原装发展。越来越多的汽车在出厂时配有倒车雷达。

(2)原装倒车雷达车型呈现高档→中档→低档的发展态势。

(3)由主流探头向更多探头发展。

(4)功能更加强大,集成音响和音像播放功能。

(5)设备趋于小型化、人性化、智能化。

四 结语

汽车市场的快速发展将带动倒车雷达市场的繁荣。国内倒车雷达主流市场已经开始由进口高档汽车向中低档汽车发展;技术上向着单芯片功能集成、灵敏度更高、可视化等方向发展;后装市场竞争激烈,前装市场将是倒车雷达生产厂商的低风险高回报所在。

第三篇:雷达基础知识

雷达工作时发射无线电波,依靠接收器接收物体反射回波来判断其距离,速度和移动路线 雷达技术定义:

[ 转自铁血社区 http://bbs.tiexue.net/

雷达技术就是利用电磁波对目标进行测向和定位。它发射电磁波对目标进行照射并接收其回波,经过处理来获取目标的距离、方位和高度等信息。雷达一词是英文Radar的音译,它是Radio Detection and Ranging几个英文单词词头的缩写,意为“无线电检测和测距”。雷达技术涉及到天线、接收、发射、控制、显示、数据处理、收发开关、调制器、定时器及微电子等技术领域。雷达技术作为一种技术探测手段,具有白天黑夜均能检测到远距离的较小目标,不为云、雾和两所阻挡,具有探测距离远,测量目标参数速度快等特点,因此,它不仅用于军事目的,还广泛地应用到民用事业和各项科学研究中,如交通管制、气象预报、资源探测、航天、电离层结构和天体研究等等。雷达可以按照不同的方法进行分类:按雷达波段可分为米波雷达、分米波雷达、厘米波雷达、毫米波雷达及其他波段雷达等;按雷达发射信号形式或信息加工方式可分为脉冲雷达、连续波雷达、脉冲压缩雷达、动目标显示雷达、脉冲多卜勒雷达等;按雷达架设地点不同可分为地面雷达、航空器载(机载)雷达、船舶载雷达、航天器载雷达等;按雷达完成的战术任务不同可分为:远程和超远程警戒雷达、指挥引导雷达、炮瞄雷达、跟踪测量雷达、导弹制导雷达、航空管制雷达和气象雷达等;按天线特点可分为相控阵雷达,合成孔径雷达和共形天线雷达等等。不论怎么分类,雷达基本上划分为连续波和脉冲雷达两大类。各类雷达的研究、发展和设置由雷达所承担的任务来决定。国外概况:

雷达技术的基本概念形成于20世纪初。20年代的研究证明了雷达技术可发现船只,并用于测量电离层的高度。30年代初开始研制探测飞机的脉冲雷达技术。从30年代中开始,军事部门利用雷达技术来测定远距离或看不见的目标的方向、距离和大小之后,雷达技术得到了迅速发展。特别是在第二次世界大战初期,英国利用新出现的雷达设备在邻近德国的本土海岸线上(英伦海峡沿岸)布设了一道观测敌方飞机的早期报警雷达链,使伦敦城及其周围的机场不致遭到德国法西斯入侵飞机的突袭,对保卫英国本土起了决定性的作用,从此,雷达技术引起世界各国的关注。在第二次世界大战期间,由于作战的需要,雷达技术发展极为迅速,新的雷达器件不断现出,雷达使用频率不断扩展,作战使用效率不断提高。在战前的雷达器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管后,雷达工作频率可达500兆赫以上,这不仅提高了雷达探索和引导飞机的精度,而且也提高了高炮控制雷达的性能,使高炮命中率更高,1939年,英国发明工作频率为3000兆赫的功率磁控管以后,雷达技术开始向空中发展,地面与空中雷达投入使用,使盟军在空战和海-空作战方面取得了优势。大战后期,美国进一步把雷达技术使用的磁控管的工作频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,精密自动跟踪雷达技术使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机,命中率提高了二个数量级。随着电子技术和武器装备的发展,雷达技术不断向前推进,新的雷达体制不断涌现,并相继建立了许多防空预警雷达系统(网)。就雷达技术和体制而言,40年代后期出现了动目标显示技术,诞生了动目标显示雷达,这有利于从地杂波和云雨等杂波背景中发现目标。50年代,雷达技术已经较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术,并研制出高分辨力的合成孔径雷达技术。60年代出现了相控阵雷达、超视距雷达和三坐标雷达,并将合成孔径雷达推广到民用。70年代固态相控阵雷达和脉冲多普勒雷达问世。从雷达技术的应用而言,随着50年代高速喷气式飞机的出现,60年代低空突防飞机、部分轨道轰炸武器和中、远程弹道导弹以及军用卫星的出现,人们研制了低空警戒雷达、超远程警戒和跟踪测量雷达,并建立了专门用于对付这些目标的雷达预警系统,如50年代美国为对付前苏联远程轰炸机的威胁,相继建立了“松树预警线”、“远程预警线”和“中加拿大预警线”;60年代为对付弹道导弹威胁建立了“北方弹道导弹预警系统”;60年代至70年代初建立了“潜射弹道导弹预警系统”;到70年代和80年代又决定用更先进的雷达(包括固态大型相控阵雷达)对上述系统进行改进,以使这些防空预警系统现代化,并使其中的一些大型系统具备一机多能(情报搜集、预警、跟踪、对空间目标的编目监视以及攻击制定)和对付多目标的能力。目前,美国和前苏联的雷达(现在主要由俄罗斯接管)无论从雷达体制的多样性、雷达技术水平的先进性、雷达预警系统的完整性以及大型雷达的数量等方面看,它们均处于世界前列,各种体制的雷达,它们都拥有,有的只有它们建成了,如大型后向散射超视距雷达,美国从80年代初到90年代初建造了两部。前苏联从80年代初开始至苏联解体时为止,共建造了四部。探测距离与跟踪距离达数千公里的大型雷达及雷达网,国外只有它们两家拥有。如陆(海)基先进的大型相控阵雷达系统,前苏联最多,达20多部,美国也有9部。这些大型雷达系统一部的建造费用少则几千万美元,多则达数亿美元,如美国的后向散射超视距雷达(原计划用25亿美元建四部)。陆基大型相控阵雷达尽管技术上已经成熟和完善,但是,冷战结束后,其发展暂处于稳定状态,近几年,美国和俄罗斯很少新建这类雷达,相反,俄罗斯由于经济方面的原因,其大型相控阵雷达的数量还在减少,如1998年8月已关闭了位于拉脱维亚的雷达站。另一方面,由于相控阵雷达具有一机多能、波束易控以及对付多目标等优点,它在机载和舰船载应用方面仍是雷达技术发展的方向,国外仍在大力发展中,如美国、英国、法国等均在为先进战斗机及联合攻击战斗机研制固态相控阵雷达,以提高战斗机的多目标、多功能及远程攻击能力;美国和以色列等国家还在研制新的装载相控阵雷达的预警飞机。

雷达技术从军方开始利用它来测定远距离或看不见的目标的方向、距离、大小等为起点,其发展已经历了六十多年,时至今日,仍方兴未艾,蓬勃发展。雷达体制从开始时单一的脉冲制,发展成为今天拥有动目标显示、合成孔径、相控阵、超视距以及脉冲多普勒等多种体制。雷达功能不断扩展,当初主要是观察空中飞机,现在观测目标已拓宽到从地下到空间的多类目标,如地下工事、地下指挥所、地面和海面慢速移动目标、低空和超低空飞行目标、空中的有人驾驶和无人驾驶飞行器、固定机翼和旋转机翼飞行器、空间航天飞行器、运载火箭以及弹道导弹等等;当初主要是主动、快速获取目标信息的手段,除此之外,它现在还是各类先进作战平台实现精确打击的必备设备,是发展先进武器系统测试评估的手段。雷达功能的拓展要求雷达技术的发展必须满足这些要求,这就促使雷达技术向多功能(搜索、检测和跟踪);多模工作方式;地面和海上雷达相互融汇;天线系统采用电扫阵列、合成孔径、工作频段宽、辐射能力强、重量轻和噪声低的器件;机动性强、可移动或易移动;采用双/多基地雷达和逆合成孔径雷达,以进一步提高抗干扰、抗摧毁和对付隐身目标的能力;采用相控阵技术发展三坐标低空补盲雷达;雷达系统信号处理的数字化和智能化等方向发展。影响:

雷达技术对国防科技和武器装备发展的影响主要体现在下列三方面:1.是军事上实时、主动、全天候获取各类目标信息不可缺少的技术探测手段,是收集各种军事情报的传感器技术之一,是“千里眼”。在当今高技术条件下,对一个战区乃至全球多方面的情报收集、处理、分发是指挥员做出正确决策和快速响应必不可少的前提,在防空及各军兵种与各个级别上的战略、战术指挥控制与通信(C3I)系统中,雷达技术是主动获取信息的重要手段,是其它探测手段不能替代的。2.雷达是先进作战平台的组成部分,其作用是人们研制各类武器系统最为关心的。例如,先进的机载脉冲多普勒火控雷达是战斗机火控系统的关键设备,西方主要国家早已将其装备部队,它们还在为更先进的战斗机研制固态相控阵雷达,以提高战斗机的多目标、多功能及远程攻击能力;机载轰炸雷达是轰炸机提高轰炸成功率的重要保证,使轰炸可以不受气象条件和白天黑夜的限制,并可与激光瞄准设备相配合,实现精确打击的目的;地形跟踪和地形回避雷达可使轰炸机、战斗机和巡航导弹实现低空、超低空安全隐蔽接近作战地域和要攻击的目标。3.雷达技术是发展先进武器系统测试评估的技术手段。例如各种精密打击武器,在其研制过程及最终性能评估中,必须要有精密测量雷达对其飞行轨迹、落点精度等进行测量与鉴定;在导弹和卫星的研制和发展中,雷达是弹道参数测量、真假目标识别、突防能力检验、卫星安全控制及轨道测量等必不可少的手段。由此可见,雷达技术是一个国家国防和武器装备现代化以及国防科技发展必不可少的技术。?? [ 转自铁血社区 http://bbs.tiexue.net/ [技术难点] 雷达技术经历了六十多年的发展之后,目前最关键的是如何与数字计算机相结合,使之成为一个完整的统一体,以实现从原始的回波信号中实时提取大量有用信息,并以简便、直观方式显示给操作人员,送达到与其相配合的武器系统,使雷达系统能执行更多的任务,能自适应环境而工作。由于雷达技术与现代武器系统密不可分,它所要探测的目标种类越来越多,这就要求雷达需要解决的技术难题也很多。1.要解决多目标识别(尤以非合作目标的识别)问题;2.要解决对低空、超低空目标的探测以及对低空和地面移动目标的探测问题;3.要解决对付隐身目标、寻的导弹、反辐射导弹的攻击;4.要解决一机多能及抗电子干扰问题;5.要解决轻重量、以满足平台升高、机载和星载应用要求;6.要研制不同波段的合成孔径雷达等。机载雷达的发展概况

六十年来,国外机载雷达已发展成九大类,数百个型号。其中,军用机载雷达占大多数。现在,军用机载达不但已经成为各种军用飞机必不可少的重要电子装备,而且其性能优劣已成为军用飞机性能的重要标志。

1、六十年的发展历程

军用机载雷达是30 年代诞生的。当时机载雷达使用的是笨重的米波振子阵列天线,而且被安装在飞机机头和机翼的外侧。二战期间,尽管磁控管在雷达中广泛使用后出现了多种型号的10 厘米和3 厘米波段的军用机载雷达,有了空对地(搜索)轰炸、空对空(截击)火控、敌我识别、无线电高度(计)、护尾告警等类型,但它们的技术水平却很低。它们所采用的信号不过是脉冲调制和调频连续波两种;发射管不过是多极真空管和磁控管;天线不过是振子和抛物反射面;显示器全都采用阴极射线管;自动角度跟踪和距离跟踪系统多数用机电式,技术上还不够完善。当时较新的技术只有机械式电扫描天线,动目标显示和传送雷达信号到地面观测站的中继线路这三项。

二战以后,机载雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动截击火控系统、地形回避和地形跟随、无源或有源的相控阵,频率捷变、多目标探测与跟踪等新的雷达系统。分系统所采用的新技术有高效矩阵平板线、全固态相控阵的收发单元功能模块、低噪声射频接收场效应放大器、高频率稳定频率综合器、数字式信号处理与数据处理、可编程的功率控制和数字处理、彩色电视光栅扫描变换显示、大功率的液压或力矩马达的天线驱动、控制指令和信息传输的数字总线、计算机控制的机内自检系统等。所采用的新器件有栅控功率行波管、砷化镓射频器件、高速大规模集成电路等。目前装备各国的军用飞机的雷达已有所需的各种类型、各种性能;覆盖从分米波到光波的宽广频域;不同复杂程度雷达的可*性达到100~1000小时MTBF。

[ 转自铁血社区 http://bbs.tiexue.net/、90年代的机载雷达

90年代在各国军用飞机上装备的产品都具有很高的技术水平。雷达波段通常为X与Ku波段;预警雷达使用更长波段;直升机雷达使用毫米波段。雷达的波形通常为具有高、中、低脉冲重复频率的全波形脉冲多普勒全相参系统。发射机通常使用功率行波管。天线一般使用平板缝阵天线,并向无源相控阵以至有源相控阵过渡。信号处理已基本实现数字化;数据处理也已实现数字计算机化;由于微处理机的快速发展而使信号处理与数据处理合并在同一个可编程处理机中进行。机载雷达的显示信息均已变换成电视制式信号在飞机的综合显示系统中显示。雷达的可*性因大规模集成电路的使用和模块化设计而大幅度提高;雷达的维护性则由于机内自检与试验台的广泛使用而得到极大改善。雷达的体积与重量逐年降低;功耗则稳定在合理水平上。

美国隐形飞机上装备的最新一代机载雷达与过去50年装备使用的有很大差别。出于隐形的要求,必须装备低截获概率雷达。相控阵天线具有较好的隐身性能,而其技术进展已到了实用阶段,因而成为首选的系统。B-2隐身轰炸机的AN/APQ-181和F-22隐形战斗机的AN/APG-77分别采用无源和有源的二维相控阵天线。F-117A隐形攻击机为了保持其隐形特性与突出对地攻击的能力,它仅装备红外探测和制导激光炸弹的激光照射设备,没有装备主动微波雷达。正在研制的隐形直升机RAH-66则采用传播衰减较大的短毫米波段以保持其隐形特性。新一代军用机载雷达的另一特点是模块化和在航空电子系统中的集成化。无论是APG-77还是APG-181雷达,它所构成的组件大量采用其它主力飞机所装备的APG-68、APG-70/APG-73和APG-164等雷达的模块,它们之中有很高比例的模块通用性。由于这一代飞机已逐步采用集成航空电子系统设计,雷达在传统上作为一个完整设备的特征开始消失。在“数字航空集成系统(DAIS)”中,雷达的数据输入与输出,及其控制指令都通过数据总线(在美军用飞机中采用军用1553B数据总线)传输,雷达已没有独立的显示控制分系统。在F-22飞机的“宝石柱”模块化集成航空电子系统中,由于大量的信号处理,数据处理和显示控制功能都已由飞机的集成航空电子系统的信号处理区、任务处理区与集成显示器来完成,APG-77雷达只剩下有源单元电扫阵列(AESA)和可编程信号处理机。有源单元是用砷化镓材料制造的单片微波集成电路(MMIC)收发模块,并直接连接小型辐射器。新一代军用机载雷达在使用上的特点便于维护、使用周期长。航空电子系统的机内自检(BIT)系统能够自动检测与隔离故障。判明故障以后,更换通用性较强的模块也很方便。而有源阵列天线更具备“整机性能柔性下降”的能力,不会发生致命性突然失效,因而在很大程度上减少了外场的维护工作。、21世纪的机载雷达

90年代以来,国际形势趋于缓和,因而大大减少了军用飞机用雷达的需求。军用飞机未来发展方向可归纳为隐形、高机动性、多用途化以及武器制导的精确化。21世纪军用飞机的航行、探测与识别目标、隐蔽自身、精确攻击、战果确认等各个阶段都需要有更先进的雷达设备。以相控阵技术为基础的多功能机载雷达可使未来的军用飞机履行多种类型的作战任务,使之成为多用途的军用飞机。

20世纪后半叶,以数字计算和大模集成电路为基础的电子技术得到飞速发展,为军用机载雷达跨进21世纪和实现重大转折奠定了技术基础。雷达获取的信息已从最初的回波有无的检测和距离测量发展到距离、角度、速度四维参数的测量和目标频率特征的分析;从单频单极化发展到宽频多极化以获取更广泛的目标与背景信息;用逆散射特征获取目标尺寸和形状的信息。雷达的频段将向更短(毫米波、红外、激光)和更长(分米波、米波)两个方向发展,以获得更高分辨率、更高抗干扰能力、更多的目标特征或更高的穿透能力。雷达射频能量的产生、辐射、波束控制和接收将由传统的发射机、天线、接收机三大部件转变为数以百、千计的相位控制阵列的收发组件。这种无需转动天线、可用计算机控制天线波束以及“柔性性能下降”特性,更适应多功能机载场合的需要。随着工艺和技术水平的进一步提高,相控阵列还会向飞机机体的仿形阵和敏感蒙皮的方向发展,那将是机载雷达由目前的立体结构向面状分布的根本变化。雷达的信号、数据等信息的处理将实现数字化和综合化。不但雷达内部各种处理系统可以通过编程完成各项处理功能,而且航空电子系统可以把包括雷达在内的各电子设备的信息处理综合在一起,由统一的处理机来处理。这就是美国目前已经推行的“宝石柱”和即将推行的“宝石台”航空电子集成化计划的要点。雷达的控制和显示,目前已通过数据总线并入航空电子集成系统之中。数据总线将逐步改用光纤传送;控制将尽量由计算机按程序来完成;必需由人员亲自干预的控制将用语音来完成,以减少手控动作和控制装置;雷达显示将在集成彩色平板显示屏上出现。

21世纪,雷达的可*性和可维修性将有根本的改进。虽然雷达的功能和性能都已不断发展与提高,但经过长期对可*性改进、雷达测试设备和机内自检系统的研究,目前已使平均无故障工作时间达到200小时以上,外场平均修复时间降到20分钟。相控阵雷达所具有的柔性性能下降特性还有可能使机载雷达逐步做到使用期内免修。雷达的设计和研制方法已经发生很大的变化。计算机在设计、制造、测试过程中取代了大量的人力。雷达的标准化、系列化和组合(模块)化改变了传统的设计方法。它将使机载雷达的设计量减少、研制周期缩短;零部件的通用性提高;雷达的发展已形成系列。由于目前军用机载雷达已面临人为电子干扰、目标低空突防、遭受反辐射导弹攻击、目标隐身和高功率能束武器攻击等多种对抗环境,人们需要更多地研究与采用各种对抗措施。未来的雷达研制工作将侧重系统研究和设计,按照用户的各项要求采用成熟的雷达技术和商用元器件与模块,并用较短时间制成所需的产品。

若综合应用上述已取得或正在取得的高新技术成果,21世纪的军用机载雷达将会普遍采用脉冲多普勒系统,以具备下视能力;具有多目标探测、识别和攻击能力,以对付多个目标;同时具有地形跟随与地形回避能力,以超低空突防;具有合成孔径和逆合成孔径能力,以具备高分辨能力;采用无源或有源相控阵天线,以具备多功能、高可*性等超级能力;采用毫米波、红外与激光探测跟踪器,以适应特殊要求;具有风切变探测能力,以确保飞机着陆时的安全。21世纪的军用机载雷达还会继续探索并解决一系列新概念、新课题,以对付隐身目标、抑制干扰、识别敌我、充分利用电磁信息的能力。军用机载雷达将会发展成一个以微波雷达为主体、集多频段探测器为一体,进行多传感器数据融合的集成系统;将是一个低截获概率的、能探测隐身目标的探测系统;将具备自适应对抗各种人为电子干扰、抗击反辐射武器和高功率束射武器能力的探测系统;将具备远距离识别敌方目标、二维高分辨能力的探测系统;将是一个利用机身和机翼外表仿形安装的共形阵探测系统或敏感蒙皮系统。

战斗机雷达基本概念

首先,现在在世界上能够独立设计和制造现代战斗机雷达的能力的公司,仅有十几个而已。美国有休斯(后来被合并到雷锡恩公司)、西屋(Westinghouse,后被合并到诺斯若普-格鲁曼)公司、埃莫森(Emerson)公司和GE(后被合并到洛克西德-马丁)公司等。从以上说明也可以看到,美国的雷达公司们一般来说开始都是综合性电子公司出身,后来则逐步被合并到航空、防务公司集团中去的。在欧洲,本来有英国的马克罗尼公司(Gec Marconi)和法国的汤普森CSF公司,后来合并为泰雷斯公司。这两者都是有名的雷达制造企业,我国在外贸产品上也采用过这些公司的产品。另外,法国的达索公司不是专门的雷达公司,但为了阵风的开发,也参与制造战斗机雷达。另外的国家,这有瑞典的萨伯(Saab)公司,和以色列的埃尔塔(Elta)公司等。这些几乎就是西方系列的主流雷达制造公司的全部了。这也反映了要设计一个当代的优秀战斗机雷达,是一件多么困难的事情。先说两个术语,波段(Band)和模式(Mode)。

[ 转自铁血社区 http://bbs.tiexue.net/ 波段:指的是雷达波长的范围,根据雷达的种类和用途,其使用的波段都不一样,像C波段,Ku波段等等,都是指这些(译者注:波段的编号有新旧两种记号方式,后续文章再进行说明)。

模式:说的就是雷达用于特种目的的使用方式,现代的雷达都是采用多种模式的雷达。简单来说,有空对空模式,空对地模式等等等,第三代战斗机的雷达一般拥有18种左右的模式,但F-18战斗机采用的AN/APG-65雷达则拥有28个模式(因为F-18应该称为F/A-18,是第三代战斗机中少数拥有常备多任务的战斗机)。现在简单罗列一下这些模式: * AIR-TO-AIR.空对空模式

Range While Search(RWS)– 搜索及测距模式

Track While Scan(TWS)– 边扫描边追踪模式 TRACK AND SCAN(TAS)34.....F-104 的雷达 AN/APG-50......F-4 基本型的雷达。雷达是什么?

RADAR 是RAdio Detection And Ranging的缩略语。简单来说,雷达就是一种发射电磁能量(electromagnetic energy),并收到从目标物体反射而来的反射波(echo)来知道目标方位信息的一种仪器。现在随着雷达技术的发展,已经能够把握目标物体的外形特征了。从这里可以看出,从目标物体反射的信号(echo signal)体现则所有目标信息,重要性如同雷达工学中的生命。

从反射波可以获得很多信息。首先,与目标的距离(军用名词标识为range,与distance同义)是通过说放出的电磁波返回的时间(Round trip time)来测算的。由于电磁波的速度相当于光速,是通过常数C(约 30万 km/sec)乘与 Round trip time/2 来计算的。(往返距离应该除以2是吧?)?}然后是目标的方向。首先目标的坐标(coordinates)根据目标所处的空间可分为2维(2 Dimension, 2D)和3维(3 Dimension, 3D)。(做图形设计或者玩游戏的人都知道^^)海上的舰艇或者地面目标,由于不能上下移动,可看作二维物体,而飞在空中的飞机或者水下的潜艇,拥有一个高度(或者潜深)的概念,当然要适用三维坐标。

[ 转自铁血社区 http://bbs.tiexue.net/ 一般的航海雷达或者远程预警雷达(Air Surveillance)都是2D雷达。反之,战斗机雷达则都是三维雷达(没有高度信息的雷达,对蕉坊比皇敲挥玫腲^)。二位雷达一般进行360度旋转,而战斗机雷达不能监控360赌全方位,一般来说120度是期探测极限范围。再对2D和3D进行分析:

首先要区分的概念,就是方位(Bearing)和方向(Direction)。

“方位”是二维概念,以自身位置为中心来标识目标的相对位置。相对的,“方向”是包括了“方位 + 高度”的三维概念。这里面的方位和二维所说的方位是同一个东西,但一般用Azimuth来表示。一般的表现方式就是以方位角(azimuth angle)来标识的。在雷达用名词里面,高度不是以一般名词Altitude,而是用Elevation来表示的。因为这里所说的高度并不是海拔高度,而是相对于自身的目标相对高度。因此表示起来也不会用“**米高度”而是以“高度角××”来表示的,英语就是elevation angle。整理一下,就是: 2D = Bearing + Range(方位 + 距离)3D = Azimuth + Elevation + Range(方位 + 高度 + 距离 = 方向 + 距离)[ 转自铁血社区 http://bbs.tiexue.net/ 这样,就能确定目标的二维或三维位置信息。以飞机目标为例,就会表示为“Azimuth angle 270度 + Elevation angle 15 度 + Range 70 km” 这种方式。

想象一下无线广播。就像是从一个火堆散发热量,从一个大大的天线中,电波会散播到周围。这时候是不能知道接收信息的对象是哪些的。如果雷达波也是这样的话,就只会根据反射波知道周围有物体,而不能知道目标在什么地方。

那么雷达是怎么探知目标位置的呢? 雷达之所以能够认知到目标方位,是因为雷达是将电磁波作为控制得很窄的波束(beam)的形态来发射的。用这种控制良好的波束来“很勤劳地”反复射向想要搜索的目标区域,并用一定的顺序来扫描,所以就能够探测到目标的方位的。举例来说,弱这个波束的宽度是90度角,那么向东西南北各发射看看,如果南方有回波,那就能知道目标在南边,就是这个原理。同样,如果将波束的宽度再次细分,调整到每1度、2度,那么就能够获得更加精确的方向。就是这种精确探测能力的程度,被称为角解析度(Angular Resolution)。波束宽度变得越窄,角解析度救护变得越高。在雷达天线的驱动装置上面,就有Angle Tracking System,当接收到 echo的时候,就会一直不断地计算正确的角度。这个角度,就是目标的方向信息。雷达的波束鞑子可以分为两类:一个是伞形波束(fan beam),另一个是铅笔波束(pancil beam)。伞形波束就如同以切好的西瓜片,铅笔波束这是一个如同铅笔的很细很长的圆锥形波束。形容波束的形状也是用角度(angle)来表示的。就像“Azimuth 几度, Elevation 几度”这个样子。

第四篇:雷达总结

雷达气象学是一门与大气探测、大气物理,天气系统探测相关联的学科

Radar:通过无线电技术对目标物的探测和定位。测定目标位置的无线电技术范畴 气象雷达:是用于探测气象要素和各种天气现象的雷达,“千里眼、顺风耳”。

雷达气象学:利用气象雷达,进行大气探测和研究雷达波与大气相互作用的学科,它是大气物理学、大气探测和天气学共同研究的一个分支。雷达气象学在突发性、灾害性天气的监测、预报和警报中具有极为重要的作用。气象雷达的分类:探空雷达、测雨雷达、声雷达、多普勒雷达、激光雷达 南方:S波段为主,北方:C波段为主 雷达机的主要构成

RDA-雷达数据采集子系统 RPG-雷达产品生成子系统

PUP-主用户处理器子系统

其次包括:通讯子系统、附属安装设备 RDA 主要结构:天伺系统、发射机、接收机、信号处理器 定义:用户所使用的雷达数据的采集单元。

功能:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基数据。雷达的硬件系统!

RDA的扫描方式:雷达在一次体积扫描中使用多少角度和时间。

RDA的天气模式:1.晴空模式:VCP11或VCP21

2.降水模式:VCP31或VCP32

新一代雷达:降水模式 VCP:雷达天线体扫模式

RPG(雷达产品生成系统)定义:(指令中心)由宽带通讯线路从RDA接收数字化的基本数据,对其进行处理和生成各种雷达数据产品,并将产品通过窄带通讯线路传给用户

功能:产品生成、产品分发、雷达控制台(UCP)PUP(主用户处理系统)

功能:获取、存贮和显示雷达数据产品。预报员通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上

用处:(1)产品请求(获取),(2)产品数据存贮和管理,(3)产品显示,(4)状态监视,(5)产品编辑注释。粒子对电磁波有散射,衰减,折射的作用

散射:当电磁波束在大气中传播,遇到空气介质或云滴、雨滴等悬浮粒子时,入射电磁波会从这些介质或粒子上向四面八方传播开来,这种现象称为散射现象。

主要物质:大气介质、云滴、水滴,气溶胶等。其它散射现象:光波、声波等 散射的类型:瑞利散射:d<<λ;米(Mie)散射:

d≈λ 瑞利散射

散射函数或方向函数 :

后向散射能量:雷达天线接收到的只是粒子散射中返回雷达方向(θ=π)的那一部分能量,这部分能量称为后向散射能量。瑞利散射性质

①粒子的散射能力与波长的四次方成反比。波长越短,散射越强。②粒子的散射能力与直径的6次方成正比。粒子半径越大,散射越强。

③粒子的前向散射和后向散射为最大,粒子无侧向散射。散射截面为纺锤形。散射截面或后向散射截面

定义:设有一个理想的散射体,其截面为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,该理想散射体散射回雷达天线处的电磁波能流密度,恰好等于同距离上实际散体返回雷达天线的电磁波能流密度,则该理想散射体的截面σ就是实际散射体的后向散射截面。

意义:用来表示粒子后向散射能力的强弱。后向散射截面越大,粒子的后向散射能力越强,在同样条件下,所产生的回波信号也越强。

反射率η:单位体积内全部降水粒子的雷达截面之和。反射率因子(Z): Z的不同取值,意味着不同天气状况。通常Z的取值从0dBz~70dBz,因此要求天气雷达必需有非常大的检测范围。新一代天气多普勒雷达的接收机动态范围是90~100dBz以内。

云、雨滴的散射:

雷达的波长越短,散射越强。若雷达的波长一定时,在满足瑞利散射的情况下,粒子半径越大,散射越强。电磁波衰减:电磁波能量沿传播路径减弱的现象,是散射和吸收两种作用的总和。

衰减原因:当电磁波投射到气体或云雨粒子上时,一部分能量被散射,一部分能量被吸收,转变为热能或其它形式的能量,从而使电磁波能量减弱。

雷达回波:当雷达波束投射到云、降水粒子上时,云、降水粒子就会发生散射现象。其中向后方散射的一部分散射波重新返回到雷达天线处,并在雷达显示器上显示出各种图像。

雷达气象方程:雷达回波强度不仅取决于雷达系统各参数的特性,而且和被测云、降水粒子的性质有关,还与雷达和被测目标之间的距离以及其间的大气状态有关。雷达气象方程就是根据所测定的回波强度去推断云、降水的物理状况,将雷达的作用距离与发射机、接收机、天线、目标和环境的种种特性联系起来的方程。普通雷达方程:

结论:雷达回波功率强弱取决于:Pt发射功率,G增益,雷达截面,R目标物距雷达站的距离

雷达气象方程的讨论:雷达气象方程:①雷达机各参数、②气象因子、③目标物和雷达机之间的距离 雷达机参数:①发射功率,②脉冲宽度和脉冲长度,③波瓣宽度,④天线增益等

发射功率:增加发射功率通常可以提高信噪比,从而增大最大探测距离。但最大探测距离还取决于脉冲重复频率,目标物最大高度,雷达架设高度,以及地球曲率等影响。

脉冲宽度Γ和脉冲长度h:当两者增加时,雷达脉冲在空间的体积增加,同一时间里被电磁波所照射到的降水粒子数量增多,所以回波接收功率增大,使一些弱的雨区等容易发现。缺点:1)雷达的距离分辨率变低2)雷达的盲区变大。

波束宽度θ: 水平波束宽度和垂直宽度愈大,天线发射的能量愈分散,入射能流密度将随距离增加而较快地减小,造成回波能量变弱。天线增益也随之增加。

天线增益G: 天线增益增加时,回波功率以平方的倍数增大,可提高雷达的探测能力。提高G,必须增大圆抛物面口径的几何面积,带来转动性能和抗风能力差的缺点。增大天线口径面积可以提高天线的增益和减小波束宽度,从而增大雷达的探测能力和探测的角分辨率

波长:雷达的最重要参数,云雨粒子对电磁波的散射能力和衰减能力,都与波长有密切关系。各气象因子的作用:1)目标物的后向散射特性。反映在因子

2)波束路径上各种粒子对雷达波的衰减作用。反映在因子

距离因子的影响:Pr与R平方成反比,气象目标随距离增加而减小,同样强度的降水出现在远距离处要比近距离处弱得多 大气折射:电磁波在大气中曲线传播的现象

大气折射类型:标准大气折射、临界折射、超折射、零折射、负折射

大气折射对探测的影响:由于大气折射指数分布不均匀性,会使电磁波在传播中发生折射现象

超折射:当波束路径曲率大于地球表面的曲率时,雷达波束在传播时将碰到地面,经地面反射后继续向前传播。然后再弯曲到地面,再经地面反射,重复多次,雷达波束在地面和某层大气之间,依靠地面的反射向前传播,与波导管中的微波传播相似,又称超折射

超折射形成的气象条件:超折射是因为大气中折射指数m随高度迅速减小造成。折射指数随高度迅速减小,必须是气温向上递增,同时水汽压向上迅速递减,就是常说”暖干盖”的大气层结。雨后晴朗的夜间:由于地面辐射,形成上干下湿的逆温层,发生超折射

测距原理:物理基础:目标散射,电磁波等速直线传播。多普勒频率(频移):当目标物与雷达之间存在相对运动时,接收到回波信号的频率相对于原来的发射的频率产生一个频率偏移,在物理学上称之为多普勒频移。

径向速度:物体(目标)在观察者视线方向的速度。

距离折叠:是指雷达对雷达回波的一种辨认错误,当目标位于最大不模糊距离以外时,会发生距离折叠,雷达显示回波位置的方位角是正确的,但是距离是错误的。

多普勒两难:对于实际工作的雷达,波长是固定的,当选定了最大不模糊距离(或脉冲重复频率)后,就存在一个最大不模糊速度。即当目标的径向速度大于最大不模糊速度时,就会产生混淆。由雷达测得的径向速度将相差两倍最大不模糊速度。2

当最大不模糊速度较小时,会产生多次速度折叠。

显示方式: PPI:平面扫描、RHI:垂直扫描、VOL:体积扫描显示、CAPPI:等高平面位置显示、VCS:任意垂直剖面、局部多层CAPPI显示、、垂直最大回波显示CR、等值线图显示

等速度线:径向速度相同的点构成的线。零速度线是由雷达径向速度为零的点组成 零径向速度:某点的径向速度为零。

1)该点处的真实风向与该点相对于雷达的径向互相垂直 2)该点的真实风速为零,在那里的大气运动极小或处于静止状态

零径向速度意义:零等速点的风向是由邻近的负速度区,垂直于该等速度点吹向正速度区。地物回波:是指由山地及其上面的各种建筑物等对电磁波的散射产生的回波。晴空回波:云很稀薄或没有云雨的晴空大气里,或在不可能被探测到的小粒子所组成的云区内探测到的回波 超折射回波:当大气状况为超折射时,雷达回波会出现平常探测不到的远距离地物回波,就是超折射回波 旁瓣假回波:雷达沿主波瓣传输电磁波,主波瓣典型宽度为1º,当旁瓣发射出的电磁波在近距离遇到一些特别强的降水中心时,也能产生雷达接收到的回波。一般情况下,旁瓣产生的回波太弱,不易分辨出来。但是当遇上反射率因子极高的目标物(如积雨云中柱状的冰雹和暴雨)时就能够出现旁瓣回波 二次回波:由于距离折叠或者多层回波,当目标物位于最大不模糊距离之外时,就会产生距离折叠,而出现二次回波

三体散射:由于雷达能量在强回波区向前散射而形成的异常回波。因为强回波区一部分能量被散射到雷达,一部分能量散射回地面,其中散射到地面的能量又返回到含冰雹的强反射率因子区,强反射率因子区再次反射回雷达而形成。

层状云降水:又称稳定性降水或连续性降水。特点:水平尺度较大、持续时间较长,强度较均匀,时间变化缓慢。

层状云降水回波: PPI:呈均匀连续的大面积薄膜状,片状,丝缕状结构明显,强度弱,一般在20~30dBz,边缘不整齐,有时有强雨中心。(零度层亮带)

RHI:云体厚度较小,回波高度约5-6km,顶部和底部平坦,结构较均匀。

零度层亮带:是层状云降水回波的主要特征,是冰水混合层,反映了层状云中有明显的冰水转化区。零度层以上的降水粒子以冰晶为主,通过亮带后,全部转化为水滴。亮带说明层状云气流稳定,无明显对流活动。积状云:或称对流云,是由对流运动所产生的,通常与短时强烈天气相配合。

积云降水回波强度特征:PPI:表现为几km到几十km不规则分散、孤立块状。回波通常由单个或多个对流单体形成的回波组成。回波呈块状,尺度小,结构密实,边缘清晰,强度较强(35dBz以上),持续时间变化大。强中心到外围的强度梯度较大,随不同的天气过程排列成带状、条状、离散状等。

RHI:单体呈柱状结构,垂直伸展大于水平伸展,强对流单体顶部有云砧向下风方伸展或呈花菜状,悬垂中空,云体随对流发展变厚。回波顶发展较高,多数在6-7km,一些发展强烈的单体可达10km,个别可达20km。

穹隆:由雷暴前方的强烈斜上升气流深入云体,形成回波图像中的弱回波区。云体上冲:由上升气流引起的。积层混合云降水的天气特点:范围大,降水持续时间长,累积降水量大,往往造成大面积的强降水。

积层混合云降水回波:PPI:又称为絮状回波,比较大的范围内,回波边缘呈现支离破,没有明显的边界,边缘紊乱,层状云回波中镶嵌着一个个密实团块的对流云,强度可达40dBz或以上,有时强回波团块整齐排列可形成一条短带。

RHI:表现在均匀的层状云高度上柱状回波起伏地镶嵌在其中。在对流云衰败阶段,柱状回波与层状云回波合在一起。雷达产品:

1.基本数据产品:反射率因子(R)平均径向速度(V)谱宽产品(W)2.物理量产品:

强度物理量产品:回波顶高(ET)垂直累积含水量(VIL)时段雨量累积(OHP、THP)雨强显示(RZ)

速度物理量产品:垂直风廓线产品(VWP)合成切变(CS)径向散度(RVD)或称速度径向切变、方位涡度(ARD)谱宽物理量产品

3.反演识别产品:(1)阵风锋;下击暴流;

(2)中尺度气旋;龙卷涡旋;

(3)风暴;冰雹自动识别等;(4)风暴自动识别、跟踪、预报和预报检验。3

第五篇:雷达技术

浅谈雷达技术

摘要:雷达具有发现目标距离远,测定目标坐标速度快,能全天候使用等特点。因此在警戒、引导、武器控制、侦察、航行保障、气象观察、敌我识别等方面获得广泛应用,成为现代战争中的一种重要电子技术装备。所以,雷达性能的好坏将不可避免的影响战争的胜负。

关键词:雷达

战争

军事应用

一、雷达的概念

“雷达”原意是无线电探测和测距。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。

二、雷达的组成与功用

各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。还有电源设备、数据录取设备、抗干扰设备等辅助设备。

雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。

测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

三、雷达的军事应用

激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。

快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。

由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定“规范”的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。器上显示障碍信息。该系统已在两种直升机上进行了试验。

四、雷达的未来发展趋势 这阶段的目标是赶上和缩小与世界雷达技术的差距。1991年的海湾战争既反映了雷达在情报侦察、指挥控制、作战管理效能评估等方面起到的不可替代的作用,同时也反映了雷达受到隐身技术、反辐射导弹、电子干扰、低空飞行器等方面的威胁,未来战争又将是一场多层次、全方位、大纵深、主体覆盖集陆、海、空、天、电为一体的高技术对抗,因此对雷达就提出了更新的要求。

①加速发展正在研究的雷达三超技术(超低副瓣、超宽带、超高分辨)和“四抗”技术(抗干扰、抗反雷达导弹、抗隐身、抗低空入侵),现在在研的超宽带和超低角跟踪技术已用于工程。

②雷达波段向两端扩展,即从米波延长到短波,从微米波扩展到毫米波、红外、可见光波段。

③雷达设计广泛采用计算机技术,使雷达能进行自适应处理控制,雷达内部以及与其它电子设备能进行数字数据传送。

④发展低截获概率雷达,实行分布式雷达新体制和雷达升空升天技术的研究。

五、结束语

经过五十年的艰苦奋斗,雷达行业已成为我国国防现代化建设和参与国民经济主战场的一支实力雄厚的产业大军,形成了中央与地方相结合、沿海与内地相结合、军用与民用结合、专业和门类比较齐全的工业体系。一批产品的性能指标已跨入先进行列。同时,培养和造就了一支素质高、能打硬仗的技术队伍。更可喜的是涌现了一大批年轻有为的雷达科技人员,培养和造就了一批高素质的跨世纪科技人才,从而使我国雷达工业以崭新的姿态迈入21世纪。

但我们还应清醒地看到,我国的雷达技术与装备水平距发达国家还有一定的差距,在某些领域还相当落后,落后就要挨打,这就要求我们的雷达科研人员牢记自己所肩负的神圣使命,刻苦攻关,发奋努力,研制出具有世界一流水平的雷达装备,为我国国防现代化事业作出应有的贡献。

参考文献

【1】

《现代军事》

2000年08期 【2】陈俊亮

《雷达信号处理技术》

清华大学出版社 【3】陈志杰 【4】熊辉丰

电子工业出版社 中国宇航出版社 《雷达系统分析与设计》

《激光技术》

下载雷达实习报告2015-2016-2word格式文档
下载雷达实习报告2015-2016-2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    雷达通信

    雷达通信简介 一、雷达简介 雷达这个名称是“无线电探测和测距”(Radio Detection and Ranging)英文的缩写。而雷达的出现对地(搜索)轰炸、空对空(截击)脉冲角度跟踪、脉冲......

    探地雷达隧道检测报告

    探地雷达测试报告 编 号:少微山-2012-2 项 目 名 称: 少微山隧道衬砌质量无损检测委 托 单 位:丽水市中恒工程检测有限公司地 点: 丽 水 市 紫 金 路 单 位: 丽水市中恒工程检......

    雷达知识点总结

    雷达知识点总结 1. 雷达的工作原理 1 雷达测距原理 超高频无线电波在空间传播具有等速、直线传播的特性,并且遇到物标有良好的反射现象。用发射机产生高频无线电脉冲波,用天线......

    雷达原理论文

    雷达原理论文 姓名: 班级: 学号: 指导老师: 2014年3月 雷达的隐身与反隐身技术 在现代战争中,隐身和反隐身技术具有重要作用和战略意义, 上个世纪的局部战争已充分证实了这一点,......

    雷达技术论文

    相控阵雷达技术 相控阵雷达有相当密集的天线阵列,在传统雷达天线面的面积上可安装上千个相控阵天线,任何一个天线都可收发雷达波,而相邻的数个天线即具有一个雷达的功......

    雷达原理大作业

    雷达目标识别技术综述 1引言 目标识别是现代雷达技术发展的一个重要组成部分。对雷达目标识别的研究,在国内外已经形成热点,但由于问题本身的复杂性,以及多干扰信号,特别是多噪......

    雷达工作 原理

    雷达的原理 雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收......

    蝙蝠和雷达教案

    蝙蝠和雷达 一、教学要求: 1、理解课文内容,懂得飞机夜里安全飞行与蝙蝠飞行的联系。 2、向学生进行爱科学、学科学的教育。 二、教学重点: 懂得蝙蝠飞行和飞机夜晚安全飞行之......