数控车床类刀具知识

时间:2019-05-14 10:16:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数控车床类刀具知识》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数控车床类刀具知识》。

第一篇:数控车床类刀具知识

数控车床类刀具知识

1)刀具材料性能 刀具材料不仅是影响刀具切削性能的重要因素,而且它对刀具耐用度、切削用量、生产率、加工成本等有着重要的影响。因此,在机械加工过程中,不数控车床但要熟悉各种刀具材料的种类、性能和用途,还必须能根据不同的工件和加工条件,对刀具材料进行合理的选择。

切削时,刀具在承受较大压力的同时,还与切屑、工件产生剧烈的摩擦,由此而产生较高的切削温度;在加工余量不均匀和切削断续表面时,加工中心刀具还将受到冲击,产生振动。为此,刀具切削部分的材料应具备下列基本性能。

①硬度和耐磨性。刀具材料的硬度必须大于工件材料的硬度,一般情况下,要求其常温硬度在60HRC以上。通常,刀具材料的硬度越高,耐磨性也越好,刀具切削部分抗磨损的能力也就越强。耐磨性还取决于材料的化学成分、显微组织。刀具材料组织中硬质点的硬度越高,数量越多,晶粒越细,分布越均匀,则耐磨性越好。此外,刀具材料对工件材料的抗黏附能力越强,耐磨性也越好。

②强度和韧性。由于切削力、冲击和振动等作用,数控车床刀具材料必须具有足够的抗弯强度和冲击韧性,以避免刀具材料在切削过程中产生断裂和崩刃。

③耐热性与化学稳定性。耐热性是指刀具材料在高温下保持其硬度、耐磨性、强度和韧性的能力。耐热性越好,则允许的切削速度越高,同时抵抗切削刃塑性变形的能力也越强。

化学稳定性是指刀具材料在高温下不易和工件材料、周围介质发生化学反应的能力。化学稳定性越好,刀具的磨损越慢。除此之外,刀具材料还应具有良好的工艺性和经济性。如工具钢淬火变形要小加工中心,脱碳层要浅及淬透性要好;热轧成形刀具应具有较好的高温塑性等。(2)常用刀具材料

①高速钢。高速钢是一种加入较多的钨、钼、铬、钒等合金元素的高合金工具钢,有较高的热稳定性,切削温度达500~650~C时仍能进行切削,有较高的强度、韧性、硬度和耐磨性。其制造工艺简单,容易磨成锋利的切削刃,可锻造,这对于一些形状复杂的工具,如钻头、成形刀具、数控车床拉刀、齿轮刀具等尤为重要,是制造这些刀具的主要材料。

高速钢的品种繁多;按切削性能可分为普通高速钢和高性能高速钢;按化学成分可分为钨系、钨钼系和钼系高速钢;按制造工艺不同,分为熔炼高速钢和粉末冶金高速钢。

a.普通高速钢。国内外使用最多的普通高速钢是W6M05Cr4V2(M2钼系)及W18Cr4V(W18钨系)钢,含碳量为0.?%~0.9%,硬度63~66HRC,不适于高速和硬材料切削。

新牌号的普通高速钢W6M03Cr4V(W9)是根据我国资源情况研制的含钨量较多、含钼量较少的钨钼钢。其硬度为65~66.5HRC,有较好硬度和韧性的配合,热塑性、热稳定性都较好,焊接性能、磨削加工性能都较高,磨削效率比M2高20%,表面粗糙度值也小。

b.高性能高速钢指在普通高速钢中加入一些合金,如Co、A1等,使其耐热性、耐磨性又有进一步提高,热稳定性高。但综合性能不如普通高速钢,数控车床不同牌号只有在各自规定的切削条件下,加工中心才能达到良好的加工效果。我国正努力提高高性能高速钢的应用水平,如发展低钴高碳钢W12M03Cr4V3CoSSi、含铝的超硬高速钢W6MoSCr4V2A!、W10M04Cr4V3A1,提高韧性、热塑性、导热性,其硬度达67~69HRC,可用于制造出口钻头、铰刀、铣刀等。

c.粉末冶金高速钢。可以避免熔炼法炼钢时产生的碳化物偏析。其强度、韧性比熔炼钢有很大提高。可用于加工超高强度钢、不锈钢、钛合金等难加工材料。用于制造大型拉刀和齿轮刀具,特别制造是切削时受冲击载荷的刀具效果更好。

②硬质合金。硬质合金是由高硬度、高熔点的金属碳化物(如WC、TiC等)粉末,以钴(C。)为黏结剂,用粉末冶金方法制成的。硬质合金的硬度、耐磨性、数控车床耐热性都很高,硬度可达89—93HRA,在800~1000~C还能承担切削,耐用度较高速钢高十几倍,允许采用的切削速度达100~300m/miD_,甚至更高,约为高速钢刀具的4—10倍,并能切削一般工具钢刀具不能切削的材料(如淬火钢、玻璃、大理石等)。但其抗弯强度较高速钢低,仅为0.9—1.5GPa;冲击韧度差,切削时不能承受大的振动和冲击负荷。

硬质合金以其切削性能优良被广泛用作刀具材料,如车刀、加工中心端铣刀以至深孔钻等。它制成各种形式的刀片,然后用机械夹紧或用钎焊方式固定在刀具的切削部位上。

常用的硬质合金牌号按其金属碳化物的不同分为三类:

3)刀具失效形式 刀具在切削过程中将逐渐产生磨损。当刀具磨损量达到一定程度时,可以明显地发现切削力加大,切削温度上升,切屑颜色改变,数控车床甚至产生振动。同时,工件尺寸可能会超出公差范围,机床电器已加工表面质量也明显恶化。此时,必须对刀具进行重磨或更换新刀。打时刀具也可能在切削过程中会突然损坏而失效,造成刀具破损。刀具的磨损、破损及其使用寿命(也称耐用度)关系到切削加工的效率、质量和成本,因此它是切削加工中极为重要的问题之一。

①刀具磨损的方式。

a.前刀面磨损(月牙洼磨损)。在切削速度较高、切削厚度较大的情况下加工塑性金属,当刀具的耐热性和耐磨性稍有不足时,切屑在前刀面上经常会磨出一个月牙洼。在前刀面上相应于产生月牙洼的地方,其切削温度最高,因此磨损也最大,从而形成一个凹窝(月牙洼)。月牙洼和切削刃之间有一条小棱边。在磨损的过程中,月牙洼宽度逐渐扩展。当月牙洼扩展到使棱边变得很窄时,切削刃的强度大为削弱,极易导致崩刃。月牙洼磨损量以其深度KT表示。

b.后刀面磨损。由于加工表面和后刀面间存在着强烈的摩擦,在后刀面上毗邻切削刃的地方很快被磨出后角为零的小棱面,这种磨损形式叫做后刀面磨损。在切削速度较低、数控车床切削厚度较小的情况下切削塑性金属以及加工脆性金属时,一般不产生月牙洼磨损,但都存在着后刀面磨损。

c.前刀面和后刀面同时磨损。机床电器这是一种兼有上述两种情况的磨损形式。在切削塑性金属时,经常会发生这种磨损。

②刀具磨损的原因。为了减小和控制刀具的磨损,为了研制新的刀具材料,必须研究刀具磨损的原因和本质。切削过程中的刀具磨损具有下列特点:刀具与切屑、工件间的接触表面经常是新鲜表面;接触压力非常大,有时超过被切削材料的屈服强度;接触表面的温度很高,对于硬质合金刀具可达800~1000~C,对于高速钢刀具可达300~600~C。在上述条件下工作,刀具磨损经常是机械的、热的、化学的三种作用的综合结果,可以产生磨料磨损、冷焊磨损(有的文献称为黏结磨损)、扩散磨损和氧化磨损等。

a.磨料磨损。切屑、工件的硬度虽然低于刀具的硬度,但其结构中经常含有一些硬度极高的微小的硬质点,机床电器能在刀具表面刻划出沟纹,这就是磨料磨损。数控车床硬质点有碳化物(如Fe3C、TiC、VC等)、氮化物(如TiN、Si:N+等)、氧化物(如SiOz、Alz(),等)和金属间化合物。磨料磨损在各种切削速度下都存在,但对低速切削的刀具(如拉刀、板牙等),磨料磨损是磨损的主要原因。这是因为低速切削时,切削温度比较低,由于其他原因产生的磨损尚不显著,因而不是主要的。高速钢刀具的硬度和耐磨性低于硬质合金、陶瓷等,故其磨料磨损所占的比重较大。

b.冷焊磨损。切削时切屑、工件与前、后刀面之间,存在很大的压力和强烈的摩擦,因而它们之间会发生冷焊。由于摩擦副之间有相对运动,冷焊结产生破裂被一方带走,从而造成冷焊磨损。

一般说来,工件材料或切屑的硬度较刀具材料的硬度为低,冷焊结的破裂往往发生在工件或切屑这一方。但由于交变应力、接触疲劳、热应力以及刀具表层结构缺陷等原因,数控车床冷焊结的破裂也可能发生在刀具这一方,机床电器这时,刀具材料的颗粒被切屑或工件带走,从而造成刀具磨损。

冷焊磨损一般在中等偏低的切削速度下比较严重。研究表明:脆性金属比塑性金属的抗冷焊能力强。在高速钢刀具正常工作的切削速度和硬质合金刀具偏低的切削速度下,正好满足产生冷焊的条件,故此时冷焊磨损所占的比重较大。提高切削速度后,硬质合金刀具冷焊磨损减轻。

c.扩散磨损。扩散磨损在高温下产生。切削金属时,切屑、工件与刀具接触过程中,双方的化学元素在固态下相互扩散,改变了材料原来的成分与结构,使刀具表层变得脆弱,从而加剧了刀具的磨损。

硬质合金中,钛元素的扩散率远低于钴、数控车床钨,TiC又不易分解,故在切钢时YT类合金的抗扩散磨损能力优于YG类合金。TiC基、丁i(C,N)基合金和涂层合金(涂覆TiC或TiN)则更佳;机床电器硬质合金中添加钽、铌后形成固镕体(W,丁i,Ta,Nb)C,也不易扩散,从而提高了刀具的耐磨性。

扩散磨损往往与冷焊磨损、磨料磨损同时产生,此时磨损率很高。前刀面上离切削刃有一定距离处的温度最高;该处的扩散作用最强烈;于是在该处形成月牙洼。高速钢刀具的工作温度较低,与切屑、工件之间的扩散作用进行得比较缓慢,故其扩散磨损所占的比重远小于硬质合金刀具。< ③刀具磨损过程及磨钝标准。刀具磨损到一定程度就不能继续使用,否则将降低工件的尺寸精度和已加工表面质量,同时也要增加刀具的消耗和加工成本。数控车床那么,刀具磨损到什么程度就不能使用呢?这需要制定一个磨钝标准。a.刀具磨损过程。后刀面磨损量VB随切削时间‘的延长而增大。沈阳第一机床厂典型的刀具磨损曲线,其磨损过程分三个阶段。

初期磨损阶段:这一阶段磨损曲线的斜率较大。由于刃磨后的新刀具,其后刀面与加工表面间的实际接触面积很小,压强很大,故磨损很快。新刃磨后的刀面上的微观粗糙度也加速了磨损。初期磨损量的大小与刀具刃磨质量有很大关系,通常在VB=o.05~o.1mm之间。数控车床经过研磨的刀具,其初期磨损量小,而且要耐用得多。

正常磨损阶段:经过初期磨损,后刀面上被磨出一条狭窄的棱面,压强减小,故磨损量的增加也缓慢下来,并且比较稳定,这就是正常磨损阶段,沈阳第一机床厂也是刀具工作的有效阶段。这一阶段中磨损曲线基本上是一条向上的斜线,其斜率代表刀具正常工作时的磨损强度。磨损强度是比较刀具切削性能的重要指标之一。

剧烈磨损阶段:刀具经过正常磨损阶段后,切削刃显著变钝,切削力增大,切削温度升高,这时刀具的磨损情况发生了质的变化而进入剧烈磨损阶段。这一阶段的磨损曲线斜率很大,即磨损强度很大。此时刀具如继续工作,则不但不能保证加工质量,而且刀具材料消耗多,数控车床经济上是不合算的。故应当使刀具避免发生剧烈磨损。

观测前刀面磨损量(月牙洼深度KT),其磨损曲线也可出现类似上述三个磨损阶段。

b.刀具的磨钝标准。刀具磨损后将影响切削力、切削温度和加工质量,因此必须根据加工情况规定一个最大的允许磨损值,这就是刀具的磨钝标准。一般刀具的后刀面上都有磨损,它对加工精度和切削力的影响比前刀面磨损显著,同时后刀面磨损量比较容易测量,因此在刀具管理和金属切削的科学研究中多按后刀面磨损尺寸来制定磨钝标准。通常所谓磨钝标准是指后刀面磨损带中间部分平均磨损量允许达到的最大值,沈阳第一机床厂以VB表示。

制定磨钝标准需考虑被加工对数控车床象的特点和加工条件的具体情况。

工艺系统的刚性较差时应规定较小的磨钝标准。后刀面磨损后,切削温度升高。加工不同的工件材料,切削温度的升高也不相同。在相同的切削条件下,加工合金钢的切削温度高于碳素钢,加工高温合金及不锈钢的切削温度又高于一般合金钢。在切削难加工材料时,一般应选用较小的磨钝标准;加工一般材料,磨钝标准可以大一些。

加工精度及表面质量要求较高时,数控车床应当减小磨钝标准,沈阳第一机床厂以确保加工质量。例如在精车时,应控制VB在0.1—0.3mm的范围内。c.刀具耐用度。

刀具耐用度的定义:刃磨后的刀具自开始切削直到磨损量达到磨钝标准为止的切削时间,称为刀具耐用度,以丁表示。它是指净切削时间,不包括用于对刀、测量、快进、回程等非切削时间。

刀具耐用度是很重要的数据。在同一条件下切削同一工件材料时,可以用刀具耐用度来比较不同刀具材料的切削性能;同一刀具材料切削各种工件材料,数控车床又可以用刀具耐用度来比较工件材料的切削加工性;也可以用刀具耐用度来判断刀具几何参数是否合理。工件材料、刀具材料的性能对刀具耐用度影响最大。在切削用量中,影响刀具耐用度最主要的因素是切削速度,其次是进给量、切削深度。此外,刀具几何参数对刀具耐用度也有重要影响。

切削速度与刀具耐用度的关系:切削速度与刀具耐用度的关系是用实验方法求得的。实验表明切削速度对使用寿命的影响小,即刀具的切削性能较好。

进给量、切削深度与刀具耐用度的关系:切削速度对刀具使用寿命的影响最大,沈阳第一机床厂其次是进给量,切削深度影响最小。所以在优选切削用量以提高生产率时,数控车床其选择先后顺序应为:首先尽量选用大的切削深度d,然后根据加工条件和加工要求选取允许的最大进给量/,最后才在刀具使用寿命或机床功率所允许的情况下选取最大的切削速度wc。4)数控镗铣类刀具选择 镗铣类数控机床按加工方式不同可分为钻削刀具、镗削刀具、铣削刀具、螺纹加工刀具、铰削刀具等。

①钻削刀具。数控车床钻削是镗铣类数控机床在实心材料上加工出孔的常见办法。钻削还用于扩孑L、锪孑L。钻头按结构分类有整体式、刀体焊接式、刀刃焊接式、可转位钻头;按柄部形状分类可分为直柄钻头、加工中心直柄扁尾钻头、(莫氏)锥柄钻头;按刃沟形状分类有右螺旋钻头、左螺旋钻头、直刃钻头;按刀体截面形状分类有内冷钻头、双刃带钻头、乎刃沟钻头;按长度分类有标准钻头、长型钻头、短型钻头;按用途分有中心钻、扩孔钻、锪钻、阶梯钻、导 向钻等。

a.中心钻。中心钻先在实心工件上加工出中心孔,起到定位和引导钻头的作用。

b.麻花钻。麻花钻一般为高速钢材料,制造容易,价格低廉,应用广泛。但标准麻花钻有许多缺点,如:不利屑的卷曲、切削性能差、排屑性能差、磨损快。

c.修磨麻花钻。针对标准麻花钻的缺点,可对其进行修磨,一般有以下几种方法:修磨主切削刃;修磨横刃;修磨前刀面;修磨棱边;修磨分屑槽。d.扩孔钻。加工中心应用扩孔钻,加工效率高,质量好。e.锪钻。用于加工沉头孔和端面凸台等。

f.硬质合金可转位式钻头。用于扩孔,数控车床也可加工实心孔,加工中心加工效率高、质量好。

g.加工中心用枪钻。用于长径比在5以上的深孑Lh口工。

②镗削刀具。分为单刃镗刀、双刃镗刀。

a.单刃镗刀。单刃镗刀是把类似车刀的刀尖装在镗刀杆上而形成的。刀尖在刀杆上的安装位置有两种:刀头垂直镗杆轴线安装,适于加工通孔;刀头倾斜镗杆轴线安装,适于盲孔、台阶孔的加工。

b.双刃镗刀。双刃镗刀常用的有定装式、机夹式和浮动式三种。双刃镗刀的好处是径向力得到平衡,工件孑L径尺寸由镗刀尺寸保证。浮动镗刀的刀块能在径向浮动,加工时消除了机床、刀具装夹误差及镗杆弯曲等误差,但不能矫正孔直线度误差和孑L的位置度误差。

③铣削刀具。

a.端铣刀。端铣刀主要用于加工平面,数控车床但是主偏角为90‘的端铣刀还能用于加工浅台阶。端铣刀一般做成可转位式。

b.立铣刀。立铣刀使用灵活,有多种加工方式。立铣刀按构成方式可分为整体式、焊接式和可转位式三种;按功能特点可分为通用立铣刀、键槽立铣刀、平面立铣刀、球头立铣刀、圆角立铣刀、多功能立铣刀、倒角立铣刀、T形槽立铣刀等。

c.盘形铣刀。包括槽铣刀、两面刃铣刀、三面刃铣刀。槽铣刀有一个主切削刃,用于加工浅槽。两面刃铣刀有一个主切削 刃、一个副切削刃,可用于加工台阶。三面刃铣刀有一个主切削刃、加工中心两个副切削刃,用于切槽及加工台阶。锯片铣刀比槽铣刀更窄,用于切断、切窄槽。

d.成形铣刀。为了提高效率,满足生产要求,有些零件可以采用成形铣刀进行铣削。④铰削刀具。铰刀主要用于孔的精加工及高精度孑L的半精加工。圆柱铰刀比较常见,但其加工性能不是很好,且无法加工有键槽的孔。加工中心广泛应用带负刃倾角的铰刀和螺旋齿铰刀。螺旋齿铰刀有两种,一种是普通螺旋齿铰刀,其刀齿有一定的螺旋角,切削平稳,能够加工带键槽的孔;另一种是螺旋推铰刀。其特点是螺旋角很大,切削刃长,连续参加切削,数控车床所以切削过程平稳无振动,切屑呈发条状向前排出,避免了切屑擦伤已加工孑L壁。

⑤螺纹加工刀具。加工中心一般使用丝锥作为螺纹加工刀具,丝锥加工螺纹的过程叫攻螺纹。一般丝锥的容屑槽制成直的,也有的做成螺旋形。螺旋形容屑槽排屑容易,切屑呈螺旋状。加工右旋通孔螺纹时,选用左旋丝锥;加工右旋盲孔螺纹时,选用右旋丝锥。

⑥刀柄。镗铣类数控机床使用的刀具种类繁多,而每种刀具都有特定的结构及使用方法,要想实现刀具在主轴上的固定,必须有一中间装置,该装置必须能够装夹刀具又能在主轴上准确定位。装夹刀具的部分(直接与刀具接触的部分)叫工作头,而安装工作头又直接与主轴接触的标准定位部分就叫刀柄。加工中心一般采用7;24锥柄,加工中心这是因为这种锥柄不自锁,并且与直柄相比有高的定心精度和刚性。数控车床刀柄要配上拉钉才能固定在主轴锥孔上,刀柄与拉钉都已标准化,刀柄型号主要有30、40、45、50、60等,刀柄标志代号有JT、BT、ST等,其中JT表示以国际ISO 7388、美< ⑦镗铣类装夹工具系统。加工中心的工具系统是刀具与加工中心的连接部分,由工作头、刀柄、拉钉、接长杆等组成,起到固定刀具及传递动力的作用。数控车床工具系统是能在主轴和刀库之间交换的相对独立的整体。机床工具系统的性能往往影响到加工中心的加工效率、质量、刀具的寿命、切削效果。另外,加工中心使用的刀柄、刀具数量繁多,合理地调配工具系统对成本的降低也有很大意义。

加工中心使用的工具系统是指镗铣类工具系统,可分为整体式与模块式两类。

a.整体式工具系统把刀柄和工作头做成一体,使用时选用不同品种和规格的刀柄即可使用,优点是使用方便、可靠,缺点是刀柄数量多。

b.模块式工具系统是指刀柄与工作头分开,做成模块式,然后通过不同的组合而达到使用目的,减少了刀柄的个数。(5)加工中心刀库及换刀方法

①刀库。刀库是用来储存加工刀具及辅助工具的,数控车床是自动换刀装置中最主要的部件之一。由于多数加工中心的取送刀具位置都是在刀库中某一固定刀位,因此刀库还需要有使刀具运动的机构来保证换刀的可靠性。刀库中刀具的定位机构是用来保证要更换的每一把刀具或刀套都能准确地停在换刀位置上。机床其控制部分可以采用简易位置控制器,或类似半闭环进给系统的伺服位置控制,也可以采用电气和机械相结合的销定位方式,一般要求其综合定位精度达到o.1~乱5mm,即可采用电动机或液压系统为刀库转动提供动力。

a.刀库的类型按刀库的结构形式可分为圆盘式刀库、链式刀库和箱型式刀库,前两种较为常见。

圆盘式刀库其结构简单,应用也较多。但因刀具采用单环排列,空间利用率低,因此出现了将刀具在盘中采用双环或多环排列的形式,以增加空间利用率。但这样使刀库的外径扩大,转动惯量也增大,选刀时间也长,所以,圆盘式刀库一般用于刀具容量较小的刀库。

链式刀库,适用于刀库容量较大的场合。数控车床链的形状可以根据机床的布局配置,也可将换刀位突出以利于换刀。当需要增加链式刀库的刀具容量时,只需增加链条的长度,在一定范围内,机床无需变更刀库的线速度及惯量。一般刀具数量30一120把时都采用链式刀库。

另外,按设置部位的不同,刀库可以分为顶置式、侧置式、悬挂式和落地式等多种类型。按交换刀具还是交换主轴,刀库可分为普通刀库(简称刀库)和主轴箱刀库。

b.刀库的容量确定。刀库的容量首先要考虑加工工艺的需要。对若干种工件进行分析表明,各种加工所必需的刀具数量是4把铣刀可完成工件95%左右的铣削工艺,10把孔加工刀具可完成70%的钻削工艺,因此14把刀的容量就可完成70%以上工件的钻铣工艺机床。如果从完成工件的全部加工所需的刀具数目统计,数控车床则80%的工件(中等尺寸,复杂程度一般)完成全部加工任务所需的刀具数为40种以下。所以对于一般的中、小型立式加工中心,配有14~40把刀具的刀库就能够满足70%一95%工件的加工需要。

c.刀库的选刀方式。目前,加工中心刀库使用的选刀方式有顺序选刀和任意选刀两种。顺序选刀是在加工之前将加工零件所需刀具按照工艺要求依次插入刀库的刀套中,/顷序不能有差错,加工时按顺序调刀。加工不同的工件时必须重新调整刀库中的刀具顺序,因而操作十分繁琐,而且加工同一工件中各工序的刀具不能重复使用。这样就会增加刀具的数量,而且由于刀具的尺寸误差也容易造成加工精度的不稳定。数控车床其优点是刀库的驱动和控制都比较简单,机床因此这种方式适合加工批量较大、工件品种数量较少的中、小型自动换刀装置。

随着数控系统的发展,目前绝大多数的数控系统都具有刀具任选功能。任选刀具的换刀方式可以有刀套编码、刀具编码和记忆等方式。数控车床刀具编码或刀套编码都需要在刀具或刀套安装用于识别的编码条,摇臂钻床一般都是根据二进制编码原理进行编码。

刀具编码选刀方式采用了一种特殊的刀柄结构,并对每把刀具编码。由于每把刀具都具有自己的代码,刀具可以放在刀库中的任何一个刀座内,这样不仅刀库中的刀具可以在不同的工序中多次重复使用,而且换下的刀具也不用放回原来的刀座,这对装刀和选刀都十分有利,刀库的容量也可以相应地减少,而且还可以避免由于刀具顺序的差错所造成的事故。但是由于每把刀具上都带有专用的编码系统,使刀具的长度加长,制造困难,刀具刚度降低,同时使得刀库和机械手的结构也变得复杂。对于刀套编码的方式,一把刀具只对应一个刀套,从一个刀套中取出的刀具必须放回同一刀套中,取送刀具十分麻烦,换刀时间长。因此,无论是刀具编码还是刀套编码都给换刀系统带来麻烦。摇臂钻床目前,绝大多数加工中心都使用记忆式的任选换刀方式。这种方式是第一次给刀库装刀时,控制系统记忆刀库中的每个刀套号和该刀套上的刀具号,刀具在使用中不一定被送还到原来的刀套上,但是控制系统仍能记住该刀具号所在的新刀套号。数控车床这种方式有利于缩短换刀、选刀时间。由于这种方式经常改变刀具号与刀套的对应关系,所以在重新启动机床时必须使刀库回零,校验一下显示器上显示的内容与实际刀具的情况。

刀库选刀方式一般采用就近移动原则,即无论采取哪种选刀方式,在根据程序指令把下一工序要用的刀具移到换刀位置时,都要向距离换刀最近的方向移动,以节省选刀时间。

②换刀及刀具交换装置。数控机床的自动换刀系统中,实现刀库与机床主轴之间刀具传递和刀具装卸的装置称为刀具交换装置。刀具的交换方式通常分为无机械手换刀和有机械手换刀两大类。a.无机械手换刀的方式是利用刀库与机床主轴的相对运动实现刀具交换。这种换刀机构不需要机械手,结构简单、紧凑。由于交换刀具时机床不工作,所以不会影响加工精度,数控车床但会影响机床的生产率。其次因刀库尺寸限制,装刀数量不能太多。这种换刀方式常用于小型加工中心。

b.采用机械手进行刀具交换的方式应用得最为广泛,这是因为机械手换刀有很大的灵活性,摇臂钻床而且可以减少换刀时间。机械手的结构类型多种多样,因此换刀运动也有所不同。

(6)刀具安装、标定及工件坐标系的建立

①刀具安装。加工中心使用的刀具由刀杆、通用刀柄、拉钉三部分组成(刀柄和拉钉型号参考具体设备说明),经装配后方能根据加工需要依次装入刀库。

②加工中心常用对刀仪器。

量块:一般用于刀具Z向标定。

Z向设定器:一般用于刀具Z向标定。

寻边器:标定刀具X、y向位置。寻边器常见有电子式和机械式两种。

找正器:用于确定圆心。

机内对刀器:用于刀具X、y、Z向标定。

机外对刀仪:在机床外测量刀具长度、直径和几何角度等,不占机时。3D测头:自动测量刀具X、y、Z向的位置和补偿值。

③工件坐标系的建立。建立工件坐标系是数控加工的重要内容之一。数控车床建立工件坐标系实际就是将用户选定的编程坐标系告知CNC系统,若不能正确建立工件坐标系,即使编程指令正确,机床仍可能产生误动作。摇臂钻床机床的误动作有可能损坏刀具、机床,甚至可能会伤害到用户。

由于数控加工中心系统功能不同,建立工件坐标系的具体方法有所不同。但基本原理相类似。

a.直接法。直接法即试切法。启动主轴,选定一把基准刀接触工件上表面,设置Zo,即将基准刀Z向补偿值设为“o”;其他刀也触碰同一表面,标定其他刀的Z向补偿值。用刀具接触工件侧面设置X。、Yo。测量刀具直径或根据刀具公称直径确定刀具半径补偿值。b.间接法。刀具不旋转,选择一把基准刀接触量块或Z向设定器,设置Z。将基准刀Z向补偿值设为“0”,其他刀触碰同一表面,标定Z向补偿值。Xo、y。及刀具半径补偿值的确定相同。

c.机内对刀。机内对刀通常使用机床自备的机内对刀仪。数控车床以主轴端面为基准,各把刀具从Z向触碰对刀仪,系统自动测出各刀相对某一基准点的长度作为刀具长度补偿值(每把刀的长度补偿值均不为“o

第二篇:数控车床刀具实习报告

数控车床(刀具)实习报告

一:刀具基本概述

刀具是机械制造中用于切削加工的工具,又称切削工具。绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。

二:刀具材料

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片都已用化学气相沉积涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

刀具材料大致分如下几类:高速钢、硬质合金、金属陶瓷、陶瓷、聚晶立方氮化硼以及聚晶金刚石。

一般加工中心常用有以下几种材质刀具:碳素工具钢,合金工具钢,高速钢,硬质合金,超硬材料。

1碳素工具钢

碳素工具钢是指碳的质量分数为0.65%-1.35%的优质高碳钢。用做刀具的牌号一般是T10A和T12A,常温硬度60-64HRC。当切削刃热至200-250度时,其硬度和耐磨性就会迅速下降,从而丧失切削性能。2合金工具钢

为了改善碳素工具钢的性能,常在其中加入适量合金元素如锰、铬、钨、硅和钒等,从而形成了合金工具钢,常用牌号有9sicr,GCr15,CrWMn等。合金工具钢与碳素工具钢相比,其热处理后的硬度相近,而耐热性和耐磨性略高,热处理性也较好。但与高速钢相比,合金工具钢的切削速度和使用寿命又远不如高速钢,使其应用受到很大的限制。因此,合金工具钢一般仅用于取代碳素工具钢。3高速钢

高速钢是一种含钨、铝、铬、钒等合金元素较多的高合金工具钢。高速钢主要优点是具有高的硬度、强度和耐磨性,且耐热性和淬火性良好,其允许的切削速度是碳素工具钢和合金工具钢的两倍以上。高速钢刃磨后切削刃锋利,故又称之为锋钢和白钢。高速钢是一种综合性能好、应用范围较广的刀具材料,常用来制造结构复杂的刀具,如成形车刀,铣刀,钻头,铰刀。拉刀,齿轮刀具等。硬质合金

硬质合金是用粉末冶金方法制造的合金材料,它是由高硬度、高熔点的金属碳化物WC、TiC等粉末,用钴等金属粘结剂在高温下烧结而成。

硬质合金的硬度较高,常温下可达89-93HRA,耐磨性和耐热性均高于工具钢,在800-1000度时仍能正常切削,其切削速度是高速钢的几倍,刀具寿命也提高了几十倍,并能加工高速钢刀具难以切削加工的材料,因此被广泛应用。但是它也存在抗弯强度和冲击韧度比高速钢低,刃口不能磨得像高速钢刀具那样锋利等不足之处。4超硬材料

超硬材料主要是批金石、立凉席氮化硼和陶瓷。金刚石是自然界中最硬的材料,其硬度可达10000HV。天然金刚石价格昂贵。很少使用。人造金刚石以石墨为原料经高温烧结而成。主要用于高速精细车削、镗削有色金属及其合金和非金属材料。切削铜合金或铝合金时切削速度可达800-3800M/MIN。由于金刚石具有较高的耐磨性,加工尺寸和刀具使用寿命长。所以常应用在数控机床、组合机床和自动机床上,加工后的粗糙度可达0.1-0.025um.但金刚石刀具耐热性较差,切削温度不宜超过700-800度。强度低、脆性大、对振动敏感,只宜微量切削。刀具的发展在人类进步的历史上占有重要的地位。刀具是机械制造中用于切削加工的工具,中国是全球最具发展潜力的刀具市场,不少跨国刀具集团在自身发展战略中,把扩大在中国的刀具销售作为首选,各企业的亚太总部、研发中心、培训中心、物流中心纷纷落户中国,从而以中国为中心辐射亚洲,更加直接便捷地服务于客户,更好地满足亚太地区客户的需求。

数控机床对刀具材料的要求:

金属切削过程中,切削层金属在刀具的作用下承受剪切滑移而塑性变形,刀具与工件、切屑之间挤压与摩擦使刀具切削部分产生很高的温度,在断续切削加工中还会受到机械冲击及热冲击的影响。

加剧刀具的磨损,甚至使刀具破损,因此刀具切削部分的材料必须具备以下几个条件

1.较高的硬度和耐磨性

刀具切削部分的硬度必须高于工件材料的硬度,刀具材料的硬度越高,其耐磨性越好刀具材料在常温下的硬度应在62HRC以上 2.足够的强度和韧性

刀具在切削过度中承受很大的压力,有时在冲击和振动条件下工作,要使刀具不崩刃和折断,刀具材料必须具有足够的强度和韧性

一般用抗弯强度表示刀具材料的强度,用冲击值表示刀具材料的韧性 3.较高的耐暖性

耐热性指刀具材料在高温下保持硬度、耐磨性、强度及韧性的性能是衡量刀具材料切削性能的主要指标。这种性能也称刀具材料红硬性 4.较好的导热性

刀具材料的导热系数越大,刀具传出的热量越多,有利于降低刀具的切削温度和提高刀具的耐用度

三:刀具结构 1:结构要素

A:待加工表面----工件上有待切除的表面。

已加工表面----工件上经刀具切削后产生的表面。

过渡表面(同义词:加工表面)----工件上由切削刃形成的那部分表面,它将在下一个行程,刀具或工件的下一转里被切除,或者由下一个切削刃切除。前面(前刀面)----刀具上切屑流过的表面。它直接作用于被切削的金属层,并控制切屑沿其排出的B:刀面

后面(后刀面)----与工件上切削中产生的表面相对的表面。

主后面(同义词:主后刀面)----刀具上同前面相交形成主切削刃的后面。它对着过渡表面。

副后面副后刀面)----刀具上同前面相交形成副切削刃的后面。它对着已加工表面。

主切削刃----起始于切削刃上主偏角为零的点,并至少有一段切削刃拟用来在工件上切出过渡表面的那个整段切削刃。

副切削刃----切削刃上除主切削刃以外的刃,亦起始于切削刃上主偏角为零的点,但它向背离主切削刃的方向延伸。

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。角度参考系

切削平面----通过切削刃选定点与切削刃相切并垂直于基面的平面。

主切削平面Ps----通过切削刃选定点与主切削刃相切并垂直于基面的平面。它切于过渡表面,也就是说它是由切削速度与切削刃切线组成的平面。

副切削平面----通过切削刃选定点与副切削刃相切并垂直于基面的平面。

基面Pt----通过切削刃选定点垂直于合成切削速度方向的平面。在刀具静止参考系中,它是过切削刃选定点的平面,平行或垂直于刀具在制造、刃磨和测量时适合于安装或定位的一个平面或轴线,一般说来其方位要垂直于假定的主运动方向。

假定工作平面----在刀具静止参考系中,它是过切削刃选定点并垂直于基面,一般说来其方位要平行于假定的主运动方向。

法平面Pn----通过切削刃选定点并垂直于切削刃的平面。C:刀具角度

前角----前面与基面间的夹角。

后角----后面与切削平面间的夹角。楔角----前面与后面间的夹角。

主偏角----主切削平面与假定工作平面间的夹角,在基面中测量。副偏角----副切削平面与假定工作平面间的夹角,在基面中测量。刀尖角----主切削平面与副切削平面间的夹角,在基面中测量。刃倾角----主切削刃与基面间的夹角,在主切削平面中测量。

2:装夹部分

有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。工作部分

就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。刀具工作部分的结构有整体式、焊接式和机械夹固式三种: 整体结构是在刀体上做出切削刃; 焊接结构是把刀片钎焊到钢的刀体上; 机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。

硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

四:数控机床的换刀系统

1回转形式的自动换刀装置:

a:刀架抬起b:刀架转位c:刀架加紧 2带刀库的自动换刀系统

刀库分类:盘式刀库,链式刀库,格子盒式刀库。换刀方式:直接在刀库与主轴直接换刀的自动换刀装置;用机械手在刀库与主轴之间的换刀装置;用机械手和转塔头配合刀库进行换刀的自动换刀装置。3刀具交换装置

利用刀库与机床主轴的相对运动实现刀具的交换装置;刀库机械手的刀具交换装置。

4机械手的形式

单臂单爪回转式机械手;单臂双爪式回转式机械手;双臂回转式机械手;双机械手;双臂往复交叉式机械手;双臂端面夹紧式机械手。5辅助装置等等

五:常见刀具的磨损和改进 1磨损原因

刀具材料

刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。刀具材料越硬,其耐磨性越好,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。对于石墨刀具,普通的涂层可在选材上适当选择韧性相对较好一点的,也就是钴含量稍高一点的;对于金刚石涂层石墨刀具,可在选材上适当选择硬度相对较好一点的,也就是钴含量稍低一点的; 刀具的几何角度

石墨刀具选择合适的几何角度,有助于减小刀具的振动,反过来,石墨工件也不容易崩缺;

1.前角,采用负前角加工石墨时,刀具刃口强度较好,耐冲击和摩擦的性能好,随着负 前角绝对值的减小,后刀面磨损面积变化不大,但总体呈减小趋势,采用正前角加工时,随着前角的增大,刀具越锋利,但刀具刃口强度被削弱,反而导致后刀面磨损加剧。负前角加工时,切削阻力大,增大了切削振动,采用大正前角加工时,刀具磨损严重,切削振动也较大。一般粗加工应选择较小前角刀具或负前角刀具。

2.后角,如果后角的增大,则刀具刃口强度降低,后刀面磨损面积逐渐增大。刀具后角过大后,切削振动加强。后角越小,弹性恢复层同后刀面的摩擦接触长度越大,它是导致切削刃及后刀面磨损的直接原因之一。从这个意义上来看,增大后角能减小摩擦,可以提高已加工表面质量和刀具使用寿命。

3.螺旋角,螺旋角较小时,同一切削刃上同时切入石墨工件的刃长最长,切削阻力最大,刀具承受的切削冲击力最大,因而刀具磨损、铣削力和切削振动都是最大的。当螺旋角去较大时,铣削合力的方向偏离工件表面的程度大,石墨材料因崩碎而造成的切削冲击加剧,因而刀具磨损、铣削力和切削振动也都有所增大。因此,刀具角度变化对刀具磨损、铣削力和切削振动的影响是前角、后角及螺旋角综合产生的,所以在选择方面一定要多加注意。通过对石墨材料的加工特性做了大量的科学测试,PARA刀具优化了相关刀具的几何角度,从而使得刀具的整体切削性能大大提高。刀具的涂层

金刚石涂层刀具的硬度高、耐磨性好、摩擦系数低等优点,现阶段金刚石涂层是石墨加工刀具的最佳选择,也最能体现石墨刀具优越的使用性能;金刚石涂层的硬质合金刀具的优点是综合了天然金刚石的硬度和硬质合金的强度及断裂韧性;但是在国内金刚石涂层技术还处于起步阶段,还有成本的投入都是很大的,所以金刚石涂层在不会有太大发展,不过我们可以在普通刀具的基础上,优化刀具的角度,选材等方面和改善普通涂层的结构,在某种程度上是可以在石墨加工当中应用的。

金刚石涂层刀具和普通涂层刀具的几何角度有本质的区别,所以在设计金刚石涂层刀具时,由于石墨加工的特殊性,其几何角度可适当放大,容削槽也变大,也不会降低其刀具锋口的耐磨性;对于普通的TiAlN涂层,虽然比无涂层的刀具其耐磨有显著的提高,但比起金刚石涂层来说,在加工石墨时它的几何角度应适当放小,以增加其耐磨性。[4]刀具表面处理技术又有了新发展,移动菠菜发布的国外最新消息:利用固态的纳米结构硼原子团对刀具表面进行改性处理,可较大幅度提高刀具寿命。对金刚石涂层来说,世界上众多的涂层公司均投入大量的人力和物力来研究开发相关涂层技术,但是至今为止,国外成熟而又经济的涂层公司仅仅限于欧洲;PARA作为一款优秀的石墨加工刀具,同样采用世界最先进的涂层技术对刀具进行表面处理,以确保加工寿命的同时,保证刀具的经济实用。刀具刃口的强化

刀具刃口钝化技术是一个还不被人们普遍重视,而又是十分重要的问题。金刚石砂轮刃磨后的硬质合金刀具刃口,存在程度不同的微观缺口(即微小崩刃与锯口)。石墨高速切削加工刀具性能和稳定性提出了更高的要求,特别是金刚石涂层刀具在涂层前必须经过刀口的钝化处理,才能保证涂层的牢固性和使用寿命。刀具钝化目的就是解决上述刃磨后的刀具刃口微观缺口的缺陷,使其锋值减少或消除,达到圆滑平整,既锋利坚固又耐用的目的。加工条件

选择适当的加工条件对于刀具的寿命有相当大的影响。1.切削方式(顺铣和逆铣),顺铣时的切削振动小于逆铣的切削振动。顺铣时的刀具切入厚度从最大减小到零,刀具切入工件后不会出现因切不下切屑而造成的弹刀现象,工艺系统的刚性好,切削振动小;逆铣时,刀 具的切入厚度从零增加到最大,刀具切入初期因切削厚度薄将在工件表面划擦一段路径,此时刃口如果遇到石墨材料中的硬质点或残留在工件表面的切屑颗粒,都将引起刀具的弹刀或颤振,因此逆铣的切削振动大;

2.吹气(或吸尘)和浸渍电火花液加工,及时清理工件表面的石墨粉尘,有利于减小刀具二次磨损,延长刀具的使用寿命,减少石墨粉尘对机床丝杠和导轨的影响;

3.选择合适的高转速及相应的大进给量。

综述以上几点,刀具的材料、几何角度、涂层、刃口的强化及机械加工条件,在刀具的使用寿命中扮演者不同的角色,缺一不可,相辅相成的。一把好的石墨刀具,应具备流畅的石墨粉排屑槽、长的使用寿命、能够深雕刻加工、能节约加工成本。

2改进办法

1刃口磨损 改进办法:提高进给量;降低切削速度;使用更耐磨的刀片材质;使用涂层刀片。2崩碎

改进办法:使用韧性更好的材质;使用刃口强化的刀片;检查工艺系统的刚性;加大主偏角。3热变形

改进办法:降低切削速度;减少进给;减少切深;使用更具热硬性的材质。4切深处破损

改进办法:改变主偏角;刃口强化;更换刀片材质。5热裂纹 改进办法:正确使用冷却液;降低切削速度;减少进给;使用涂层刀片。6积屑

改进办法:提高切削速度;提高进给;使用涂层刀片或金属陶瓷刀片;使用冷却液;使刃口更锋利。7月牙洼磨损

改进办法:降低切削速度;降低进给;使用涂层刀片或金属陶瓷刀片;使用冷却液。8断裂

改进办法:使用韧性更好的材质或槽型;减少进给;减少切深;检查工艺系统的刚性。

注意:通常当后刀面磨损达0.7毫米时,应更换刀片刃口;精加工时最大磨损量为0.04毫米。

六:总结(感想)

通过数控技术的学习,了解了机床加工零件的流程。绘制零件图(了解零件的加工类型,加工外形,加工基准和尺寸要求),编制加工工艺的程序并确定工位,在机床上装夹和分中(对刀),最后开启机床对零件进行加工。

同时对加工过成中可能出现的问题进行分析和改进,如刀具的磨损和主轴的跳动,安装工件的松动,加工过程中的热变形,对薄壁件加工时的加工速度的控制和安装都将决定加工零件的质量。

第三篇:刀具知识

数控加工刀具的选择

2006年3月6日 08:07 中国刀具在线

刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般取得很能密,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具,迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(三种规格)和锥柄(四种规格)两种,共包括16种不同用途的刀柄。

在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:

尽量减少刀具数量;

一把刀具装夹后,应完成其所能进行的所有加工部位;

粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;

先铣后钻;

先进行曲面精加工,后进行二维轮廓精加工;

在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

一、模具新钢种——超硬型高速钢

研究和发展模具新钢种,是改善和提高模具钢的强韧性,延长模具的使用寿命的重要途径。我国模具工业在迅速发展,我国的材料工作者在借鉴国外先进技术的基础上结合本国资源情况和特点,引进和研制了不少新型模具钢。经过生产上的考核筛选,一些性能优异、工艺性能也比较好的钢种受到模具制造和使用单位的欢迎,使模具的使用寿命达到甚至超过国内外同类模具的水平,如北京钢铁学院与大冶钢厂研制的无Co超硬高速钢W12Cr4Mo3V3N(简称V3N)的各项性能优良,获中华人民共和国国家发明奖,中华人民共和国专利(91102252),V3N模具性能比现用普通高速钢提高2~10倍,相当于国际市场现用含 10%Co的高速钢,已成功地推广应用在工模具生产中,可使寿命成倍增加。

二、V3N成分及性能特点

W12Cr4Mo3V3N(简称V3N)是钨-钼系含氮无钴超硬型高速钢,V3N的化学成分c:1.21%; W: 11.88%; Mo: 2.95%; Cr4.00%; V:2.87%; N: 0.075%.新型超硬高速钢V3N成分设计特点是:

高C: C对冷作模具钢的强韧性、耐磨性有决定性的影响。含碳量增加,则抗压强度及耐磨性增加。因此,抗冲击及高强韧冷作模具钢含碳量较高。

高V: V强烈细化晶粒,强烈提高耐磨性、红硬性及二次硬化能力。但含量过多会明显恶化可锻性及磨削性。含N:N可细化晶粒,又有析出强化的作用,且机械性能及焊接性能都较好。

主要技术性能:V3N钢具有硬度高、耐磨性好、高的红硬性和一定的韧性,在冷作模具钢上应用效果十分显著。该钢与含钴高速钢相比,价格低廉且易加工,通过适当的热处理,可得到高硬度(HRC67~70)、高红硬性(625℃4小时,HRC63~65)和高耐磨性,韧性和抗弯强度均不低于普通型高速钢,可克服模具刃口塌陷和崩裂等早期损坏。

三、V3N钢模具的加工工艺

模具热处理方法和加工工艺的选择同样要根据模具的工作条件、失效方式和对性能的不同要求来确定。应不断改善热处理设备,改进热处理工艺,使材料的强度、韧性得到最佳配合,并严格遵循热处理工艺,控制加热温度、时间、冷却速度,从而保证模具的使用性能。

1,锻造

V3N钢含有大量的一次碳化物和二次碳化物,若保留在淬火组织中,将急剧降低模具所有寿命。只有通过对原材料改锻,击碎碳化物,才能使其呈细小、均匀的形貌分布于钢基体,提高整体力学性能。

V3N钢导热性差,锻坯加热时应充分预热,始锻温度1170℃,终锻温度950℃,设备可采用250kg(小件)和400kg空气锤,开始采用轻锤快打,中间用重锤打,最后慢打轻打,锻后于石棉粉箱中缓冷取出后即进行退火处理。

2,锻后退火

可采用等温退火或普通860 oC退火4小时.机械加工

锻后硬度较高,采用等温或普通退火后,机加可顺利进行,淬火后因工硬度较高,故工件成型磨削难度较大,可采用镨铌刚玉加铬制作的砂轮进行磨削。

热处理工艺

V3N钢在1220~1230℃淬火时,由于存在未熔碳化物,硬度偏低,系淬火温度不足;在1260~1270℃淬火时,晶粒明显过大,系过热现象。选择1230~1240℃淬火加热温度既能使碳化物和合金元素充分溶解到奥氏体中去,又能保持较细晶粒(10~10级)。

V3N超硬高速钢模具部件采用1220~1230℃经550℃四次回火,硬度可控制在HRC64~67,具体可根据零件尺寸的大小从热处理工艺上进行调整,达到硬度和强度较理想的配合,V3N超硬型高速钢淬火后有较多残余奥氏体,据测定约为25%~30%,必须尽量消除减少,为此进行多次高温回火使之发生马氏体转变。进行4次高温回火后,大部分残余奥氏体发生了马氏体转变,产生二次硬化效应。V3N钢二次硬化效应温度比普通高速钢高30~40℃,这一特性十分宝贵,表明V3N钢有更高红硬性。

精加工后的深冷处理

经深冷处理后,由于残留奥氏体向马氏体转变以及超细碳化物的析出,模具零件硬度和耐磨性将进一步改善,耐磨性可提高40%,既缩短回火时间节省了能量,又明显提高了模具使用寿命。

高速钢模具深冷处理工艺过程为:模具除油污→放入保温罐中→少量多次注入液氮(196℃)→保温浸泡2.5h→取出模具迅速放入60~70℃热水中。

四、V3N钢在冷作模具的应用与效果

V3N超硬冷作模具寿命均比 Cr12MoV、Cr12等常用模具寿命提高3~5倍,比现用普通高速钢提高2~10倍,经济效益更为显著,V3N钢制模具性能相当于国际市场现用含10%Co的高速钢。

某厂硅钢片冲模原来都是采用CrWMn、Cr12MoV等铬钢制作的,但由于硅钢等硬面脆,故模具耗损量大,采用V3N钢制作模具,经济效果明显

五、结语

V3N超硬高速钢各项性能优良,适合加工冲裁模等冷作模具,寿命显著提高。

V3N钢热加工工艺较严格,1220~1230℃淬火,550℃4次1小时回火,精加工后再经深冷处理可获得高硬度、高耐磨性和良好的韧性配合,使用过程中还可定期对凹模进行去应力回火以延长寿命。

电火花加工机床自20世纪50年代在中国诞生以来,走过了漫长而快速的发展道路,技术日益先进,应用越来越广,目前已在中国模具工业中占有十分重要的地位,每年都有1万多台新的电火花加工机床进入模具制造领域。在模具型面加工中,电火花加工机床虽然受到高速铣削的严峻挑战,但由於其独特性能和技术的不断进步,电火花加工机床今后仍将在模具工业中发挥其独特的作用,并获得进一步的发展。20世纪50年代以前,中国模具制造基本是用手工工具配以一般通用机床进行。50年代后期,电加工工艺开始在模具制造中应用。从60年代初开始,两种电火花加工机床(电火花成形机床和电火花线切割机床)在模具制造中的应用不断发展,促进了模具制造技术的提高和模具工业的发展。随着电加工技术的不断发展,电加工在模具加工中所占比例逐步提高,电火花加工机床在模具工业的应用也越来越多。90年代开始,随着高速加工在模具制造中的应用逐步发展,电加工机床的地位受到了挑战。但直到目前,电加工在模具制造仍旧起着极其重要的作用

历史回顾

中国第一台电火花加工机床诞生於1954年。1958年研制成功的DM5540型电脉冲机床具有效率高、电极损耗小的优点,从而开始了电加工机床进入以模具加工为主的时期。“钢打钢”电加工工艺的研究成功解决了电极与冲头的配合问题,这使电加工机床在模具(特别是冲压模具)加工中得到进一步推广应用。1965年出现的晶体管脉冲电源的冲D6140电火花成形机床拓宽了电加工在型腔模具加工中的应用。可控硅电源和晶体管电源的电加工机床,在70年代得到较大的发展,它们与不断完善的平动头相结合,使型腔模电火花平动工艺日趋成熟,促进了型腔模电火花加工的新发展。

电火花线切割机床从60年代起得到迅速发展。1964年中国开发了光电跟踪电火花线切割机床和快速走丝电火花线切割机床。1969年出现快速走丝数控电火花线切割机床。

随着数控技术的发展,80年代电火花机床有了新的突破,陆续出现了一些高性能的数控电火花加工机床。80年代中国还自行开发了场效应管脉冲电源、数控平动装置及工艺技术和低速走丝线切割技术,使中国的数控电火花加工得到迅速发展。随着中外合资企业生产电火花加工机床和引进数控电火花加工技术及机床,电火花加工机床在中国模具工业中的应用越来越多,作用也越来越重要。中国90年代生产的HCX250、DK76、CC100、DK7632等数控低速走丝线切割机床对冲压模具加工来说,不论从工艺、技术、功能、加工精度、效率,表面质量及对超硬材料的加工性能等方面都有很大提高。S205TNC、HCD400K、GW7452、SC110、SF310、B50等一系列性能价格比极具竞争力的数控电火花成形机床的出现,使中国的电火花成形机床在模具工业的应用,更展示了它们的多功能、高精度、稳定可靠、价格适中等优点。

目前概况

目前,电火花线切割加工的精度已达到2微米,最佳加工表面粗糙度可低於Ra0.3微米,这对诸如IC引线框架模等精密模具的加工具有十分重要的意义。由於大锥度(已可达到±30度-40度有的甚至能作90度的切割)和大厚度(已有可切割1米厚度的机床)方面的技术进展,以及自动穿丝、自动定位等技术的进步,电火花切割加工在塑料和铝型材料挤出模及冲压模制造中充分发挥了它的优势。精密电火花线切割加工和研磨、抛光相结合的加工方式,在模具加工中正在不断发展。由於镜面电火花加工技术的发展,精密电火花成形机床在精密型腔模具加工方面,起着越来越重要的作用。有的电火花成形机的加工表面粗糙度可达Ra0.1微米。电加工虽然已受到高速铣削的严重挑战,但它仍旧有 广泛的前景。例如在模具的深窄小型腔、窄缝、沟糟、拐角、冒孔等加工方面,具有其他加工方法难以替代的作用。“电火花铣削加工”、“混粉加工”、“模糊控制”、“微细电火花加工”等技术的发展和直线电机及专家系统的应用,也使电火花加工机床继续保持良好的发展。数控高速电火花小孔加工机性能的不断提高使它的用途越来越广。

现在,电火花加工技术与模具制造已密不可分。一方面是电火花加工技术的发展,为模具工业的发展创造良好的条件,另一方面是模具工业的发展,向电火花加工提出了越来越高的要求,促使电火花加工技术的发展。两者相辅相成,相互促进,共同发展。近年来,中国模具行业每年新增加的电加工机床都在1万台以上,它们在模具工业中发挥着极其重要的作用。在现在的模具生产中,大约三分之一的加工工作是由电火花加工机床完成的。由此可见它们在模具工业中的重要作用。

前景展望

日益加剧的市场竞争要求模具制造周期越来越短,工业产品零件大型化和精度的不断提高要求模具日趋大型化和精密化。电火花加工技术亦要跟上这些要求。因此,快速、大型、精密、大厚度切割等都是电火花加工机床今后的发展方向。当然,不断提高电火花加工机床的可靠性、继续降低电极损耗、进一步简化操作、提高自动化程度及降低机床成本,仍旧是电火花加工机床的发展方向。高速铣削技术的发展促使电加工机床能加工更复杂、更精密及微细的型面和关键零件。

高速走丝线切割机床是中国独创的机床。它自60年代以来经过30多年的不断发展和完善,现已成为模具加工不可缺少的装备,也是中国模具生产企业中装备数量最多的电火花加工机床。目前它的切割速度有的已超过250mm²/min,加工精度达到±0.01mm,工件表面粗糙度为Ra1.25微米,因而可以在较低的价位上满足一般模具加工的需要。但随着模具制造的要求越来越高和面对低速走丝线切割机床的高性能,它就面临相当严峻的形势。今后高速走丝切割机床的发展策略应该是扬长避短,以发展中低档机床为主,使机床向适当的加工精度、良好的加工稳定性和容易操作及优良的性能价格比的方向发展。为此,高速走丝线切割机床应在基於PC的开放式数控系统方面、数字自适应脉冲电源、加工参数的优化及自动选取、人工智能技术的运用、机床整体结构的改进、螺距误差与间隙补偿技术的运用、多次切割工艺的应用进行研究,以及计算机软件的不断改进来提高机床的整体加工性能。

目前低速走丝电火花线切割机床和电火花成形机床的进口量很大,特别是数控电火花加工机床,中国机床市场占有率较低。对比国内外产品,中国设备与国外先进设备之间确实存在较大差距。根据中国模具工业发展情况和国内外主要电加工机床生产企业状况,展望未来,首要将发展重点放在中低档普及型数控电加工机床上。这一方面是因为大量的个体经营及股份制模具生产企业正大量需要,另一方面,这是中国电加工机床生产企业力所能及并占有一定优势。为了保证机床的稳定可靠,一些关键部件和元器件可采用高质量的国外产品。为了提高数控电火花加工机床的工艺水平,今后在脉冲电源(例如节能型无电阻电源、毫微秒级高峰值电流电源、微细加工电源、新型等能量脉冲电源、超精加工电源、专用辅助电源等)及电源波形检测、处理、控制技术等方面,在包括稳定性技术、适应控制技术、能量控制技术、各类加工工艺技术、检测技术等综合技术的专家系统方面,在刚度、热平衡、主轴头等的设计、个性化、集成化及造型和外观设计方面,在工作液的改进及其环保处理方面,在走丝系统和穿丝技术的改进方面等,都应加强研究和开发,以求不断进步。

细微电火花加工和电火花高速精微小孔加工机床以其独特的优越性而呈现广阔的应用前景,在今后的模具加工中的作用将逐渐增大。微进给机构和电火花微细加工伺服系统及微型传感器的研制、细小电极的制作、微小型电火花加工状态检测等,都是发展细微电火花加工的关键。中国生产的D703型数控高速电火花小孔加工机床的工艺指标已达到国际先进水平,加工的小孔深径比已超过1000:1,可加工不锈钢、硬质合金、铜、铝等各种导电难加工材料,可从斜面和曲面穿入,直接使用自来水工作液等特点,最高加工速度可达60mm/min。DS703、SP200、SD1等高速电火花小孔加工机床也都具有良好的加工性能,很具发展前景。

模具技术的发展使型面更加复杂,微细型腔更多,而且随着对模具寿命要求的不断提高,模具材料随之更硬。对此,电火花加工机床有其独特的优越性。

随着环保要求的提高和绿色制造战略的提出,绿色电火花加工的概念已被提上议事日程,并且已被提到电火花加工的可持续战略的高度。绿色电火花加工主要包括高效节能脉冲电源、提高脉冲电源的电磁兼容性和“三废”处理及防火防爆等内容。展望未来,中国在绿色电火花加工方面必须有突破,才能使电火花加工机床获得可持续发展并适应加入WTO后的新形势。

综上所述,电火花加工机床不但在过去和现在在模具工业中的应用十分广泛,而且今后也必将发挥其重要作用。

第四篇:数控车床(数控机床)知识

数控车床(数控机床)知识大全

34、数控车床的调试与验收方法

89、数控车床操作规程

1314、数控机床的知识

(二)1819、数控车床的选用要点

第五篇:数控车床加工中刀具补偿的应用

刀具半径补偿在数控车削中的应用 摘要:

全面介绍了数控车床加工过程中的刀具补偿,并且对数控车床不具备刀具半径补偿功能时的刀具补偿计算方法进行了阐述。数控车削刀具半径补偿是数控系统中的重要功能, 正确地使用该功能, 在数控车削加工实践中能起到保证产品质量和提高生产效率的作用。通过刀具半径补偿的矢量分析和应用, 介绍刀具半径补偿在数控车削编程加工中的正确使用方法。关键词:数控车床;加工;刀具补偿 Abstract:

A comprehensive introduction of CNC lathe machining process, and the blade compensating for CNC lathe tool radius compensation function does not have the blade compensating calculation method is discussed in this paper.The numerical control turning tool radius compensation is the important function of CNC system, correctly use the function, in the numerical control turning processing practice can play to ensure the product quality and improve production efficiency.Through the compensation for the tool radius vector analysis and application is introduced, and the tool radius compensation in the numerical control turning processing the correct use of programming method.Keywords: CNC lathe, Processing;Blade compensating

前言

数控车床通常连续实行各种切削加工,刀架在换刀时前一刀具刀尖位置和新换的刀具位置之间会产生差异,刀具安装也存在误差、刀具磨损和刀尖圆弧半径等误差,若不利用刀具补偿功能予以补偿,就切削不出符合图样要求形状的零件。此外,合理利用刀具补偿还可以简化编程。数控车床的刀具补偿可分为两类,即刀具位置补偿和刀具半径补偿。在车削过程中,刀尖圆弧半径中心与编程轨迹会偏移一个刀尖圆弧半径值r,用指令补偿因刀尖半径引起的偏差的这种偏置功能,称为刀具半径补偿。

具有补偿功能的数控车,编程时,不用计算刀尖半径中心轨迹,只要按工件轮廓编程即可(按照加工图上的尺寸编写程序);在执行刀具半径补偿时,刀具会自动偏移一个刀具半径值;当刀具磨损,刀尖半径变小;刀具更换,刀尖半径变大时,只需更改输入刀具半径的补偿值,不需修改程序。补偿值可通过手动输入方式,从控制面板输入,数控系统自动计算出刀具半径中心运动轨迹。

第一章 刀具半径补偿的简介

一.刀具半径补偿

1.刀具半径补偿的概念

正像使用了刀具长度补偿在编程时基本上不用考虑刀具的长度一样,因为有了刀具半径补偿,我们在编程时可以不要考虑太多刀具的直径大小了。刀长补偿对所有的刀具都适用,而刀具半径补偿则一般只用于铣刀类刀具。当铣刀加工工件的外或内轮廓时,就用得上刀具半径补偿,当用端面铣刀加工工件的端面时则只需刀具长度补偿。因为刀具半径补偿是一个比较难以理解和使用的一个指令,所以在编程中很多人不愿使用它。但是我们一旦理解和掌握了它,使用起来对我们的编程和加工将带来很大的方便。当编程者准备编一个用铣刀加工一个工件的外形的程序时,首先要根据工件的外形尺寸和刀具的半径进行细致的计算坐标值来明确刀具中心所走的路线。此时所用的刀具半径只是这把铣刀的半径值,当辛辛苦苦编完程序后发现这把铣刀不太适合要换用其他直径的刀具,编程员就要不辞辛劳地重新计算刀具中心所走的路线的坐标值。这对于一个简单的工件问题不太大,对于外形复杂的模具来说重新计算简直是太困难了。一个工件的外形加工分粗加工和精加工,这样粗加工程序编好后也就是完成了粗加工。因为经过粗加工,工件外形尺寸发生了变化,接下来又要计算精加工的刀具中心坐标值,工作量就更大了。此时,如果用了刀具半径补偿,这些麻烦都迎刃而解了。我们可以忽略刀具半径,而根据工件尺寸进行编程,然后把刀具半径作为半径补偿放在半径补偿寄存器里。临时更换铣刀也好、进行粗精加工也好,我们只需更改刀具半径补偿值,就可以控制工件外形尺寸的大小了,对程序基本不用作一点修改。2.刀具半径补偿的使用

刀具半径补偿的使用是通过指令G41、G42来执行的。补偿有两个方向,即沿刀具切削进给方向垂直方向的左面和右面进行补偿,符合左右手定则;G41是左补偿,符合左手定则;G42是右补偿,符合右手定则,如图3所示。图3刀具半径补偿使用的左右手定则在使用G41、G42进行半径补偿时,应特别注意使补偿有效的刀具移动方向与坐标。刀具半径补偿的起刀位置很重要,如果使用不当刀具所加工的路径容易出错,如图4所示。图4刀具半径补偿的起刀位置如果使G42补偿有效的过程为刀具从位置1到2,则铣刀将切出一个斜面如图4中所示的A-B斜面。正确的走刀应该是在刀具没有切削工件之前让半径补偿有效,然后进行正常的切削。如图4所示,先让铣刀在从位置1移动到位置3的过程中使补偿有效,然后从位置3切削到位置2继续以下的切削,则不会出现A-B斜面。因此,在使用G41、G42进行半径补偿时应采取以下步骤:☆设置刀具半径补偿值;☆让刀具移动来使补偿有效(此时不能切削工件);☆正确地取消半径补偿(此时也不能切削工件)。记住,在切削完成而刀具补偿结束时,一定要用G40使补偿无效。G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地推出工件以后才能执行G40命令来取消补偿。

二.刀具半径补偿的方法

把实际的刀具半径存放在一个可编程刀具半径偏置寄存器中D ##;(可编程刀具半径偏置寄存器号。)假设刀具的半径为零,直接根据零件的轮廓形状进行编程;CNC系统将该编号(寄存器号)对应的刀具半径偏置寄存器中存放的刀具半径取出,对刀具中心轨迹进行补偿计算,生成实际的刀具中心运动轨迹。2.刀具半径补偿指令

a)刀具半径左补偿 b)刀具半径右补偿

刀具半径补偿分为:

(1)刀具半径左补偿:用G41定义,刀具位于工件左侧;(2)刀具半径右补偿:用G42定义,刀具位于工件右侧;(3)取消刀具半径补偿:G40。

(4)刀具半径偏置寄存器号:用非零的D## 代码选择;

对于车削数控加工,由于车刀的刀尖通常是一段半径很小的圆弧,车床而假设的刀尖点(一般是通过对刀仪测量出来的)并不是刀刃圆弧上的一点。因此,加工中心在车削锥面、倒角或圆弧时,可能会造成切削加工不足(不到位)或切削过量(过切)的现象。切削锥面时因切削加工不足而产生的加工误差。

因此,当使用车刀来切削加工锥面时,必须将假设的刀尖点的路径作适当的修正,使之切削加工出来的工件能获得正确的尺寸,这种修正方法称为刀尖半径补偿(ToolNoseRadiusCompensation,简称TNRC)。

(1)车刀形状和位置 车刀形状和位置是多种多样的,车床形状还决定刀尖圆弧在什么位置。此车刀形状和位置亦必须输入计算机中。

车刀形状和位置共有九种。车刀的形状和位置分别用参数T1—W输入到刀具数据库中。典型的车刀形状、位置与参数的关系。(2)刀尖半径和位置的输入 刀具数据库(TOOL DATA)数据项目。加工中心X、Z为刀具位置补偿值(mm)(车床r值不用);R为刀尖半径(mm):T为刀尖位置代码。如果在程序中输入下面指令GOO G42 X100.0 Z3.0 TOl01;那么数控装置按照01刀具补偿栏内X、Z、及、了的数值自动修正刀具的安装误差(执行刀位补偿),车床还自动计算刀尖圆弧半径补偿量,把刀尖移动到正确的位置上。(3)刀具半径的左右补偿

1)C,41刀具左补偿。顺着刀具运动方向看,刀具在工件的左边,称为刀具左补偿,用C,41代码编程。

2)C,42刀具右补偿。顺着刀具运动方向看,刀具在工件的右边,称为刀具右补偿,用C.42代码编程。

3)C.40取消刀具左、右补偿。车床如需要取消刀具左、右补偿,可编人C-40代码。这时,车刀轨迹按理论刀尖轨迹运动。(4)刀具补偿的编程方法及其作用 加工中心如果根据机床初始状态编程(即无刀尖半径补偿),车刀按理论刀尖轨迹移动,产生表面形状误差6。

如程序段中编人G42指令,车刀按车刀圆弧中心轨迹移动,无表面形状误差。可看出当编人G42指令,到达户:点时,车刀多走一个刀尖半径距离。

(5)刀具半径补偿的编程规则 加工中心车床刀具补偿必须遵循以下规则:

1)G40、G41、G42只能用GOO、G01结合编程。车床不允许与G02、G03等其他指令结合编程,否则报警。

2)在编人G40、G41、G42的GOO与G01前后的两个程序段中,X、Z值至少有一个值变化。否则产生报警。

3)在调用新的刀具前,必须取消刀具补偿,否则产生报警。

二、刀具刀尖圆弧半径补偿 G40、G41、G42指令

数控程序是针对刀具上的某一点即刀位点进行编制的,车刀的刀位点为理想尖锐状态卜的假想刀尖A点或刀尖圆弧圆心O点(见图1 43)但实际加工中的车刀,由于工艺或其他要求,刀尖往往不是一理想尖锐点,而是一段圆弧。当切削加土时刀具切削点在刀尖圆弧上变动(见图1-44),造成实师切削点与刀位点之问的位置有偏差,故造成过切或少切(见图 1一44)。这种由于刀尖不是一理想尖锐点而是一段圆弧,造成的加工误差,可用刀尖半径补偿功能来消除。系统执行到含有T代码的程序段时,是否对刀共进行刀尖半径补偿,以及以何种力式补偿,由G代码中的G40、G41、G42决定。G40:取消刀尖半径补偿,刀尖运动轨迹与编程轨迹一致; G41:刀尖半径左补偿,洽进给方向,刀尖位置在编程轨迹左边时 G42:刀尖半径右补偿,错进给方向.刀尖位置在编程轨迹右边时。刀尖半径补偿G41/G42是在加工平面内,沿进给方向看,根据刀尖位置在编程轨迹左边/右侧判断来区分的。加工平而的判断,与观察方向即第而轴方向有关。图1一45(b)为CJK6032数控机床的刀尖半径补偿方向。

由于数控程序是针对刀具上的刀位点即A点或O点(见图1一43)进行编制的,因此对刀时使该点与程序中的起点重合。在没有刀具圆弧半径补偿功能时,按哪点编程,则该点按编程轨迹运动,产生过切或少切的大小和方向因刀尖圆弧方向及刀尖位置方向而异。当有刀具圆弧半径补偿功能时须定义上述参数,其中刀尖位置方向号从0至9有10个方向号。当按假想刀尖A点编程时,刀尖位置方向因安装方向不同、从刀尖圆弧中心到假想刀尖的方向,有8种刀尖位置方向号可供选择,并依次设为1一8号:当按刀尖圆弧中心O点编程时,刀尖位置方向则设定为O或9 号。该方向的判断也与第三轴有关,图1一46(b)所示的方向为CJK6032数控车床的刀尖安装方向。刀尖半径补偿的加入是执行G41或G42指令时完成的,当前面没有G41或G42 指今时,可以不用G40指令,而且直接写入G41或G42指令即可;发现前面为G41或 G42指令时,则先应指定G40指令取消前面的刀尖半径补偿后,在写入G41或G42指令,刀尖半径补偿的取消是在G41或G42指令后面,加G41指令完成。

注:1)当前面有G41、G42指令时,如要转换为G42、G41或结束半径补偿时应先指定G40。指令取消前面的刀尖半径补偿。2)程序结束时,必须清除刀补。

3)G41、G42、G40指令应在GOO或G01程厅段中加入。4)在补偿状态下,没有移动的程序段(M 指令、延时指令等),不能在连续2 个以上的程序段中指定,否则会过切或欠切。

5)在补偿启动段或补偿状态下不得指定移动距离为0的G00、G01等指令。

6)在G40刀尖圆弧半径补偿取消段,必须同时有X、Z两个轴方向的位移。

刀具补偿量的设定,是由操作者在CRT/MDI面板上用“刀补值”功能键,置人刀具补偿寄存器,共中对应梅个刀其补偿号,都有一组刀补值:刀尖圆弧半径R 和刀尖位置号T %1047N1 G92 X60 Z40 N2 T0101N3 G90 G01 G42 X30 Z37 F300 M03 N4 Z25N5 G02 X46 Z17 18 N6 G01 X50 N7 Z0 N8 X54 N9 G00 G40 X60 Z40 T0100 N10 M05 N11 M30 第二章 刀具位置补偿和刀具半径补偿 刀具位置补偿

加工过程中,若使用多把刀具,通常取刀架中心位置作为编程原点,即以刀架中心!为程序的起始点,如图1所示,而刀具实际移动轨迹由刀具位置补偿值控制。由图1(a)可见,刀具位置补偿包含刀具几何补偿值和磨损补偿值。

图1 刀具位置补偿

由于存在两种形式的偏移量,所以刀具位置补偿使用两种方法,一种方法是将几何补偿值和磨损补偿值分别设定存储单元存放补偿值,其格式为:

另一种方法是将几何偏移量和磨损偏移量合起来补偿,如图(b)所示,其格式为:

总补偿值存储单元编号有两个作用,一个作用是选择刀具号对应的补偿值,并执行刀具位置补偿功能;另一个作用是当存储单元编号00时可以取消位置补偿,例如T0100,表示消去+号刀具当前的补偿值。图2表示位置补偿的作用,图2中的实线是刀架中心A 点的编程轨迹线,虚线是执行位置补偿时A 点的实际轨迹线,实际轨迹的方位和X、Z轴的补偿值有关,其程序为: N010 G00 X10 Z-10 T0202; N020 G01 Z-30; N030 X20 Z-40 T0200;

图2 刀具位置补偿作用 数控车床系统刀具结构如图3所示,图3中P为假想刀尖,S为刀头圆弧圆心,r为刀头半径,A为刀架参考点。

图3 车刀结构

车床的控制点是刀架中心,所以刀具位置补偿始终需要。刀具位置补偿是用来实现刀尖圆弧中心轨迹与刀架参考点之间的转换,对应图3中A与S之间的转换,但是实际上我们不能直接测得这两个中心点之间的距离矢量,而只能测得假想刀尖!与刀架参考点$ 之间的距离。为了简便起见,不妨假设刀头半径r=0,这时可采用刀具长度测量装置测出假想刀尖点P相对于刀架参考点的坐标参数表中。

和,并存入刀具

式中:——— 假想刀尖P点坐标;

(X,Z)——— 刀架参考点A的坐标。至此很容易写出刀具位置补偿的计算公式为

式中假想刀尖P的坐标

实际上即为加工零件轨迹点坐标,可从数控加工程序中获得。此时,零件轮廓轨迹经式(2)补偿后,即能通过控制刀架参考点A来实现。

对于图3中r≠0的情况,在进行刀具位置补偿时,不但需要考虑到刀头圆弧半径的补偿,而且还要考虑到刀具的安装方式(具体见2.2)。2 刀具半径补偿

编制加工程序时,一般是将刀尖看作是一个点,然而实际上刀尖是有圆弧的,在切削内孔、外圆及端面时,刀尖圆弧不影响加工尺寸和形状,但在切削锥面和圆弧时,则会导致刀具的行走轨迹与编程轨迹不相吻合,而有一差值。图4表示圆弧刀尖有半径补偿和无半径补偿时的轨迹。从图中可以看出,采用假想刀尖P编程时,刀具圆弧中心轨迹如图4中双点划线所示,刀具实际加工轨迹和工件要求的轮廓形状存在误差,误差大小和圆弧半径r有关。若采用刀具圆弧中心编程并使用半径补偿功能时刀具圆弧中心的轨迹是图4中的细实线,加工轨迹和工件要求的轮廓相等。

图4 圆弧刀尖有半径补偿和无半径补偿时的轨迹

因为车刀的安装和几何形状较复杂,下面通过几个方面作进一步阐述。2.1 假想刀尖P的方位确定

假想车刀刀尖P相对圆弧中心的方位与刀具移动方向有关,它直接影响圆弧车刀补偿计算结果。图5是圆弧车刀假想刀尖方位及代码。从图中可以看出,刀尖P的方位有八种,分别用1~8八个数字代码表示,同时规定,刀尖取圆弧中心位置时,代码为0或9,可以理解为没有圆弧补偿。

图5 圆弧车刀假想刀尖方位及代码

2.2 圆弧半径补偿和位置补偿的关系

如果按照刀架中心A点作为编程起始点,不考虑圆弧半径补偿,则车刀在X轴和Z轴补偿值按照图1(b)所示方法确定。既要考虑车刀位置补偿,又要考虑圆弧半径补偿,此时车刀在X轴和Z轴的位置补偿值可以按照图6所示方法确定,而将刀具的圆弧半径r值放入相应的存储单元中,在加工时数控装置自动进行圆弧半径补偿。在刀具代码T中的补偿号对应的存储单元中,存放一组数据:X轴Z轴的长度补偿值,圆弧半径补偿值和假想刀尖方位(0~9)。操作时,可以将每一把刀具的四个数据分别输入刀具补偿号对应的存储单元中,即可实现自动补偿(表1)。

图6 圆弧车刀位置补偿 表1 刀具补偿值

2.3 圆弧半径自动补偿轨迹

刀具半径是否补偿以及采用何种方式补偿,是由G指令中的G40、G41、G42决定的:

G40———刀具半径补偿取消,即使用该指令后,使G41、G42指令无效。

G41———刀具半径左补偿,即沿刀具运动方向看,刀具位于工件左侧时的刀具半径补偿。

G42———刀具半径右补偿,即沿刀具运动方向看,刀具位于工件右侧时的刀具半径补偿。

图7是使用圆弧半径补偿时刀具补偿过程。图7中刀具补偿的程序格式为: G40__; 消除补偿;

G41__; 半径补偿起始程序段; __;

图7 刀具补偿过程

从图7可以看出,在起始程序段中,刀具在移动过程中逐渐加上补偿值。当起始程序段结束之后,刀具圆弧中心停留在程序设定坐标点的垂线上,距离是半径补偿值。

第三章 数控车床不具备刀具半径补偿功能时的刀具补偿计算

当数控车床没有刀具半径补偿功能时,用圆头车刀加工工件时,就要用计算的方法来求解刀具半径补偿量。一.按假想刀尖编程加工锥面

如图8所示,若假想刀尖沿工件轮廓AB移动,即

与AB重合,并按AB尺寸编程,则必然产生图8(a)中ABCD残留误差。因此按图8(b)所示,使车刀的切削点移至AB,并沿AB移动,从而可避免残留误差,但这时假想刀尖轨迹

与轮廓在Z方向相差了△z。

式中:r为刀具圆弧半径;θ为锥面斜角。因此可直接按假想刀尖轨迹以补偿△z即可。的坐标值编程,在x方向和z方向予

图8 车锥面刀补偿示意图

二. 按假想刀尖编程加工圆弧

当车削圆弧表面时,会出现如图9所示的情况。图9(a)为车削半径为R的凸圆弧,由于P的存在,则刀尖# 点所走的圆弧轨迹并不是工件所要求的圆弧形状。其圆心为“”,半径为“R+r”,此时编程人员仍按假想刀尖P点进行编程,不考虑刀尖圆弧半径的影响,但要求加工前应在刀补值上给Z向和X向分别加一个补偿量r。同理,在切削凹圆弧,如图9(b)时,则在X向和Z向分别减一个补偿量r。

图9 车圆弧刀补示意图

三.按刀尖圆弧中心轨迹编程

图10所示零件是由三段凸圆弧和凹圆弧构成的,这时可用虚线所示的三段等距线进行编程,即圆半径为圆半径为

圆半径为,三段圆弧的终点坐标由等距的切点关系求得。这种方法编程比较直观,常被采用。

图10 按刀尖圆弧中心编程 第四章 数控车削中刀具半径补偿的矢量

分析和应用 刀具半径补偿的矢量

刀具半径补偿计算的主要工作是根据刀具的方向矢量和半径矢量计算各种转接类型转接点的坐标值,即根据相邻编程轮廓段的起止点坐标值判断转接类型, 调用相应的计算程序计算出转接点坐标值。了解计算机软件关于刀具补偿转接点的坐标值计算, 对生产实践具有指导作用。为了正确地理解数控车削刀具半径补偿的过程,下面引入矢量的概念(数控车床的编程为G18平面,以上手刀为例)。(1)直线方向矢量: 指与运动方向一致的单位矢量, 用L d 表示。(2)圆弧方向矢量: 是指圆弧上某一动点的切线方向上的单位矢量, 用L d 表示。

(3)刀尖圆弧半径矢量: 是指垂直于编程轨迹且大小等于刀尖圆弧半径、方向指向刀尖圆弧中心的矢量, 用rd 表示。

根据以上的矢量描述, 数控系统能够正确判断各种转接类型并计算各转接点的坐标值。2 刀具半径补偿过程

刀具半径补偿是数控车床的重要功能之一。通常采用的对刀方法都是将刀尖作为刀位点, 然而在实际应用中, 为了提高刀具寿命和降低加工表面的粗糙度,一般将车刀刀尖磨成半径0.2~2 的圆弧, 这样按零件轮廓编程运行后, 实际起切削作用的是圆弧的各切削点, 这样势必会造成加工误差。消除由刀尖圆弧引起的加工误差必须进行刀尖圆弧半径自动补偿, 补偿参数包括刀尖半径R 值和刀尖方位T 值。将刀补参数输入数控系统之后, 刀具半径补偿的

方向要在执行G41(或G42)之后方可生效。刀具半径补偿的执行过程分为以下3 个步骤:(1)起动偏置: 从取消偏置方式变为偏置方式的程序段称为起动偏置程序段。在起动偏置的程序段进行刀具偏置的过渡运动, 在起动程序段的终点, 刀尖R 中心位于下个程序段起点, 并在与下个程序段垂直的位置上, 同时满足刀具方向矢量和半径矢量的条件。起动偏置的程序段必须是G00 或G01, 如图1 所示。

图1 起动偏置

(2)执行偏置: 在执行了G41(或G42)的程序段中, 刀位点发生了变化, 由理论刀尖偏移至刀尖R 中心, 而刀尖R 中心轨迹始终垂直于方向矢量且偏离编程轨迹一个刀尖圆弧半径矢量, 依靠刀尖圆弧外缘来加工零件轮廓。(3)取消偏置: 在执行偏置的方式中如果指令了G40, 则这个程序段被称为取消偏置程序段。取消偏置如图2 所示, 从图2 中可以看出, 在取消偏置程序段的前一个程序段, 刀尖不在该程序段的终点, 这个变化是由刀位点造成的, 生产实践中应特别注意, 取消偏置的程序段必须是G00 或G01。3 刀具半径补偿的应用

在数控车削加工中, 如果被加工零件的轮廓是正交面(柱面和端面)组成的, 则建立刀具半径补偿与否, 所加工的零件轮廓都是完全一致的, 这样很容易造成部分操作人员忽视了刀具半径补偿的应用。但在加工非正交面(弧面和锥面)轮廓时, 不进行刀具半径补偿就会发生过切和余切现象, 这样势必造成零件的不合格或报废。在实际应用中要注意以下几个方面的 问题:(1)加工小于刀尖半径的内圆弧时, 由于偏置的刀尖圆弧中心找不到正确的圆心轨迹将导致过切, 如图3 所示。

图2 取消偏置

图3 轮廓半径小于刀尖半径时产生过切(2)加工小于刀尖半径的台阶时, 由于台阶小于刀具半径, 因此在新旧矢量交替时, 偏置的刀尖圆弧中心将向编程的反方向移动, 产生过切, 如图4 所示。

(3)在执行刀补的程序段中, 如果有加工端面的轨迹时应特别注意, 因为有刀尖方位号, 要特别小心切削方向, 右刀补时, 只能允许偏刀从旋转中心往外切削, 否则会多切掉一个刀尖圆弧直径的量, 如图5 所示。

图4 台阶尺寸小于刀尖半径时产生过切

图5 加工端面的切削方向(4)同样在执行刀补的程序段中, 由于刀位号已经确定, 所以用正偏刀加工倒锥的轮廓时, 系统会产生过切报警。

(5)在取消偏置的程序段(G40)中, 刀具刀尖圆弧中心位于前一个程序段终点垂直的位置上, 可能将造成过切, 此时应指令I、K, 即: G40X(U)_ Z(W)_ I_K_。其中, I、K 为增量值, 且I 为半径值。这样指定以后, 刀尖圆弧中心就会从I、K 方向线与前一个程序段轮廓线的角平分线位置运动至终点。

(6)在执行偏置的程序段中, 通过调整刀尖圆弧半径的大小来控制加工余量和加工精度要优于磨耗中的调整, 特别是在非正交平面的余量控制和调整中, 因为在磨耗中X 轴和Z 轴是分别控制的, 而改变刀尖圆弧半径的大小则可以同时控制两个轴的余量, 如图6所示。

图6 在执行偏置中的加工余量控制__ 4 结束语

刀具补偿功能的作用主要在于简化程序,即按零件的轮廓尺寸编程。在加工前,操作者测量实际的刀具长度、半径和确定补偿正负号,作为刀具补偿参数输入数控系统,使得由于换刀或刀具磨损带来刀具尺寸参数变化时,虽照用原程序,却仍能加工出合乎尺寸要求的零件。此外,刀具补偿功能还可以满足编程和加工工艺的一些特殊要求。

实际生产中, 数控车削刀具半径补偿功能基本上应用在非柱面的精加工程序段。在起动偏置和取消偏置的程序段中, 同时要伴有刀具移动的指令, 否则程序轨迹可能会发生变化, 从而造成零件报废。同理, 在起动偏置和取消偏置的程序段中, 也应尽量避免切削工件。一个零件的加工程序不是唯一的, 但是, 正确使用刀具半径补偿是每一个编程员必备的基础知识。

致 谢

感谢我的老师,他们严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪。

感谢我的老师,这片论文的每个实验细节和每个数据,都离不开你的细心指导。而你开开朗的个性和宽容的态度,帮助我能够很快的融入我们这个新的环境.感谢这几年一起走过的同学和朋友,是你们的存在,我才不会那么孤单,多少个共同努力的日子,将会是一生中美好的回忆。

在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!

参考文献

1许镇宇.机械零件.北京:高等教育出版社,1983;

2孔庆复.计算机辅助设计与制造.哈尔滨:哈尔滨工业大学出版社,1994;

3雷宏.机械工程基础.哈尔滨:黑龙江出版社 2002; 4王中发.实用机械设计.北京:北京理工大学出版社 1998; 5 唐宗军.机械制造基础.大连:机械工业出版社 1997; 6吴祖育,秦鹏飞.数控机床.上海:上海科学技术出版社 2003; 7许翔泰,刘艳芳.数控加工编程实用技术.北京:机械工业出版社2000;

8吴明友.数控机床加工技术 东南大学出版社.江苏:2000; 9王宝成.现代数控机床.天津:天津科学技术出版社,2000;

下载数控车床类刀具知识word格式文档
下载数控车床类刀具知识.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数控车床典型轴类零件加工[5篇范文]

    数控车床典型轴类零件加工工艺和编程 摘要 通过本次毕业设计〖资料来源:毕业设计(论文)网 www.xiexiebang.com〗对典型轴类零件的设计又了很深的认识,本次设计概括了我所学的......

    数控车床总结

    数控车床总结 一. 面板熟悉 二. 装刀 三. 对刀 四. 沟槽加工 五. 螺纹加工 六. 内孔加工 具体内容: 一. 面板熟悉 1. 开机,关机 2. 手轮方式 说明--熟练掌握x.z轴正负方向的判定与操作......

    数控车床教学计划[大全]

    兖州市成人中专 2011-2012学年度第一学期《数控车削加工技术》教学计划 本学期担任09级数控车床教学工作,现就本学期教学工作计划如下: 一、本课程的性质 数控车床能够实现通......

    数控车床通讯

    以前,数控机床加工程序的输入采用纸带传输程序或是手工输入时,存在如 下缺点:(1)纸带传输效率低,识别正确率低;(2)纸带传输程序时会将机床中原有的程序自动删除;(3)纸带不易长时间保存;(4)......

    数控车床论文(合集)

    数控机床的发展趋势与应用论文 作者:xxx 作者单位:xxx 摘要 数控机床集计算机技术,电子技术,自动控制技术,传感测量,机械制造,是典型的机电一体化产品。它的发展和应用开创了制造业......

    数控车床论文

    商丘科技职业学院毕业论文(设计) 中 文 摘 要 科学技术的飞速发展改变了世界,也改变了人类的生活,作为新世纪的大学生,应站在时代的前列,掌握现代科学技术知识,调整自已的知识结构......

    数控车床 论文

    数控车床 姓名: 序号: 学号: 班级: 院系: 指导老师: 摘要:世界科技和经济以及社会生产力的不断发展,原来的机械产品已经不能满足人们的需要。因此对产品的性能、质量、生产率和成......

    数控车床简介

    一数控车床简介CKA6150选用FANUC OTD,FANUC Oi-MATE TC,FANUC Oi-TA,FANUCOi-TB、安川J50L、SIEMENS 802D,FAGOR 8025T,FAGOR 8055T等世界知名公司的数控系统.对工件可进行多次重......