产品经理必备技能之数据分析

时间:2019-05-14 16:05:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《产品经理必备技能之数据分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《产品经理必备技能之数据分析》。

第一篇:产品经理必备技能之数据分析

www.xiexiebang.com

产品经理必备技能之数据分析

数据分析往往是从文本上反应产品的各类信息。但是,产品经理在做产品的各个阶段时不能一味的依靠数据分析。这时就需要我们有精确的数据分析的技能。首先要了解数据分析的三点核心:

1.什么是数据分析?(What)2.为什么数据分析?(Why)3.如何数据分析?(How)

下面我们将以实例的形式重解读第二个问题和第三个问题。大致分为以下几步:

第一步:确认数据分析的对象

产品名称:企查查APP V9.1.8 产品愿景:中国企业信息搜集的综合体,为投资者、金融相关从业者等提供企业的一站式信息服务。

分析范畴:产品迭代、产品优化、产品分析/验证

背景概述:自定义。注意,数据指标的制定远比数据分析过程要重要的多或者说更加富有创造性。

第二步:制定数据分析指标

1.商业模式/盈利方式分析:免费增值模式,先做成流量入口,后期分享流量红利扩大转化率。

2.了解产品现状/定量分析产品 2.1 用户分析 用户规模:

用户群体可大致分为个人、企业,分析个人和企业用户的人数比例,明确整体分布情况。每月/周/日的新增用户、流失用户、回流用户的比例走势,选择恰当的走势变化渠道;

用户质量:产品粘性及病毒性的反应,体现在用户的活跃度上,一般包括,日活跃(DAU)、周活跃(WAU)和月活跃(MAU); 采用同期群和用户分类的分析方法,特定用户群体的特定分析过程,用户质量也是渠道或营销活动效果的间接体现,以便后期及时的调整和处理;

用户质量的标准制定,包括忠诚用户、联系活跃用户、流失用户等等,为反应不同指标设置特定的用户质量指标;

2.2 应用分析:

启动次数,某日/周/月的启动次数占所选时段总启动次数的比例,直接反应生活时间成本; 版本分布,对开发和维护的意义非常深刻,展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;

使用情况,统计周期内,一次启动的使用时长;一天内启动应用的次数;用统一用户相邻两

www.xiexiebang.com

次启动间隔的时间长度;

设备终端和错误分析也是很有必要的;

2.3 行业分析:

a.行业数据可以帮助了解行业内应用的整体水平,各个指标的数据、排名及趋势,有助于衡量应用的质量和表现;

b.了解行业数据,了解自己的APP在整个行业的水平,通过多个维度对比自己产品与行业平均水平的差异,从而知道产品的不足之处。

业务场景:

1.首页支持企业名称、人名、品牌名等信息的模糊查询,并且在搜索系统之下直接提供四个维度的一级辅助搜索条件。

2.企业信息维度算是一款企业信息服务平台的资源性优势,也是一款内容应用的核心模块。不同类型的用户对不同类型的信息感兴趣的程度各有不同,因此,要记录和挖掘用户行为特征数据。

产品分析:

企业信息查询第一级别的功能是搜索,第二级别的功能是条件搜索;理论上讲,后者在搜索的精确程度上要更加有优势。

数据指标:

1.不同检索维度的搜索量;

结论:以信息检索维度的搜索量,选出哪些企业信息搜索维度置于条件搜索中,并决定其分

www.xiexiebang.com

布的顺序和位置;

2.不同描述维度的查询量

结论:

a.以信息描述维度查询次数,区分重要企业信息,量化区分不同信息的关注度和用户价值; b.交叉分析不同维度的信息,用户属性,比如:行业+查询维度,综合分析不同特征的用户群的核心关注点。

c.内容受欢迎程度及需求的迫切程度,面向不同类型的用户,比如:普通用户、企业用户,内容分级、资源分层更好地配合免费增值模式、会员等级产品形态。正对不同用户特征给予不同的需求满足形式都是值得尝试和探索的,单

一、传统的直销的商业模式或许有被迭代升级的可能;

小结

产品数据分析意义在于指导产品设计,传达感性认知背后的理性意义。无论数据分析的结论积极还是负面,都是产品价值映射,作为产品经理,我们必须投以客观的态度。

如果你喜欢我们的文章,欢迎加入我们。

12.15

第二篇:数据分析对产品经理的重要性

创意互动 设计人生

莱茵教育www.xiexiebang.com 开课吧

www.xiexiebang.com

数据分析对产品经理的重要性

不会数据分析的产品经理不是一个好的产品汪,莱茵教育表示,数据分析是产品经理吃饭必备的工作,大量的砖家也很乐于在各种社区和公众号分享他们的数据思维和数据分析方法论。今天我们就探讨一下怎么去处理数据分析的后事,数据分析完成之后如何去优化产品迭代。

1、数据的定义很重要

数据是神奇的,同样的数据,从不同的维度,甚至不同的人眼里,都会看不到不一样的东西,百分数“123%”,经济学家可能认为这是本季度GDP的增速,程序猿会把它当成字符编码。

因此产品经理首先自己得做到经由自己的数据定义是准确无误的,不管是自己接到的来自团队、老板的数据需求,还是通过自己分析输出的数据指标定义都必须说明清楚,不存在歧义,这样不仅可以减少对其他小伙伴解释说明的时间,也会避免数据在传播的过程中失真的问题,数据是严谨的,对于它的定义,我们需要去咬文嚼字。

2、我们需要什么指标

虚荣指标和期望指标对我们没有意义,现在很多的大数据团队经常会对外发布各种行业报告,包括国家统计局也会按时发布国民经济报告,从这些报告中传递给我们的信息是今年移动用户数还在继续增长,某个行业的市场是多少亿美元,哪家公司融了多少钱,这些都是虚荣指标,看起来很美,却不能给我们产品优化带来任何指导效果;期望指标就是我们内心希望它是不断增长的,为了我们自己潜藏的目标再去找数据,分析数据。

比如有一天老板需要你用数据证明产品这个月比上个月做的更好,然后你告诉老板你们的注册用户数比上个月增加20%。初一看数据在增长,实则可能你们的留存率和日活跃用户数在大幅度下降。期望指标对外还可以,对于指导产品优化没有任何价值。

那我们到底需要什么指标?可付诸行动的指标才是我们数据分析应该得到的结果,可付诸行动的指标更多的是一个比率,而不是具体的数字,它应该是和你们产品核心KPI相关的,它应该可以告诉你产品好在哪里或者不好在哪里,国内的直播市场,映客在月活跃用户数上甩其他平台几条街,但是一个可付诸行动的(日活跃用户数/月活跃用户数)这个指标却远远

线下学习入口:莱茵教育 线上学习入口:开课吧

创意互动 设计人生

莱茵教育www.xiexiebang.com 开课吧

www.xiexiebang.com 落后于斗鱼TV,说明映客的用户黏性还不够,数据指标可以指导映客在追求用户数量的同时,用户粘性方面也还有很大的提升空间。

3、怎么把数据和产品优化结合

指标明确之后,我们就需求考虑怎么样把这些数据指标和产品优化结合起来,换而言之就是我们分析的数据结果需要落地。产品汪估计做的最多的就是竞品分析了,我们可能是最先知道竞品版本迭代的用户,我们也会想尽一切手段去了解别人家产品的内部数据,可能别人家产品新上了一个新功能,然后你通过小道消息得知他们的用户数这段时间在大幅度增长,最后你屁颠屁颠的告诉老板,我们是不是也可以跟风,赶紧做了这个功能。

看似你这份数据价值不菲,但是却忽略了从产品本身出发这个基本原则,否则你的数据可能让你们产品走弯路甚至走错路。一方面你需要考虑别人家产品做这个功能的基础是什么,可能原本别人的用户在这个部分的转化率是50%,而你们自己的产品是5%,这样的结果就是做同样的事情,别人产品带来的增益效果让你傻眼,然后你还去怪技术没开发好。因此产品经理在数据分析的时候应该是产品导向型的而不是数据导向性的,一切数据都需要基于产品自身。

4、怎快通过数据快速验证迭代效果

现在互联网产品永远都是Beta版,竞争对手不会等你,也没有机会去不断大规模试错。因此我们需要用数据去快速验证最小可行化产品,因此选择数据的可预见性和针对性就显得特别重要,你选择的数据需要不会受到随机性的影响,能在时间短和数据量小的情况下验证假设。

线下学习入口:莱茵教育 线上学习入口:开课吧

第三篇:数据产品经理面试

1.要极其熟悉公司业务及动向。所以要了解公司的商业模式、战略、以及业务流程、要考核的各种指标,以及指标背后的业务含义等。这一点,再了解都不够。

2.要了解数据分析。好的数据PD,即使不做数据PD,也应该是个数据分析师。数据PD的一大要务就是将数据分析做成可复制,可自动运转的系统。虽然有数据分析师们围绕在自己周围,但是自己也要清楚业务的问题,分别要看什么数据,或者当数据出现后,意味着业务出现了什么问题或者会出现什么问题。这一点,要向最好的数据分析师们看齐。3.要了解数据仓库及商务智能。这两个关键词背后都是庞大的体系,恐怕我短短半年的转岗时间太短,虽然能够对别人讲解一通商务智能产品的架构。嘴里虽然会抛出若干个类似于汇总,钻取,度量,指标,维度,缓慢变化维,层次,属性,仪表盘等等术语,但是也不支持多几层的知识钻取,遇到异常问题,也不知道该从什么地方分析原因。幸而身边有数据仓库的同事,可以多多学习。这一点,没有天花板。而商务智能,做为一门学科,起源于20世纪90年代,它的出发点是帮助用户更好地获取决策信息,最初商务智能的动机是为用户提供自助式的信息获取方式,这样,用户就可以不用依赖于IT部门去获取定制的报表。(引自《信息仪表盘》一书P41)。而如今,商务智能除了提供信息,更主要的是降低用户获取数据的门槛,提升数据的实时性等方面。从降低用户获取数据的门槛一个方向,我们就可以做很多事情,比如如何设计信息仪表盘(designing of information dashboard)?如何让数据以更亲和的更直观的方式展示(数据可视化)?如何能够让用户离线访问?如何能够实现警戒数据的主动发送?这一点上,花多少功夫都不多。

4.要精通数据产品开发流程。数据开发+产品开发。数据PD的最终目的是要做数据产品。这里要拆开看,其一,数据产品本身也是在线可供用户实现的产品,既然是产品,产品的整套研发思路和普通的产品没有太大区别,用户是谁,他们需求是什么,满足需求需要什么feature list,每个feature list的资源评估以及优先级如何,产品的生命周期如何?这是产品开发。然后他是个数据产品,意味着这比普通的产品,多了更多的要求。在数据这个内核之外,它需要各种feature list,如订阅,搜索,自定义,短信接口,邮件接口等。但是数据这个内核,也需要一套数据开发流程。比如:

数据源——是否足够,是否稳定——数据PD需要足够了解目前的业务处理系统建设情况,以及数据源的积累程度,用以判断数据产品的建设时间是否合适。不合适的时机会导致项目组的重复劳动和残缺的数据产品诞生。数据产品是用以支持监控,分析,决策的,而业务处理系统的定位在于提升工作效率,解放工作人员手脚。业务系统采集的数据未必满足所有分析需要。比如或许领导要分析大量攀升的退换货的详细原因,而业务系统目前并没有要求用户在申请退换货的时候选择原因或只有输入而非标准化选项,负责退换货出力的员工也只有在excel里登记原因,而不是录入到系统里。所以可能会导致需求方要看的数据提供不出来,那么数据pd就有必要反向驱动数据源得以采集。

分析模型的设计—— 分析模型的好与不好,其实决定了数据产品的成败。

在项目中,可以由BI的数据分析师们担纲此职责,也可以由数据PD担纲,更多则由双方一起确认,内容以数据分析师们为主,功能评估及优先级、项目计划和协调、统筹以数据PD为主。所以数据PD要更加清楚数据分析师们所需要的需求是否能够实现,背后的商业价值如何,并与数据开发、产品开发保持比数据分析师们更加通畅的合作关系,能够借力进行可行性和资源的评估。有的时候,我们不是没有数据,而是有了太多的数据,不知道怎么去看。如果只是抛给用户一堆数据,很难想象用户会如何去解读它。以前做交互设计的时候,我们流行一句话:把用户当成傻瓜。

而数据平台,因为可能本身就要求有一定的使用门槛,所以想成不会互联网的傻瓜不太现实,那么我们就要想成“用户是不懂数据的傻瓜”。他们或许也能通过一串串数据体悟到什么,但是如果是一条上升的退款率趋势线,或许他们会体悟到更多——毕竟,上和下本身就是直观的。然后再想一下,如果将这条线上加上一条警戒点的线,他们会知道从什么时候开始数据是异常的。再然后,就要设想,当他发现从7月12日数据上升后,想干什么?他会不会想了解是哪个行业上升了?他会不会想了解是那个渠道上升了?那么,就要提供行业和渠道的选项或者对比给他。

再然后,当他过问了这个行业的负责人后,负责人想不想再了解是哪个供应商或者哪类商品上升了?那么要如何将这些维度、层次都融合在一起,同时又能将用户非常方便地去用呢?分析模型的建设至关重要,也可以说,分析模型是前期需求分析的最有价值的产物。分析模型应该会包含几点:

 主题的划分:整块分析会划分成什么主题,比如销售可能会分成销售走势及构成分析,行业排名,商品排名等

度量及指标:分析主题会涉及到的度量及指标的算法、定义等(这通常会产生一份指标以及维度的定义及描述文档)

维度:要分别从什么维度去看这些指标和度量,如时间,渠道,这些维度是要筛选还是要对比

钻取:这些维度本身有没有层次,需要不需要进行钻取,如渠道可钻取到渠道类型,行业可钻取到子行业,商品类目可钻取到商品叶子类目等 输出:分析需要用何种图表进行展现

数据的ETL开发——数据的清洗,转换,装载流程占用了数据产品开发的大半资源,不规范的数据源会导致这一块的资源更大程度的占用。比如同样是供应商编码,系统之一称为供应商编码,系统二命名为供货商编码,系统三命名为供应商ID,这三个系统同时是公司的系统,这种情况虽然想起来匪夷所思,但是现实情况却也存在。虽然ETL开发是DW开发工程师在做,但是作为数据PD,焉能对这些工作缺乏了解,对ETL工程师反馈的问题,缺乏认知,不理解对于项目的潜在风险是什么?而且更多时侯,当遇到数据不规范,不统一的问题,数据PD需要反向驱动业务系统进行数据规范性建设,无论是功能上,还是驱动直接的使用方——如负责录入数据的行业小二,建立一套录入规范。这些工作看似和数据PD无关,我们大可以推脱说:那没办法,这是数据源的问题,不是我们功能的问题。但是,用户是有权利选择使用不使用你的数据产品的,当数据产品提供的数据不值得信赖的话,无疑是自取灭亡。一旦用户对数据不信任,再想挽留他们,是很难的。即使有很多“无能为力”的借口,我们也不能坐观其变。

 前端交互与体验的优化——虽然内容定义好了,但是那么多度量、指标、维度、钻取,如何划分信息层级,如何划分栏目,如何设计用户的行为路径?这些就不是数据分析师们的重要工作范畴。而是交互设计师?鉴于很多数据产品项目可能会没有交互设计师,所以数据PD应该对内容进行封装,进行信息架构、页面布局以及图表各种功能设计。设计,然后撰写详细的功能需求文档,交付给产品开发,前端开发以及数据开发,以及前端展现开发四种类型的开发人员。

数据产品的功能描述文档,除了产品开发部分,其他的就是在描述“内容”,即分析模型,除了主题、度量、维度、钻取、筛选、输出图表类型,有些内容还需要详细定义到 “排序方式” 等等细节,这就case by case来看了。

环境,技术,工具——或许做一个普通的产品,你把需求描述清楚,与产品开发工程师确认好可行性,接受资源评估就OK了。但是数据产品,受制于所部署的环境,所选型的工具,如Oracle,IBM的Cogos,以及SQL Server。其他的产品我不知道怎么样,我们用的是Oracle BIEE。那么作为数据PD,是否需要了解BIEE能够提供的功能是哪些呢?看文档,请教别人,不能知其不可而为之。另外,也需要逐渐摸透BIEE的坏脾气,实现不了的功能,无法克服的难点等。这一点,也需要继续了解,继续学习。数据产品项目流程

第四篇:数据产品经理岗位职责标准模板

数据产品经理岗位职责标准模板

1、App所有模块的数据分析,探索及用户数据分析和挖掘,提出产品需求;撰写高质量的产品需求文档,完成各环节进行把关,确保产品质量、项目进度。

2、进行数据平台的搭建优化;负责数据相关系统前后端平台及产品规划、需求调研、设计与分析

3、依据不断挖掘新的用户属性数据产生创新的应用,提供数据分析支持以改进产品需求、策略和推广方式;

4、例行监控负责的产品并分析,建立起与用户的联系,收集用户反馈,通过数据分析与竞品分析,完成相关竞品调研分析工作,进行产品策略的调整并升级产品功能;

5、参与业务产品运营过程,制定指标并参与模型设计分析,为产品优化和运营提供支持;

数据产品经理岗位职责(二)

1、负责公司电商网站的用户运营/活动策划推广/商品和渠道运营等产品线的需求工作,深入了解业务,优化用户体系,为业务增长负责;

2、分析业务部门与用户需求,对同类产品市场资料的收集与分析,进行可行性分析及设计;

3、将用户需求转化为可实现的产品功能,输出产品文档;

4、协调内外部资源,负责需求跟进和落地。

数据产品经理岗位职责(三)

1.负责【TalkingData品牌广告价值分析】的产品规划,设计以及产品生命周期管理;

2.迎接海量移动设备数据基础之上的数据产品设计的挑战(___亿+日活,___亿+月活);

3.对公司交给产品任务能有有效的执行(PRD、产品交互原型、业务流程图梳理);

4.对行业竞品及趋势有独立的调研,确定产品信息架构建议;

5.对产品进行交互设计和用户体验优化的执行;

数据产品经理岗位职责(四)

1、负责综合空间数据管理的c/s与b/s产品分析、产品设计;

2、负责空间数据资源体系规划与建设、沉淀数据思路、逐步推进各种数据类型落地;

3、配合做好项目相关的技术支持、产品测试、客户交流、进度协调、资料整合等相关工作。

数据产品经理岗位职责(五)

1.负责数据采集、加工、分析、呈现全流程的机制建设和产品设计;

2.了解大数据一站式平台功能组成部分,负责整个项目的平台搭建、项目推进、开发上线;

3.产品数据生产引入、数据加工处理、数据应用实践,以及策略的产品搭建、落地和上线;协调并跟进项目进展情况,保证项目上线;

4.-充分理解平台相关业务,为业务增长和用户体验提升提供数据服务支持。

第五篇:互联网产品经理的必备利器(关于数据分析)

互联网产品经理的必备利器

但凡上过招聘网,不小心点开过产品经理招聘启事的人都不难发现,只要是个叫得上名的企业,在招聘这一岗位时,技能要求中都会有这么一条:“对数字敏感,有很强的数据分析能力”,数据分析技能对于产品经理的重要性便可见一斑了。

显然,这里所说的数字和数据,不是指我们每月银行卡里面多出来的那个,而是产品的数据,其中包括行业整体数据、网站运营数据、用户数据、广告投放/转化率数据、业务/产品销售量数据、产品投入/收益数据等等,所有这些数据构成的缩合指标,将决定一个产品经理的业绩评定—当然,最终反映出来的,可能就是个人银行卡里的数字。

在数据指标是很科学的体系的情况下,数据分析得出的结论确实比主观的臆断会更具有确定性和说服力。

那么,产品经理在管理一个互联网产品时,到底需要关注哪些数据呢?

一般来说,我们主要关注的有以下几个方面:

1.网站流量数据。比如访问量、点击量、浏览量、转化率、停留时间等等。以上是基础的指标,但结合到几十万网页还有不同来源、不同时间的时候,就是非常复杂数据体系了。2.网站用户数据。比如用户人口的属性特征:年龄、性别、行业、职位、地区等等;另外,还有用户行为特征:登录次数、注册数、注销数、点击数、收藏数、操作数、订购量等等。

3.访谈数据。可能有些公司会做一些调查问卷,如果能够按照统计学规范设计成量表,那么这种访谈数据也是很有价值的。一般的统计就能从里面了解不少信息,如果问卷设计合理,还可以利用多元统计的方法进一步挖掘更深入的信息。

4.财务数据。比如总销售额、毛利、纯利润、成本、广告投放额等。产品是不是赚钱,能赚多少钱,是一个产品经理关注的重点,也是追求的目标。5.外部来源数据:行业市场份额、竞争对手数据等。

6.搜索引擎数据:搜索引擎来源比例、SEM流量所占比例、搜索关键词以及各个关键词产生的PV值等。

以上这些数据,是我们经常需要经常用到的,具体在使用的时候,还可能需要根据产品性质不同,KPI不同和职责不同,来选择不同的数据类型,因为市场部和BD和老板所看的数据都是不一样的。

对于一个产品经理来说,他不只需要像一个市场分析者或者财务分析者一样了解数据结果,更要通过这些数据的积累和经验进行更加细化的分析和研究,从而了解用户是如何创造出这些数据的,以及为什么创造出这样的数据。只有做到了这些,才能将繁琐枯燥的数字转化为运营能力的提升。

那产品经理如何才能做好数据分析呢?

首先,要拥有一个好的统计系统,没有好的数据来源,再强的分析能力,也没有用武之地。现在互联网上提供很多,如CNZZ,当然也可以根据产品情况有针对性地进行自主开发;

其次,要持续关注数据的变化,最好有专人负责数据汇总和解读。运营数据分析是一个数据持续积累和研究的过程,越多越细致的数据,越能从中获得有价值的分析结果。

第三,要定出产品的主要考核指标,并进行定期的周度、月度、季度、或者某一个特别事件的专项数据分析,从而了解一个阶段内的发展过程,了解发展趋势;

第四,需要采用一些图表,以增强数据的可读性。有时候,再好的语言和文字,也不如一张图表来得简洁明了。

最后,除了自己的产品外,我们还需要时刻关注行业数据的变化,以及中国整体网民对同类型产品的偏好度、用户属性和变化情况。目前也有很多第三方公司提供这类报告,比如艾瑞、CNNIC等。

总而言之,数据分析是一个过程漫长,事务繁杂的工作,但只要你对它保持足够的重视程度,坚持不懈地去做,却可能有意外的收获。

下载产品经理必备技能之数据分析word格式文档
下载产品经理必备技能之数据分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《数据分析思维:产品经理的成长笔记》读后感

    《数据分析思维:产品经理的成长笔记》读后感原创: 罗青友上周把黄伟豪写的《数据分析思维:产品经理的成长笔记》一书看完了,虽然讲的是不同领域的数据分析思维,但也算是小有收获......

    产品经理技能要求与评价

    PM能力要求概述 (一)概述 完成特定的产品工作,需要特定的能力组合和层级。职称就是这个能力组合与层级的反映。我们对典型的PM工作职责内容描述如下: 1.完成完整的产品任务。包括......

    营销经理数据分析模型

    营销总经理的业绩数据分析模型--营销总经理的工作模型(一) 前言 营销总经理这个职位压力大而且没有安全感——天气变化、竞品动态、本品产品质量、公司的战略方向、费用投入、经......

    产品经理对大数据在教育领域的应用分析

    产品经理对大数据在教育领域的应用分析 传统教育模式,教师对学生的评价,绝大部分来自考试成绩及较为主观的判断。而互联网模式下的教育模式,核心是为学生自我发展、教师教学反......

    产品经理如何做好需求分析

    1.如何做好需求分析? 今天谈谈产品需求分析的具体落地,不教大家怎么去辨别真伪需求,也不谈虚的方法论,客观说,产品经理这个层次,大多数是没能力和眼力去决定一个需求做与不做的,这......

    产品的经理之定义6

    同,什么才是这个产品的核心竞争力等等,这个层次的标志是你明白这个产品的本质究竟是什么,最后知道如何来做一个正确的产品。> Marketging 市场 这里的市场不指业务销售,而是营销......

    2016年阿里巴巴数据产品经理笔试题5篇范文

    已知二叉树中有45个叶节点,有25个度为1的节点,则二叉树的总结点数为____。       112 113 114 115 116 117 有一个扔骰子得返现的游戏:你扔一个骰子,扔到多少就可以得到和点数相......

    阿里巴巴数据产品经理工作(总结篇) _0大全

    [ 产品经理 ] 阿里巴巴数据产品经理工作(总结篇) 2015-3-17 17:07| 发布者: 猫儿来自: 阿里巴巴PD | 关键词:PD(指产品经理,下同)本身就是在做牛做马,关系圈异常复杂。数据PD也......