物联网简介及基于ZigBee的无线传感器网络

时间:2019-05-14 16:56:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《物联网简介及基于ZigBee的无线传感器网络》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《物联网简介及基于ZigBee的无线传感器网络》。

第一篇:物联网简介及基于ZigBee的无线传感器网络

物联网简介及基于ZigBee的无线传感器网络

摘 要

物联网,是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,给IT和通信带来了广阔的新市场。积极发展物联网技术,尽快扩展其应用领域,尽快使其投入到生产、生活中去,将具有重要意义。

ZigBee无线通信技术是一种新兴的短距离无线通信技术,具有低功耗、低速率、低时延等特性,具有强大的组网能力与超大的网络容量,可以广泛应用在消费电子品、家居与楼宇自动化、工业控制、医疗设备等领域。由于其独有的特性,ZigBee无线技术也是无线传感器网络的首选技术,具有广阔的发展前景。ZigBee协议标准采用开放系统接口(051)分层结构,其中物理层和媒体接入层由IEEE802.15.4工作小组制定,而网络层,安全层和应用框架层由ZigBee联盟制定。

本文首先从概念、技术架构、关键技术和应用领域介绍了物联网的相关知识,然后着重介绍了基于ZigBee的无线传感器网络,其中包括无线传感网简介、ZigBee技术概述和基于ZigBee的无线组网技术。

关键词:物联网;ZigBee;无线传感器网络

物联网简介

物联网概念

“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。其定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。

最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。

技术架构

从技术架构上来看,物联网一般可分为三层:感知层、网络层和应用层。感知层是物联网的皮肤和五官-用于识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、M2M终端、传感器网关等,主要功能是识别物体、采集信息,与人体结构中皮肤和五官的作用类似。感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。

网络层是物联网的神经中枢和大脑-用于传递信息和处理信息。网络层包括通信网与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。特别是在三网融合后,有线电视网也能承担物联网网络层的功能,有利于物联网的加快推进。网络层所需要的关键技术包括长距离有线和无线通信技术、网络技术等。应用层是物联网的“社会分工”-结合行业需求,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,结合行业需求实现行业智能化,这类似于人的社会分工。

应用层解决的是信息处理和人机交互的问题。网络层传输而来的数据在这一层进入各类信息系统进行处理,并通过各种设备与人进行交互。这一层也可按形态直观地划分为两个子层。一个是应用程序层,进行数据处理,它涵盖了国民经济和社会的每一领域,包括电力、医疗、银行、交通、环保、物流、工业、农业、城市管理、家居生活等,其功能可包括支付、监控、安保、定位、盘点、预测等,可用于政府、企业、社会组织、家庭、个人等。这正是物联网作为深度信息化的重要体现。另一个是终端设备层,提供人机接口。物联网虽然是“物物相连的网”,但最终是要以人为本的,还是需要人的操作与控制,不过这里的人机界面已远远超出现时人与计算机交互的概念,而是泛指与应用程序相连的各种设备与人的交互。图1为物联网网络构架。

图1 物联网网络构架

关键技术

一、感知层

    传感器技术:感知物资信息 RFID技术:智能识别

微机电系统(MEMS):采集信息 GPS/GIS技术:全球定位/地理信息系统

二、网络层

   无线传感器网络(WSN)技术

Wi-Fi(Wireless Fidelity,无线保真技术)

通信网、互联网、3G网络、IPV6(让世界的第一粒都拥有一个IP地址)

 GPRS网络(基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接)

三、应用层

      企业资源计划(ERP:Enterprise Resource Planning)专家系统(Expert System)

云计算(Cloud Computing)系统集成(System Integrate)行业应用(Industry Application)资源打包(Resource Package)

广电网络、NGB(下一代广播电视网)

应用领域

1.城市市政管理应用 2.农业园林 3.医疗保健 4.智能楼宇 5.交通运输

图2为物联网网络架构及物联网应用领域。

图2 物联网网络架构及物联网应用领域

基于ZigBee的无线传感器网络

物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议。

无线传传感器网络简介

电系统(MEMS)、片上系统(SOC)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。

无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。

无线传感器网络(wireless sensor networks,WSN)是当前在国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。它综合了传感器、嵌入式计算、现代网络及无线通信和分布式信息处理等技术,能够通过各类集成化的微型传感器协同完成对各种环境或监测对象的信息的实时监测、感知和采集,这些信息通过无线方式被发送,并以自组多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会这三元世界的连通。

所谓无线传感器网络由大量部署在目标区域内的,具备感知、无线通信与计算能力的微小传感器节点所构成的分布式网络系统。传感器网络节点的组成和功能包括如下四个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统以及节点应用程序等组成)、通信单元(由无线通信模块组成)、以及供电单元(电池、太阳能或其他方式)。传感器网络可以根据当时的情况通过自组织方式构成动态的网络拓扑结构。传感器网络节点间一般采用多跳的无线通信方式进行通信。传感器网络可以在独立的环境下运行,也可以通过网关连接到互联网,使用户可以远程访问。

无线网络技术按照传输范围来划分,可以分为无线广域网(WWAN),无线城域网(WMAN),无线局域网(WLAN)和无线个人域网(WPAN)。其中的无线个人域网就是所谓的短距离无线网络,各种短距离无线传输技术层出不穷:蓝牙(Bluetooth)、ZigBee、Wi-Fi、无线USB,无载波通信技术(UWB)等, 其中蓝牙(Bluetooth)、UWB和ZigBee是最受产业界关注的三种标准。Bluetooth虽然成本低,成熟度高,具有多种规范,但是其传输距离有限,仅为10米,只能组成最多8个节点的星状网,电池也仅能维持数周。UWB虽然可以实现高达几百Mbps的传输速率,但是其覆盖距离仅为10米,这决定了它主要被用作消费产品中的视频和高速数据解决方案,目前UWB没有网状网络能力。Wi-Fi虽然传输速度可以达到11Mbps,传输距离达到100米,但是其价格相对教昂贵,且功耗大,组网能力差。ZigBee技术专注于低成本,低功耗和低速率的无线通信市场,因此非常适合应用于物联网无线传感器网络中来。

ZigBee技术概述

ZigBee技术是一种短距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE 802.15.4无线标准研制开发的有关组网、安全和应用软件方面的通信技术。ZigBee协议规范使用了IEEE 802.15.4定义的物理层(PHY)和媒体介质访问层(MAC),并在此基础上定义了网络层(NWK)和应用层(APL)架构。

基于ZigBee技术的无线传感器网络应用在ZigBee联盟和IEEE 802.15.4组织的推动下,结合其他无线技术可以实现无所不在的网络。它不仅在工业、农业、军事、环境、医疗等传统领域具有极高的应用价值,而且在未来其应用更将扩展到涉及人类日常生活和社会生产活动的所有领域。IEEE 802.15.4标准 1.物理层(PHY)规范

物理层定义了物理无线信道和与 MAC 层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务是从无线物理信道上收发数据,物理层管理服务维护一个由物理层相关数据组成的数据库。物理层功能相对简单,主要是在硬件驱动程序的基础上,实现数据传输和物理信道的管理。数据传输包括数据的发送和接收;管理服务包括信道能量监测(energy detect,ED),链接质量指示(Link quality indication,LQI)和空闲信道评估(clear channel assessment,CCA)等。2.媒体介质访问层(MAC)规范

MAC 层提供两种服务:MAC层数据服务和 MAC 层管理服务。前者保证 MAC 协议数据单元在物理层数据服务中的正确收发,而后者从事 MAC层的管理活动,并维护一个信息数据库。

MAC 层的主要功能包括如下7个方面:

1.网络协调者产生并发送信标帧(beacon);

2.设备与信标同步;

3.支持RAN 网络的关联(association)和取消关联(disassociation)操作 4.为设备的安全性提供支持;

5.信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制;

6.处理和维护保护时隙(GTS)机制;

7.在两个对等的 MAC 实体之间提供一个可靠的通信链路。ZigBee技术简介

ZigBee 协议标准采用分层结构,每一层为上层提供一系列特殊的服务:数据实体提供数据传输服务;管理实体则提供所有其他的服务。所有的服务实体都通过服务接人点 SAP 为上层提供接口,每个 SAP 都支持一定数量的服务原语来实现所需的功能。ZigBee 标准的分层架构是在OSI 七层模型的基础上根据市场和应用的实际需要定义的。其中 IEEE 802.15.4—2003 标准定义了底层协议:物理层(physical layer,PHY)和媒体访问控制层(medium access control sub—layer,MAC)。ZigBee 联盟在此基础上定义了网络层(network layer,NWK),应用层(application layer,APL)架构。在应用层内提供了应用支持子层(application support sub—layer,APS)和 ZigBee 设备对象(ZigBee device object,ZDO)。应用框架中则加入了用户自定义的应用对象。ZigBee 协议的体系结构如图3所示。

图3 ZigBee 协议体系结构

ZigBee 的网络层采用基于 Ad Hoc 的路由协议,除了具有通用的网络层功能外,还应该与底层的 IEEE 802.15.4标准一样功耗小,同时要实现网络的自组织和自维护,以最大限度方便消费者使用,降低网络的维护成本。应用支持子层把不同的应用映射到 ZigBee网络上,主要包括安全属性设置、业务发现、设备发现和多个业务数据流的汇聚等功能。1.网络层(NWK)规范

网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的 MAC 层正常工作,并且为应用层提供合适的服务接口。2.应用层(APL)规范

在ZigBee协议中应用层是由应用支持子层、ZigBee 设备配置层和用户应用程序来组成的。应用层提供高级协议栈管理功能,用户应用程序由各制造商自己来规定,它使用应用层来管理协议栈。3.应用支持子层(APS)APS 子层通过 ZigBee 设备对象(ZD0)和制造商定义的应用对象所用到的一系列服务来为网络层和应用层提供接口。APS 子层所提供的服务由数据服务实体(APSDE)和管理服务实体(APSME)来实现。APSDE通过数据服务实体访问点(APSDE—SAP)来提供数据传输服务。APSME 通过管理服务实体访问点(APSME—SAP)来提供管理服务,它还负责对 APS 信息数据库(AIB)的维护工作。

基于ZigBee的无线组网技术

ZigBee网络体系

ZigBee网络中存在两种功能类型的设备,三种节点类型,三种拓扑结构及两种工作模式。

● 功能类型

ZigBee网络含全功能设备FFD(Full Function Device)和精简功能设备RFD(Reduced Function Device)两种功能类型的设备。全功能器件拥有完整的协议功能,在网络中可以作为协调器(Coordinator)、路由器(Router)和普通节点(Device)而存在。而精简功能器件旨在实现最简单的协议功能而设计,只能作为普通节点存在于网络中。全功能器件可以与精简功能器件或其他的全功能器件通信,而精简功能器件只能与全功能器件通信,精简功能器件之间不能直接通信。ZigBee网络要求至少有一个全功能设备作为网络协调器。

● 节点类型

ZigBee网络包含三种类型的节点,即协调器ZC(ZigBee Coordinator)、路由器ZR(ZigBee Router)和终端设备ZE(ZigBee EndDevice),其中协调器和路由器均为全功能设备(FFD),而终端设备选用精简功能设备(RFD)。

协调器:一个ZigBee网络PAN(Personal Area Network)有且仅有一个协调器,该设备负责启动网络,配置网络成员地址,维护网络,维护节点的绑定关系表等,需要最多的存储空间和计算能力。

路由器:主要实现扩展网络及路由消息的功能。扩展网络,即作为网络中的潜在父节点,允许更多的设备接入网络。路由节点只有在树状网络和网状网络中存在。

终端设备:不具备成为父节点或路由器的能力,一般作为网络的边缘设备,负责与实际的监控对象相连,这种设备只与自己的父节点主动通讯,具体的信息路由则全部交由其父节点及网络中具有路由功能的协调器和路由器完成。

● 拓扑结构

ZigBee网络支持星状网(Star Network),树状网(Cluster tree Network)和网状网(Mesh Network)三种网络拓扑结构如图2-1所示,依次是星状网络,树状网络和网状网络,在图4中的C表示PAN协调器,F表示全功能设备,R表示精简功能设备。

图4 星状网、树状网和网状网三种拓扑结构

星形网(Star)是由一个ZigBee协调器和一个或多个ZigBee终端节点组成的。ZigBee协调器必须是FFD,它位于网络的中心,负责发起建立和维护整个网络,其它的节点(终端节点)一般为RFD,也可以为FFD,它们分布在ZigBee协调器的覆盖范围内,直接与ZigBee协调器进行通信。星形网的控制和同步都比较简单,通常用于节点数量较少的场合。星型网络拓扑的最大优点是结构简单,无需其他路由信息,一切数据包均通过ZigBee协调器。其缺点是限制了无线网络的覆盖范围,很难实现高密度地扩展,最多支持两跳网络,适用于小型网络。目前为止,星形拓扑是最常见的网络配置结构,被大量应用在远程监测和控制终端设备的通信。

网络协调器要为网络选择一个唯一的标识符,所有该星型网络中的设备都是用这个标识符来规定自己的属主关系。不同星型网络之间的设备通过设置专门的网关完成相互通信。选择一个标识符后,网络协调器就允许其他设备加入自己的网络,并为这些设备转发数据分组。星型网络中的两个设备如果需要互相通信,都是先把各自的数据包发送给网络协调器,然后由网络协调器转发给对方。

树状网络(Cluster tree Network)由一个协调器和一个或多个星状结构连接而成,枝干末端的叶子节点一般为RFD,设备除了能与自己的父节点或子节点进行点对点直接通讯外,其他只能通过树状路由完成数据和控制信息的传输。ZigBee 协调器比网络中的其它路由器具有更强人的处理能力和存储空间。树状网络的一个显著优点就是它的网络覆盖范围较大,但随着覆盖范围的增加,信息的传输时延也会增大。

在建立树状网络时,ZigBee协调器建立网络后,先选择网络标识符,将自己的短地址设置为0,然后向它邻近的设备发送信标,接受其他设备的连接,形成树的第一级,此时ZigBee协调器与这些设备之间形成父子关系。与ZigBee协调器建立连接的设备都分配了一个16位的网络短地址。如果以终端设备的身份与网络连接,则ZigBee协调器分配一个唯一的16位网络地址;如果以路由器的身份与网络连接,则协调器会为它分配一个地址块(包含有若干16位短地址)。路由器根据它接收到的协调器信标的信息,配置并发送它自己的信标,允许其他的设备与自己建立连接,成为其子设备。由此可见,路由器转发消息时通过计算与目标设备的关系,从而决定向自己的父节点转发还是某个子节点转发。

网状网络(Mesh Network)一般是由若干个FFD连接在一起组成骨干网,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信,即允许网络中所有具有路由功能的节点直接互连。但它们中也有一个会被推荐为ZigBee协调器。网状网络是树状网络基础上实现的,与树状网络不同的是,它是由路由器中的路由表配合来实现数据的网状路由的。Mesh网是一种高可靠性网络,具有“自恢复”能力,它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择,但正是由于两个节点之间存在多条路径,它也是一种“高冗余”的网络。该拓扑的优点是减少了消息延时、增强了可靠性,缺点是需要更多的存储空间开销。

● 工作模式

ZigBee网络的工作模式可以分为信标模式和非信标模式两种。信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗,而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态。

在信标模式下,ZC负责以一定的间隔时间(一般在15ms-4mins之间)向网络广播信标帧,两个信标帧发送间隔之间有16个相同的时槽,这些时槽分为网络休眠区和网络活动区两个部分,消息只能在网络活动区的各个时槽内发送。

非信标模式下,ZigBee标准采用父节点为ZE子节点缓存数据,ZE主动向其父节点提取数据的机制,实现ZE的周期性(周期可设置)休眠。网络中所有的父节点需要为自己的ZE子节点缓存数据帧,所有ZE子节点的大多数时间都处于休眠状态,周期性的醒来与父节点握手以确认自己仍处于网络中,并向父节点提取数据,其从休眠模式转入数据传输模式一般只需要15ms。

简单的概括为:两种设备,三种节点类型,三种拓扑结构及两种工作模式。1.全功能设备FFD,精简功能设备RFD 2.协调器,路由器,终端设备

3.星状网,树状网,网状网

4.信标模式 ,非信标模式(信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗;而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态)。

图5为基于ZigBee的无线传感器网络在物联网中的应用。

图5 基于ZigBee的无线传感器网络在物联网中的应用

第二篇:无线传感器网络实验感想

无线传感实验感想

本次实验我们进行的是无线传感器网络综合实验。在实验中,我们小组成员学习了无线传输的基本原理,合作完成实验系统的安装、调试与数据分析,在这一过程中我受益良多。

无线传感器网络系统是基于ZigBee技术。ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性数据、间歇性数据和低反应时间数据传输的应用。

现在无线传感网络技术广泛用于很多方面,如农业物联网、工业自动化以及智能家居等。无线传感的使用使传感器和自动化技术得到了空前的发展,并给人们的生活带来了很大的便利。

我们平时的实验课更多注重对理论的验证,但是没有创新性和自主研发性,虽然这次的实验我们大部分也是照着实验说明书进行连接、烧录程序、演示等,但是此次的实验增加了我对电子设计的浓厚兴趣。只要有兴趣,我相信化兴趣为动力,我肯定能更加努力加强电子专业的学习,努力提高专业素养。

当然实验中还有注重团队的协作,我们分工明确,合作愉快,因此更快、更好地完成了实验。现在的项目工程,凭一己之力几乎不可能完成,所以企业也十分注重员工的团队意识,我们想要进入好的企业,对这块不能等闲视之,必须加以重视。

最后,通过这次的传感器技术实验我不但对理论知识有了更加深的理解,对于实际的操作和也有了质的飞跃。经过这次的实验,我们整体对各个方面都得到了不少的提高,希望以后学校和系里能够开设更多类似的实验,能够让我们得到更好的锻炼。

第三篇:外文翻译英文文献中英版ZigBee:无线技术_低功耗传感器网络 2

ZigBee:无线技术,低功耗传感器网络

加里莱格

美国东部时间2004年5月6日上午12:00

技师(工程师)们在发掘无线传感器的潜在应用方面从未感到任何困难。例如,在家庭安全系统方面,无线传感器相对于有线传感器更易安装。而在有线传感器的装置通常占无线传感器安装的费用80%的工业环境方面同样正确(适用)。而且相比于有线传感器的不切实际甚至是不肯能而言,无线传感器更具应用性。虽然,无线传感器需要消耗更多能量,也就是说所需电池的数量会随之增加或改变过于频繁。再加上对无线传感器由空气传送的数据可靠性的怀疑论,所以无线传感器看起来并不是那么吸引人。

一个低功率无线技术被称为ZigBee,它是无线传感器方程重写,但是。一个安全的网络技术,对最近通过的IEEE 802.15.4无线标准(图1)的顶部游戏机,ZigBee的承诺,把无线传感器的一切从工厂自动化系统到家庭安全系统,消费电子产品。与802.15.4的合作下,ZigBee提供具有电池寿命可比普通小型电池的长几年。ZigBee设备预计也便宜,有人估计销售价格最终不到3美元每节点。由于价格低,他们应该是一个自然适应于在光线如无线交换机,无线自动调温器,烟雾探测器和家用产品。

(图1)

虽然还没有正式的规范的ZigBee存在(由ZigBee联盟是一个贸易集团,批准应该在今年年底),但ZigBee的前景似乎一片光明。技术研究公司In-Stat/MDR在它所谓的“谨慎进取”的预测中预测,802.15.4节点和芯片销售将从今天基本上为零,增加到2010年的165万台。不是所有这些单位都将与ZigBee结合,但大多数可能会。世界研究公司预测的到2010年射频模块无线传感器出货量4.65亿美量,其中77%是ZigBee的相关。

从某种意义上说,ZigBee的光明前途在很大程度上是由于其较低的数据速率20 kbps到250 kbps的,用于取决于频段频率(图2),比标称1 Mbps的蓝牙和54的802.11g Mbps的WiFi功能,或文件和音频,蓝牙一样。对于发送传感器的读数,这是典型的数万字节数,高带宽是没有必要,ZigBee的低带宽有助于它实现其目标和鲁棒性的低功耗,低成本。

由于ZigBee应用的是低带宽要求,ZigBee节点大部分时间可以睡眠模式,从而节省电池电源,然后醒来,快速发送数据,回去睡眠模式。而且,由于ZigBee可以从睡眠模式过渡到15毫秒或更少主动模式下,即使是睡眠节点也可以达到适当的低延迟。有人扳动支持ZigBee的无线光开关,例如,将不会是一个唤醒延迟知道前灯亮起。与此相反,支持蓝牙唤醒延迟通常大约三秒钟。

一个ZigBee的功耗节省很大一部分来自802.15.4无线电技术,它本身是为低功耗设计的。802.15.4采用DSSS(直接序列扩频)技术,例如,因为(跳频扩频)另类医疗及社会科学院将在保持一样使用它的频率过大的权力同步。

ZigBee节点,使用802.15.4,是几个不同的沟通方式之一,然而,某些方面比别人拥有更多的使用权力。因此,ZigBee的用户不一定能够实现传感器网络上的任何方式选择和他们仍然期望多年的电池寿命是ZigBee的标志。事实上,一些技术专家打算用小型无线传感器创建大的网络,即使功率ZigBee的电池需求很大。

一个ZigBee网络节点可以消耗额外的功率,例如,如果它试图避免与其他节点的传输或与其他无线电源传输重叠的传输。那么在ZigBee 802.15.4无线电的使用实现CSMA / CA(载波侦听多址接入冲突避免)技术,与ZigBee节点使用CSMA / CA是基本上采取了听先于谈话的方式,看是否有无线电通信已经展开。但是,正如所指出的Venkat Bahl,传感器营销公司恩贝尔公司副总裁兼ZigBee联盟的副主席,这不是一个首选的方法。“有听意见的权力,”Bahl说,“我们不喜欢这样做。”

ZigBee和802.15.4通讯的另一个选择是指路明灯模式,通常睡觉模式醒来网络节点定期接收同步“灯塔”从网络的控制节点。但是,对于一个灯塔听废物力量,也因为时间的不确定性,特别是支配节点打开,以免错过早期一盏明灯。

争议中的通信

为了尽可能节省电力ZigBee采用一种简单交际策略,talk-when-ready发送数据时,数据准备派遣然后就等着自动确认。根据鲍勃Heile,两ZigBee联盟主席和电子802.15,talk-when-ready是“开门见山地”计划,但却是一种很电力有效率。“我们在广泛的分析,导致了最好的节能策略从各种环境安静喧闹的,”Heile说。“我们发现,手了,好,我们在发送才离开那包东西和承认它。如果你不想让他ack讯息,它只表示你惨败,所以重发给你。你有更好的电源管理,并确定它是否安静,然后再谈谈。”

幸运的是,这种当面策略导致RF干扰非常小。这主要是因为ZigBee节点具有非常低的占空比,只偶尔传输发送少量的数据。其他ZigBee节点,以及WiWave的,而ZigBee系统保持在至少数个月。

通过提供互操作性,但ZigBee的补充能力,专利产品不能。举例说,Ember的义巴尔,互操作性允许照明系统的ZigBee节点的工作,在一个空调系统的ZigBee网络,反之亦然。“飞利浦照明是真的对这个很兴奋,”义巴尔说,“因为原来从一到建筑物的自动化系统的基础设施骨干镇流器生产厂家他们。”

不用说,主要的半导体公司很多,尤其是那些在嵌入式系统公司中大都热切期待ZigBee的投入并且大规模进入市场。飞思卡尔半导体(直到最近,摩托罗拉半导体产品部称)已经提供ZigBee-ready技术来选择客户。其他半导体公司,包括AMI,爱特梅尔,微芯片,飞利浦,瑞萨,都是ZigBee联盟的成员。

ZigBee可能是缓慢渗透到无线传感器的工业市场,但是。据对世界市场研究公司,它会需要五至七年来说服客户在工业上的可靠性,耐用性,以及无线传感器系统的安全。并显著预测在整个世界中ZigBee将长期在工业制造上有增长,因此。到2010年,公司项目,射频模块,应用于工业监控和控制得将达到1.65亿台,同比增长190万元,在世界性预测中,在2004年。大约75%的将基于ZigBee和802.15.4。

最终,ZigBee的可进入各种广泛的应用。家用电器,它可以帮助监测和控制能源消耗。在汽车应用中,它可以提供轮胎压力监测和远程无钥匙进入系统。也可用于ZigBee的医疗设备中,甚至在计算机外围设备,如无线键盘或鼠标。

值得关注的是越来越多,虽然,ZigBee的可能变成一种适合所有的技术的尺寸,并不很适合任何应用程序。一些持怀疑态度,例如,企图使ZigBee无所不包的可能使ZigBee协议栈太大,ZigBee的双重目标是非常低功耗和非常低的成本。如果出现这种情况,那么ZigBee的低功耗,低数据速率利基窄,如果它是,将被证明是过于宽泛的。然后,也许我们会需要另一种无线标准,以配合我们已经有的蓬勃发展的人数。

加里莱格是一家位于波士顿的自由撰稿人。他拥有电子工程学士学位,曾任编辑,EDN杂志执行编辑

ZigBee: Wireless Technology for Low-Power Sensor Networks Gary Legg

5/6/2004 12:00 AM EDT

Technologists have never had trouble coming up with potential applications for wireless sensors.In a home security system, for example, wireless sensors would be much easier to install than sensors that need wiring.The same is true in industrial environments, where wiring typically accounts for 80% of the cost of sensor installations.And then there are applications for sensors where wiring isn't practical or even possible.The problem, though, is that most wireless sensors use too much power, which means that their batteries either have to be very large or get changed far too often.Add to that some skepticism about the reliability of sensor data that's sent through the air, and wireless sensors simply haven't looked very appealing.A low-power wireless technology called ZigBee is rewriting the wireless sensor equation, however.A secure network technology that rides on top of the recently ratified IEEE 802.15.4 radio standard(Figure 1), ZigBee promises to put wireless sensors in everything from factory automation systems to home security systems to consumer electronics.In conjunction with 802.15.4, ZigBee offers battery life of up to several years for common small batteries.ZigBee devices are also expected to be cheap, eventually selling for less than $3 per node by some estimates.With prices that low, they should be a natural fit even in household products like wireless light switches, wireless thermostats, and smoke detectors.Figure 1: ZigBee adds network, security, and application-services layers to the PHY and MAC layers of the IEEE 811.15.4 radio Although no formal specification for ZigBee yet exists(approval by the ZigBee Alliance, a trade group, should come late this year), the outlook for ZigBee appears bright.Technology research firm In-Stat/MDR, in what it calls a “cautious aggressive” forecast, predicts that sales of 802.15.4 nodes and chipsets will increase from essentially zero today to 165 million units by 2010.Not all of these units will be coupled with ZigBee, but most probably will be.Research firm ON World predicts shipments of 465 million wireless sensor RF modules by 2010, with 77% of them being ZigBee-related.In a sense, ZigBee's bright future is largely due to its low data rates—20 kbps to 250 kbps, depending on the frequency band used(Figure 2)—compared to a nominal 1 Mbps for Bluetooth and 54 Mbps for Wi-Fi's 802.11g technology.But ZigBee won't be sending email and large documents, as Wi-Fi does, or documents and audio, as Bluetooth does.For sending sensor readings, which are typically a few tens of bytes, high bandwidth isn't necessary, and ZigBee's low bandwidth helps it fulfill its goals of low power, low cost, and robustness.Figure 2: ZigBee's data rates range from 20 kbps to 250 kbps, depending on the frequency used Because of ZigBee applications' low bandwidth requirements, a ZigBee node can sleep most of the time, thus saving battery power, and then wake up, send data quickly, and go back to sleep.And, because ZigBee can transition from sleep mode to active mode in 15 msec or less, even a sleeping node can achieve suitably low latency.Someone flipping a ZigBee-enabled wireless light switch, for example, would not be aware of a wake-up delay before the light turns on.In contrast, wake-up delays for Bluetooth are typically around three seconds.A big part of ZigBee's power savings come from the radio technology of 802.15.4, which itself was designed for low power.802.15.4 uses DSSS(direct-sequence spread spectrum)technology, for example, because the alternative FHSS(frequency-hopping spread spectrum)would have used too much power just in keeping its frequency hops synchronized.ZigBee nodes, using 802.15.4, can communicate in any of several different ways, however, and some ways use more power than others.Consequently, ZigBee users can't necessarily implement a sensor network any way they choose and still expect the multiple-year battery life that is ZigBee's hallmark.In fact, some technologists who are planning very large networks of very small wireless sensors say that even ZigBee is too power hungry for their uses.A ZigBee network node can consume extra power, for example, if it tries to keep its transmissions from overlapping with other nodes' transmissions or with transmissions from other radio sources.The 802.15.4 radio used by ZigBee implements CSMA/CA(carrier sense multiple access collision avoidance)technology, and a ZigBee node that uses CSMA/CA is essentially taking a listen-before-talk approach to see if any radio traffic is already underway.But, as noted by Venkat Bahl, marketing vice president for sensor company Ember Corp.and vice chairman of the ZigBee Alliance, that's not a preferred approach.“Having to listen burns power,” says Bahl, “and we don't like to do that.” Another ZigBee and 802.15.4 communications option is the beacon mode, in which normally sleeping network slave nodes wake up periodically to receive a synchronizing “beacon” from the network's control node.But listening for a beacon wastes power, too, particularly because timing uncertainties force nodes to turn on early to avoid missing a beacon.In-Your-Face Communication To save as much power as possible, ZigBee employs a talk-when-ready communication strategy, simply sending data when it has data ready to send and then waiting for an automatic acknowledgement.According to Bob Heile, who is chairman of both the ZigBee Alliance and IEEE 802.15, talk-when-ready is an “in-your-face” scheme, but one that's very power efficient.“We did an extensive analysis that led to the best power-saving strategy in various kinds of environments from quiet to noisy,” Heile says.“We discovered that, hands down, we were better off just sending the packet and acknowledging it.If you don't get an ack, it just means you got clobbered, so send it again.You wind up having much better power management than if you listen and determine if it's quiet before you talk.”

Fortunately, this in-your-face strategy leads to very little RF interference.That's largely because ZigBee nodes have very low duty cycles, transmitting only occasionally and sending only small amounts of data.Other ZigBee nodes, as well as Wi-Fi and Bluetooth modules, can easily deal with such small, infrequent bursts.ZigBee's talk-when-ready scheme doesn't suit all purposes, however.For example, in a network of thousands of tiny sensors dropped into a war zone to monitor enemy troop movements, the power savings provided still might not be enough.With each network node sending data periodically—and with transmissions repeated numerous times through other nearby nodes of a mesh network configuration in order to reach a network controller—large numbers of packet collisions and retransmissions could waste power and significantly shorten sensor node battery life.If the sensor batteries are very small and power-limited, that's especially problematic.Although contention for airwave access isn't generally a problem for ZigBee, it can be.Sensor-network company Dust Networks, in fact, says contention issues are keeping the company from turning to ZigBee—for now, at least—even though Dust remains a member of the ZigBee Alliance.“Each ZigBee device needs to contend for airspace with its neighbors,” says Dust director of product management Robert Shear, “so there's inevitably some contention and some inefficiency.” To avoid ZigBee's access contention, Dust uses contention-free TDMA(time division multiple access)technology.ZigBee, through the 802.15.4 MAC layer, provides guaranteed time slots in a scheme that somewhat resembles TDMA, but only as part of an optional “superframe” that's more complex and less power-efficient than TDMA.ZigBee has still more power-saving tricks up its sleeve, however.For example, it reduces power consumption in ZigBee components by providing for power-saving reduced-function devices(RFDs)in addition to more capable full-function devices(FFDs).Each ZigBee network needs at least one FFD as a controller, but most network nodes can be RFDs(Figure 3).RFDs can talk only with FFDs, not to other RFDs, but they contain less circuitry than FFDs, and little or no power-consuming memory.Figure 3: ZigBee networks can contain as many as 65,536 nodes in a variety of configurations ZigBee conserves still more power by reducing the need for associated processing.Simple 8-bit processors like an 8051 can handle ZigBee chores easily, and ZigBee protocol stacks occupy very little memory.An FFD stack, for example, needs about 32 kbytes, and an RFD stack needs only about 4 kbytes.Those numbers compare with about 250 kbytes for the far more complex Bluetooth technology.From ZigBee's relatively simple implementations, cost savings naturally accrue.RFDs, of course, reduce ZigBee component costs by omitting memory and other circuitry, and simple 8-bit processors and small protocol stacks help keep system costs down.Often, an application's main processor can easily bear the small additional load of ZigBee processing, making a separate processor for ZigBee functions unnecessary.But the main strategy for keeping ZigBee prices low is to have big markets and high volumes.The ZigBee Alliance, by making ZigBee an open standard and by vigorously promoting interoperability among ZigBee devices, expects that ZigBee will be very big in applications such as home and building automation.The alliance is currently working on interoperability procedures for those particular applications, which it expects to complete later this year along with ZigBee Specification 1.0.One reason for optimism about ZigBee adoption for home automation and security is its ease of use.ZigBee networks are self-forming, making it easy even for consumers to set them up.“In the residential space, there's no configuration involved,” says the ZigBee Alliance's Heile.“You take something out of the box, put the batteries in, and maybe do something as simple as button-press security—bring two devices close together, push the buttons until the green lights come on, and you're done.” ZigBee networks can also self-form in commercial and industrial settings, but professional installers will have tools that provide additional control, particularly for security.ZigBee security is flexible, says Heile, to give both consumer and professional users what they need.“You don't have to have 128-bit public-key encryption for a smoke detector,” he says, “but if I'm in a high-rise office complex, that's exactly the level of security I'm going to have for my fluorescent light fixtures.If you're in a high-rise building on Fifth Avenue, you don't want someone going down the street and turning your lights off.” Proprietary Competition Competition for ZigBee comes almost entirely from proprietary technologies.Sensor company Dust, as noted, is sticking with its own technology, and Ember, although pushing strongly into the ZigBee arena, plans to keep offering its proprietary EmberNet as well.In addition, Zensys is providing its Z-Wave technology to customers.Sylvania, for example, is already using Z-Wave for lighting control, while ZigBee systems remain at least several months away.By offering interoperability, however, ZigBee adds capabilities that proprietary products can't.For example, says Ember's Bahl, interoperability allows the ZigBee nodes of a lighting system to work with the ZigBee network of an HVAC system, or vice versa.“Philips Lighting is really excited about this,” Bahl, says, “because it turns them from a ballast manufacturer into the infrastructure backbone of a building-automation system.” Needless to say, many of the major semiconductor companies, and especially those that are big in embedded systems, are eagerly anticipating ZigBee's entry into mass markets.Freescale Semiconductor(until recently known as Motorola's Semiconductor Products Sector)is already providing ZigBee-ready technology to select customers.Other semiconductor companies, including AMI, Atmel, Microchip, Philips, and Renesas, are members of the ZigBee Alliance.ZigBee will likely be slow to penetrate the industrial market for wireless sensors, however.According to market research firm ON World, it will take five to seven years to convince industrial customers of the reliability, robustness, and security of wireless-sensor systems.ON World does predict significant long-term growth of ZigBee in industry, though.By 2010, the company projects, RF modules used in industrial monitoring and control will reach 165 million units, up from 1.9 million in 2004.About 75% of those, ON World predicts, will be based on ZigBee and 802.15.4.Eventually, ZigBee could go into a wide variety of applications.In household appliances, it could help monitor and control energy consumption.In automotive applications, it could provide tire-pressure monitoring and remote keyless entry.ZigBee could also be used in medical devices or even in computer peripherals, such as wireless keyboards or mice.Concern is increasing, though, that ZigBee could turn into a one-size-fits-all technology that doesn't fit any application particularly well.Some skeptics, for example, worry that an attempt to make ZigBee all-encompassing could make the ZigBee protocol stack too large for ZigBee's twin goals of very low power consumption and very low cost.If that happens, then ZigBee's low-power, low-data-rate niche—narrow as it is—will have proven to be too broad.And then, perhaps, we'll need yet another wireless standard to go with the burgeoning number we already have.About the Author Gary Legg is a Boston-based freelance writer.He holds a BSEE degree and is a former editor and executive editor of EDN magazine.He can be reached at gary@garylegg.com.

第四篇:无线传感器网络课后习题答案

1-2.什么是无线传感器网络? 无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络。目的是协作地探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。1-4.图示说明无线传感器网络的系统架构。

1-5.传感器网络的终端探测结点由哪些部分组成?这些组成模块的功能分别是什么?(1)传感模块(传感器、数模转换)、计算模块、通信模块、存储模块电源模块和嵌入式软件系统

(2)传感模块负责探测目标的物理特征和现象,计算模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发送和接收。另外,电源模块负责结点供电,结点由嵌入式软件系统支撑,运行网络的五层协议。

1-8.传感器网络的体系结构包括哪些部分?各部分的功能分别是什么?

(1)网络通信协议:类似于传统Internet网络中的TCP/IP协议体系。它由物理层、数据链路层、网络层、传输层和应用层组成。

(2)网络管理平台:主要是对传感器结点自身的管理和用户对传感器网络的管理。包括拓扑控制、服务质量管理、能量管理、安全管理、移动管理、网络管理等。

(3)应用支撑平台:建立在网络通信协议和网络管理技术的基础之上。包括一系列基于监测任务的应用层软件,通过应用服务接口和网络管理接口来为终端用户提供各种具体应用的支持。

1-9.传感器网络的结构有哪些类型?分别说明各种网络结构的特征及优缺点。

(1)根据结点数目的多少,传感器网络的结构可以分为平面结构和分级结构。如果网络的规模较小,一般采用平面结构;如果网络规模很大,则必须采用分级网络结构。(2)平面结构:

特征:平面结构的网络比较简单,所有结点的地位平等,所以又可以称为对等式结构。优点:源结点和目的结点之间一般存在多条路径,网络负荷由这些路径共同承担。一般情况下不存在瓶颈,网络比较健壮。

缺点:①影响网络数据的传输速率,甚至造成网络崩溃。②整个系统宏观上会损耗巨大能量。③可扩充性差,需要大量控制消息。分级结构:

特征:传感器网络被划分为多个簇,每个簇由一个簇头和多个簇成员组成。这些簇头形成了高一级的网络。簇头结点负责簇间数据的转发,簇成员只负责数据的采集。

优点:①大大减少了网络中路由控制信息的数量,具有很好的可扩充性。②簇头可以随时选举产生,具有很强的抗毁性。

缺点:簇头的能量消耗较大,很难进人休眠状态。

1-13.讨论无线传感器网络在实际生活中有哪些潜在的应用。

(1)用在智能家具系统中,将传感器嵌入家具和家电中,使其与执行单元组成无线网络,与因特网连接在一起。(2)用在智能医疗中,将传感器嵌入医疗设备中,使其能接入因特网,将患者数据传送至医生终端。(3)用在只能交通中,运用无线传感器监测路面、车流等情况。2-2.传感器由哪些部分组成?各部分的功能是什么?

2-5.集成传感器的特点是什么? 体积小、重量轻、功能强、性能好。2-7.传感器的一般特性包括哪些指标? 灵敏度、响应特性、线性范围、稳定性、重复性、漂移、精度、分辨(力)、迟滞。2-15.如何进行传感器的正确选型?

1.测量对象与环境:分析被测量的特点和传感器的使用条件选择何种原理的传感器。2.灵敏度:选择较高信噪比的传感器,并选择适合的灵敏度方向。

3.频率响应特性:根据信号的特点选择相应的传感器响应频率,以及延时短的传感器。4.线性范围:传感器种类确定后观察其量程是否满足要求,并且选择误差小的传感器。

5.稳定性:根据使用环境选择何时的传感器或采用适当的措施减小环境影响,尽量选择稳定性好的传感器。6.精度:选择满足要求的,相对便宜的传感器。2-17.简述磁阻传感器探测运动车辆的原理。

磁阻传感器在探测磁场的通知探测获得车轮速度、磁迹、车辆出现和运动方向等。使用磁性传感器探测方向、角度或电流值,可以间接测定这些数值。因为这些属性变量必须对相应的磁场产生变化,一旦磁传感器检测出场强变化,则采用一些信号处理办法,将传感器信号转换成需要的参数值。3-2.无线网络通信系统为什么要进行调制和解调?调制有哪些方法?(1)调制和解调技术是无线通信系统的关键技术之一。调制对通信系统的有效性和可靠性有很大的影响。采用什么方法调制和解调往往在很大程度上决定着通信系统的质量。

调制技术通过改变高频载波的幅度、相位或频率,使其随着基带信号幅度的变化而变化。

解调是将基带信号从载波中提取出来以便预定的接收者(信宿)处理和理解的过程。(2)根据调制中采用的基带信号的类型。可以将调制分为模拟调制和数字调制。

根据原始信号所控制参量的不同,调制分为幅度调制、频率调制和相位调制。3-4.试描述无线传感器网络的物理层帧结构。

3-6.根据信道使用方式的不同。传感器网络的MAC协议可以分为哪几种类型? 时分复用无竞争接入方式、随机竞争接入方式、竞争与固定分配相结合的接入方式。3-7.设计基于竞争的MAC协议的基本思想是什么?

当结点需要发送数据时,通过竞争方式使用无线信道。如果发送的数据产生了碰撞,就按照某种策略重发数据,直到数据发送成功或放弃发送。

3-8.试写(画)出CSMA/CA的基木访问机制。并说明随机退避时间的计算方法。

3-9.IEEE802.11MAC协议有哪两种访问控制方式?每种方式是如何工作的?(1)分布式协调功能(DCF)、点协调功能(PCF),期中DCF是基本访问控制方式。

3-10.通常有哪些原因导致传感器网络产生无效能耗? 空闲侦听、数据冲突、串扰、控制开销 3-11.叙述无线传感器网络S-MAC协议的主要特点和实现机制。

(1)S-MAC协议的适用条件是传感器网络的数据传输量不大,网络内部能够进

行数据的处理和融合以减少数据通信量,网络能容忍一定程度的通信延迟。它的设计目标是提供良好的扩展性,减少结点能耗。

(2)周期性侦听和睡眠机制、流量自适应机制、冲突和串音避免机制、消息传递机制。3-12.简述路由选择的主要功能。

(1)寻找源结点和目的结点间的优化路径。(2)将数据分析沿着优化路径正确转发。

3-14.常见的传感器网络路由协议有哪些类型?并说明各种类型路由协议的主要特点。(1)能量感知路由协议、基于查询的路由协议、地理位置协议、可靠的路由协议。

(2)能量感知路由协议:从数据传输的能量消耗出发,讨论最少能量消耗和最长网络生存期等问题。

基于查询的路由协议:主要用于需要不断查询传感器结点采集的数据,通过减少通信流量来节省能量,即数据融合技术与路由协议的设计相结合。

地理位置协议:主要应用于需要知道目的结点的精确或大致地理位置的问题中,把结点的位置信息作为路由选择的依据,从而完成结点的路由选择功能,并且降低维护路由协议的能耗。可靠的路由协议:应用在对可靠性和实时性等方面有特别要求的问题中。3-15.如何设计传感器网络的定向扩散路由协议? 4-2.传感器网络常见的时间同步机制有哪些? RBS、Ting/Mini-Sync、TPSN 4-3.简述TPSN时间同步协议的设计过程。

TPSN时间同步协议采用层次结构,实现整个网络结点的时间同步。所有结点按照层次结构进行逻辑分级。表示结点到根结点的距离,通过基于发送者-接收者的结点对方式。每个结点与上一级的一个结点进行同步。从而最终所有结点都与根结点实现时间同步。TPSN协议包括两个阶段: 第一个阶段生成层次结构,每个结点赋予一个级别。根结点赋予最高级别第0级。第i 级的结点至少能够与一个第(i-1)级的结点通信;第二个阶段实现所有树结点的时间同步。第1级结点同步到根结点。第i级的结点同步到第(i-1)级的一个结点,最终所有结点都同步到根结点,实现整个网络的时间同步。

4-6.简述以下概念术语的含义:锚点、测距、连接度、到达时间差、接收信号强度指示、视线关系。

锚点:指通过其他方式预先获得位置坐标的结点,有时也称作信标结点。网络中相应的其余结点称为非锚点。测距:指两个相互通信的结点通过测量方式来估计出彼此之间的距离或角度。

连接度:包括结点连接度和网络连接度两种含义。结点连接度是指结点可探测发现的邻居结点个数。网络连接度是所有结点的邻结点数目的平均值,它反映了传感器配置的密集程度。

到达时间差:两种不同传播速度的信号从一个结点传播到另一个结点所需要的时间之差。接收信号强度指示:结点接收到无线信号的强度大小。

视线关系:如果传感器网络的两个结点之间没有障碍物,能够实现直接通信,则称这两个结点问存在视线关系。4-9.RSSI测距的原理是什么?

4-10.简述ToA测距的原理。

4-11.举例说明TDoA的测距过程。

4-12.举例说明AoA测角的过程。

4-13.试描述传感器网络多边定位法的原理。

4-14.简述Min-max定位方法的原理。

4-15.简述质心定位算法的原理及其特点。

★4-16.举例说明DV-Hop算法的定位实现过程。

4-17.什么是数据融合技术?它在传感器网络中的主要作用是什么?(1)数据融合也被称作信息融,是一种多源信息处理技术。它通过对来自同一目标的多源数据进行优化合成,获得比单一信息源更精确、完整的估计或判断。

(2)①节省整个网络的能量②增强所收集数据的准确性③提高收集数据的效率 4-18.简述数据融合技术的不同分类方法及其类型。

(1)依据融合前后数据的信息含量进行分类:无损失融合、有损失融合

(2)依据数据融合与应用层数据语义的关系进行分类:依赖于应用的数据融合、独立于应用的数据融合、结合以上两种技术的数据融合

(3)依据融合操作的级别进行分类:数据级融合、特征级融合、决策级融合 4-19.什么是数据融合的综合平均法?

4-20.常见的数据融合方法有哪些? 综合平均法、卡尔曼滤波法、贝叶斯估计法、D-S证据推理法、统计决策理论、模糊逻辑法、产生式规则法、神经网络方法。

4-21.无线通信的能量消耗与距离的关系是什么?它反映出传感器网络数据传输的什么特点?(1)通常随着通信距离的曾加,能耗急剧增加。

(2)在传感器网络中要减少单跳通信距离,尽量使用多跳短距离的无线通信方式。4-22.简述节能策略休眠机制的实现思想。

当结点周围没有感兴趣的事件发生时,计算与通信单元处十空闲状态,把这些组件关钟或调到更低能耗的状态,即休眠状态。该机制对于延长传感器结点的生存周期非常重要。但休眠状态与工作状态的转换需要消耗一定的能量。并且产生时延。所以状态转换策略对于休眠机制比较重要。如果状态转换策略不合适,不仅无法节能,反而会导致能耗的增加。

4-23.简述传感器网络结点各单元能量消耗的特点

传感器结点中消耗能量的模块有传感器模块、处理器模块和通信模块。随着集成电路工艺的进步。处理器和传感器模块的功耗都很低。无线通信模块可以处于发送、接收、空闲或睡眠状态。空闲状态就是侦听无线信道上的信息,但不发送或接收。睡眠状态就是无线通信模块处于不工作状态。4-24.动态电源管理的工作原理是什么? 当结点周围没有感兴趣的事件发生时,部分模块处于空闲状态。应该把这些组件关掉或调到更低能耗的状态(即休眠状态)。从而节省能量。

4-25.传感器网络的安全性需求包括哪些内容? 结点的安全保证、被动抵御入侵的能力、主动反击入侵的能力。4-26.什么是传感器网络的信息安全?

4-27.简述在传感器网络中实施Wormhole攻击的原理过程

4-28.SPINS安全协议簇能提供哪些功能? SPINS安个协议簇是最早的无线传感器网络的安全框架之一。包含了 SNEP和μTESLA两个安全协议。SNEP协议提供点到点通信认证、数据机密性、完整性和新鲜性等安全服务;μTESLA协议则提供对广播消息的数据认证服务。6-3.低速无线个域网具有哪些特点? 低速无线个域网是一种结构简单、成本低廉的无线通信网络,它使得在低电能和低吞吐量的应用环境中使用无线连接成为可能。与无线局域网相比。低速无线个域网网络只需很少的基础设施。甚至不需要基础设施。IEEE 802.15.4标准为低速无线个域网制定了物理层和MAC子层协议。6-7.简述ZigBee的技术特点

(1)数据传输速率低。数据率只有lokb/s~250kb/s,专注十低速传输应用。

(2)有效范围小。有效似盖范围10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定。(3)工作频段灵活。使用的频段分别为2.4GHz,868MHz(欧洲)及915MHz(美国),均为无需申请的ISM频段。

(4)省电。由于工作周期很短。收发信息功耗较低,以及采用了休眠模式,ZigBee可确保两节5号电池支持长达6个月至2年左右的使用时间,当然不同应用的功耗有所不同。

(5)可靠。采用碰撞避免机制。并为需要固定带宽的通信业务预留专用时隙,避免了发送数据时的竞争和冲突。MAC层采用完全确认的数据传输机制。每个发送的数据包都必须等待接收方的确认信息。

(6)成本低。由于数据传输速率低,并且协议简单。降低了成本,另外使用ZigBee协议可免专利费。

(7)时延短。针对时延敏感的应用做了优化。通信时延和从休眠状态激活的时延都非常短。设备搜索时延的典型值为30ms.休眠激活时廷的典型值是15ms。活动设备信道接入时延为15ms。(8)网络容量大。一个ZigBee网络可容纳多达254个从设备和一个主设备,一个区域内可同时布置多达100个ZigBee网络。

(9)安全。ZigBee提供了数据完整性检查和认证功能。加密算法采用AES-128,应用层安全属性可根据需求来配置。

第五篇:无线传感器网络综述(网安).

2008.2 80 网络安全技术与应用 无线传感器网络综述 唐启涛

陶滔

南华大学计算机科学与技术学院

湖南

421001 摘要:本文介绍了无线传感器网络的概念、特点、通信结构及其安全需求,并对其应用过程中可能遇到的攻击方式和相 应的抵御方法做了简单介绍。指出了无线传感器网络今后的研究方向及最新研究动态。

关键词:无线传感器网络;网络协议栈;传感器节点;多跳路由 0

引言

近年来随着传感器、计算机、无线通信及微机电等技术 的发展和相互融合,产生了无线传感器网络(WSN, wireless sensor networks。无线传感器网络技术与当今主流无线网络 技术使用同一个标准——802.15.14, 它是一种新型的信息获 取和处理技术。无线传感网络综合了嵌入式计算技术、传感 器技术、分布式信息处理技术以及通信技术,能够协作地实时 监测、感知和采集网络分布区域内的不同监测对象的信息。它的应用极其广泛, 当前主要应用于国防军事、智能建筑、国 家安全、环境监测、医疗卫生、家庭等方面。

无线传感器网络系统(WSNS, wireless sensor networks system通常由传感器节点、聚节点和管理节点组成。它的结 构图如图1。传感器节点负责将所监测的数据沿着其他传感器 节点逐跳地进行传输, 经过多跳路由, 然后到达汇聚节点, 最 后通过卫星或者互联网到达管理节点, 然后, 用户1通过管理 节点对传感器网络进行管理, 发布监测任务及收集监测数据。通过无线传感器网络可以实现数据采集、数据融合、任务的 协同控制等。

1无线传感网络系统结构图 1

无线传感器网络特点

目前常见的无线网络包括移动通信网、Ad Hoc 网络、无 线局域网、蓝牙网络等,与这些网络相比,无线传感器网络 具有以下特征:(1硬件资源有限

由于受到价格、硬件体积、功耗等的限制,WSN 节点的 信号处理能力、计算能力有限,在程序空间和内存空间上与 普通的计算机相比较,其功能更弱。

(2电源容量有限

由于受到硬件条件的限制,网络节点通常由电池供电, 电池能量有限。同时,无线传感网络节点通常被放置在恶劣 环境或者无人区域,使用过程中,不能及时给电池充电或更 换电池。

(3无中心

无线传感器网络中没有严格的中心节点,所有节点地位平等,是一个对等式网络。每一个节点仅知道自己邻近节点 的位置及相应标识,无线传感器网络利用相邻节点之间的相 互协作来进行信号处理和通信,它具有很强的协作性。

(4自组织

网络的布设和展开不需要依赖于任何预设的网络设备, 节点通过分层协议和分布式算法协调各自的监控行为,节点 开机后就可以快速、自动地组成一个独立的无线网络。

(5多跳路由

在无线传感器网络中,节点只能同它的邻居直接通信。如果想与其射频覆盖范围之外的节点进行数据通信,则需要 通过中间网络节点进行路由。无线传感器网络中的多跳路由 是由普通网络节点来完成的,没有专门的路由设备。

(6动态拓扑

无线传感器网络是一个动态的网络,节点能够随处移 动;一个节点可能会因为电池能量用完或其他故障原因,退 出网络运行;一个节点也可能由于某种需要而被添加到当前 网络中。这些都会使网络的拓扑结构发生变化,因此无线传

感器网络具有动态拓扑组织功能。(7节点数量多,分布密集

为了对一个区域执行监测,往往需要很多的传感器节点 被放置到该区域。传感器节点分布非常密集,通常利用节点 之间高度连接性来保证系统的抗毁性和容错性。

2无线传感器网络协议栈

无线传感器网络协议栈由以下五部分组成:物理层、数 据链路层、网络层、传输层、应用层,与互联网协议栈的五 层协议相对应,其结构如图

2。

作者简介:唐启涛(1982-,男,南华大学计算机科学与技术学院 2006级硕士研究生,研究方向:计算机网

络与信安全。陶滔(1969-,男,网络教研室主任、副教授,硕士生导师,研究方向:计算机网络安全。2008.2

网络安全技术与应用 图

2无线传感器网络协议栈 2.1物理层

物理层主要负责感知数据的收集,并对收集的数据进行 采样、信号的发送和接收、信号的调制解调等任务。在物理 层中的主要安全问题是建立有效的数据加密机制。由于对称 加密算法的局限性,它不能在 WSN 中很好的发挥作用,因而 如何使用高效的公钥算法是 W S N 有待解决的问题。

2.数据链路层

数据链路层主要负责媒体接入控制和建立网络节点之间 可靠通信链路,为邻居节点提供可靠的通信通道,主要由介 质访问控制层组成。介质访问控制层使用载波监听方式来与 邻节点协调使用信道,一旦发生信道冲突,节点使用相应的 算法来确定重新传输数据的时机。无线传感器网络的介质访 问控制协议通常采用基于预先规划的机制来保护节点的能量。

2.3网络层

网络层的主要任务是发现和维护路由。正常情况下,无 线传感器网络中的大量传感器节点分布在一个区域里,消息 可能需要经过多个节点才能到达目的地,且由于传感器网络 的动态性,使得每个节点都需要具有路由的功能。节点一般 采用多跳路由连接信源和信宿。

2.4传输层

由于无线传感器网络节点的硬件限制,节点无法维持端到 端连接的大量信息传输,而且节点发送应答消息也会消耗大量 能量,因而,目前还没有成熟的关于传感器节点上的传输层 协议的研究。汇聚节点只是传感器网络与外部网络的接口。

2.5应用层

应用层主要负责为无线传感器网络提供安全支持,即实 现密钥管理和安全组播。无线传感器网络的应用十分广泛, 其中一些重要的应用领域有:军事方面,无线传感器网络可 以布置在敌方的阵地上,用来收集敌方一些重要目标信息, 并跟踪敌方的军事动向:环境检测方面,无线传感器网络能 够用来检测空气的质量,并跟踪污染源;民用方面,无线传 感器网络也可用来构建智能家居和个人健康等系统。

3安全性需求

基于无线传感器网络的特殊性,形成了与其他网络系统不 同的网络安全特性, 并能直接应用到实际的无线传感网络中。归纳为以下几个方面: 3.1鲁棒性

传感器网络一般被放置在恶劣环境、无人区域或敌方阵 地中,环境条件、现实威胁和当前任务具有不确定性,它需 要设计具有抵抗节点故障的机制。一种常用方法是部署大量 节点。网络协议应该具有识别发生故障的相邻节点的能力, 并根据更新的拓扑进行相应的调节。

3.2扩展性

WSN 节点会随着环境条件的变化或恶意攻击或任务的变 化而发生变化,从而影响传感器网络的结构。同时,节点的 加入或失效也会导致网络的拓扑结构不断变化,路由组网协 议和 W S N S 必须适应 W S N 拓扑结构变化的特点。

3.3机密性

传感器网络在数据传输过程中,应该保证不泄露任何敏 感信息。应用中,通过密钥管理协议建立的秘密密钥和其他 的机密信息,必须保证只对授权用户公开。同时,也应将因 密钥泄露造成的影响尽可能控制在一个较小范围,不影响整 个网络的安全。解决数据机密性的常用方法是使用会话密钥 来加密待传递的消息。

3.4数据认证

由于敌方能够很容易侵入信息, 接收方从安全角度考虑, 有必要确定数据的正确来源。数据认证可以分为两种,即两 部分单一通信和广播通信。

3.5数据完整性

在网络通信中,数据的完整性用来确保数据在传输过程 中不被敌方所修改,可以检查接收数据是否被篡改。根据不 同的数据种类,数据完整性可分为三类:选域完整性、无连 接完整性和连接完整性业务。

3.6

数据更新

表示数据是最新的,是没有被敌手侵入过的旧信息。网络 中有弱更新和强更新两种类型的更新。弱更新用于提供局部 信息排序,它不支持延时消息;强更新要求提供完整的次序, 并且允许延时估计。

3.7

可用性

它要求 WSN 能够按预先设定的工作方式向合法的系统用 户提供信息访问服务,然而,攻击者可以通过信号干扰、伪 造或者复制等方式使传感器网络处于部分或全部瘫痪状态, 从而破坏系统的可用性。

3.8

访问控制

W S N 不能通过设置防火墙进行访问过滤;由于硬件受 限, 也不能采用非对称加密体制的数字签名和公钥证书机制。WSN 必须建立一套符合自身特点的、综合考虑性能、效率和 安全性的访问控制机制。

4攻击方式及采取的相应措施

无线传感网络可能遭遇多种攻击。攻击者可以直接从物

2008.2 82 网络安全技术与应用 理上将其破坏。另一方面,攻击者可以通过操纵数据或路由 协议报文,在更大范围内对无线传感网络进行破坏。具体的 攻击类别如下: 4.1欺骗、篡改或重发路由信息

攻击者通过向 WSN 中注入大量欺骗路由报文,或者截取 并篡改路由报文,把自己伪装成发送路由请求的基站节点, 使全网范围内的报文传输被吸引到某一区域内,致使各传感 器节点之间能效失衡。对于这种攻击方式的攻击,通常采用 数据加密技术抵御。

4.2选择转发攻击

攻击者在俘获传感器节点后,丢弃需要转发的报文。为 了避免识破攻击点,通常情况下,攻击者只选择丢弃一部分 应转发的报文,从而迷惑邻居传感节点。通常采用多路径路 由选择方法抵御选择性转发攻击。

4.3DoS拒绝服务攻击

攻击者通过以不同的身份连续向某一邻居节点发送路由 或数据请求报文,使该邻居节点不停的分配资源以维持一个 新的连接。对于这种攻击方式,可以采用验证广播和泛洪予 以抵御。

4.4污水池攻击

攻击点在基站和攻击点之间形成单跳路由或是比其他节 点更快到达基站的路由,以此吸引附近的传感器以其为父节 点向基站转发数据。污水池攻击“调度”了网络数据报文的 传输流向,破坏了网络负载平衡。可以采用基于地理位置的 路由选择协议抵御污水池攻击。

4.5告知收到欺骗攻击

当攻击点侦听到某个邻居节点处于将失效状态时,冒充 该邻居节点向源节点反馈一个信息报文, 告知数据已被接受。使发往该邻居节点的数据报文相当于进了“黑洞”。可以调控 全球知识以抵御告知收到欺骗。

4.6

女巫攻击

攻击点伪装成具有多个身份标识的节点。当通过该节点 的一条路由破坏时,网络会选择另一条完全不同的路由,由 于该节点的多重身份,该路由可能又通过了该攻击点。它降 低了多经选路的效果。针对这种攻击方式,可以采用鉴别技 术抵御。

5今后的研究方向

目前,有关传感器网络的研究还处于初步阶段,由于无 线传感网络的体系结构和模型没有形成最后的标准,无线传 感器网络安全研究方面还面临着许多不确定的因素,对于 W S N 而言,仍然存在着如下有待进一步研究的问题。

5.1安全的异常检测和节点废除

在传感器网络中,由于被盗用节点对网络非常有害,因 而希望能即时检测和废除被盗用节点。Chan 提出使用分布式

投票系统来解决这个问题。5.2

安全路由

安全的路由协议应允许在有不利活动的情况下,继续保 持网络的正常通信。传感器网络中的许多类型的攻击方式的 抵御可以通过提高路由的安全设计来实现。如何设计一种高 效、安全的路由有待进一步的研究。

5.有效的加密原语

Perrig 提出了 SPINS 协议族, 通过该协议, 使用有效的 块加密,对于不同块进行不同的加密操作。Karlof

设计了 TinySec,在效率与安全性之间折中。在密钥建立和数字签名 时,如何使用有效的非对称加密机制,是一个值得进一步研 究的方向。

5.4入侵检测问题

在数据认证和源认证之前,有必要设计相应的方案来确 认通信方是不是恶意节点。目前有些无线传感网络都是假设 网络节点具有全网惟一标识,这其实是不符合现实的。

5.5传感器安全方案和技术方案的有机结合

根据 W S N 的特点,其安全解决方案不能设计得过于复 杂,并尽可能的避免使用公钥算法。如何在不明显增加网络 开销的情况下,使性能和效率达到最佳,并设计出相应的协 议和算法有待于进一步的研究。

5.6

管理和维护节点的密钥数据库

在传感器网络中,每个节点需要维护和保持一个密钥数据 库。在网络节点存储能力有限的情况下, 如何保证密钥建立、撤 消和更新等阶段动态地维护和管理数据库需要进一步的研究。

6总结

无线传感器网络在军事和民用领域都有着广泛的潜在用 途,是当前技术研究的热点。本文从无线传感器网络的特点、无线传感网络的协议栈、安全需求、可能受到的安全攻击及 相应的防御方法及今后有待进一步研究的问题等方面对目前 国内外开展的研究进行了较为系统的总结,有助于了解当前无 线传感器网络研究进展及现状。

参考文献

[1]Prtra JC,PalR N.A functional link artificial neural network foradaptive c hannel e qualization[J].Signal P rocessing.1995.[2]PasqualeArpaia,Pasquale Daponte,DomcaicoGrmi ald,i et a.l ANN-Based Error Reduction for Expermi entally Modeled Sensors [J].IEEE Trans.on Instrumentation andMeasurement.2002.[3]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨

工业大学出版社.1999.[4]遗传算法结合FANN实现加速度传感器动态特性补偿[J].计 量学报.2005.[5]郎为民,杨宗凯,吴世忠,谭运猛.无线传感器网络安全研究.计 算机科学.2005.

下载物联网简介及基于ZigBee的无线传感器网络word格式文档
下载物联网简介及基于ZigBee的无线传感器网络.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    传感器在物联网中的应用

    提到智能时代,不得不提的就是物联网和传感器,物联网就是整个的智能网络,传感器则是一个重要的组成部分。如果将物联网比作一个人,那传感器就是神经末梢,是全面感知外界的最核心......

    无线物联网技术与智能制造

    无线物联网技术与智能制造 尹振方 (江苏大学机械工程学院仪器科学与工程系,江苏,镇江,212013) 摘要:目前传统制造业正面临着劳动力成本过高,生产效率偏低,原材料利用率较低,能耗过高,......

    物联网工程学院学生会简介

    物联网工程学院团委学生会简介 物联网工程学院团委学生会前身由原通信与控制工程学院学生会、青年志愿者协会、社团联合会、科技协会和原信息工程学院学生会、青年志愿者协......

    物联网简介(五篇材料)

    物联网 目录 一、物联网的起源和发展 ..................................................................................................... 2 二、物联网的体系架......

    物联网简介[推荐5篇]

    物联网—感知的世界 摘要:既计算机,互联网后,物联网作为一个信息技术综合应用的代名词,掀起信息产业第三浪潮,大国纷纷将其纳为重点领域,显而易见,它将影响到政治,军事,经济,环境等方......

    传感器:物联网成引擎,新技术催生新机遇

    传感器:物联网成引擎 新技术催生新机遇 作为政府从战略层面进行推进的产业,物联网如何从愿景走向现实应用并得到快速发展已成为业界关注的话题。正所谓“万丈高楼平地起”,作为......

    传感器技术对物联网发展的意义

    无线互联科技45 网络地带· 传感器技术对物联网发展的意义 江 昆(鄂东职业技术学院,湖北 黄冈 438000) 摘 要:本文将从传感器在物联网中的技术地位、当前传感器在物联网领域内......

    无线传感器网络典型路由协议分类比较

    无线传感器网络典型路由协议分类比较 常清 摘 要:无线传感器网络是继因特网之后对人类生活产生重大影响的技术,它在逻辑上将虚 幻的信息和真实的物理世界联系起来。无线传感器......