第一篇:电机设计讲稿第八章
第八章 结构设计和机械计算
结构设计和机械计算是电机设计的一个组成部分,它主要在电磁设计完成后进行,以解决机械部分的设计问题。
内容:电机的基本结构,结构设计的基本内容、原则和方法,电机主要零部件(机座、转轴、换向器及厚壁圆筒)的机械计算。
§8-1 电机的基本结构型式(自学)
一、总体结构的分类
(一)按通风冷却系统分类
空冷:自冷、自扇冷、他扇冷、管道通风、自由循环通风、封闭循环通风等; 氢、水等:封闭循环
(二)按防护型式分类
开启、防护、封闭、防爆、防水、水密、潜水、潜油等
(三)按安装结构型式分类
IM1~IM9
二、主要类型电机的典型结构简述
(一)感应电机
1、封闭式
2、防护式
3、箱型结构
(二)同步电机
1、凸极同步电机
(1)卧式凸极同步电机(2)立式凸极同步电机
2、隐极同步电机
(三)直流电机
§8-2 结构设计的基本内容、原则和方法
一、结构设计的基本内容和原则
1、结构设计的基本内容
① 确定电机的总体结构型式,包括防护型式、轴承型式和数目、轴伸型式、安装方式、通风系统等。
② 确定零部件的结构型式、材料、形状、尺寸、加工精度、形位公差、表面粗糙度和技术要求等。
③ 确定某些零部件之间的机械连接方式、配合种类等。④ 核算零部件的机械性能。
2、设计原则
① 应保证电机在规定期限内能安全可靠地运行;
② 所有结构型式一般应符合有关国家标准规定,如防护型式、轴承型式、中心高、外形尺寸、安装尺寸等;
③ 尽量使零部件符合“标准化、系列化、通用化”的要求; ④ 应具有良好的结构工艺性; ⑤ 应考虑电机装拆和维修方便; ⑥ 适当注意外形美观。
二、结构设计的方法
(一)交流电机的结构设计
1、确定总体结构
2、确定定转子的结构 ① 定子结构设计的内容和方法
定子铁心:确定轴向和周向固紧方式;
径向通风道元件的结构;
如采用扇形片时,确定扇形片划分、鸽尾槽数目、尺寸、布型; 大型还要确定铁心两端阶梯部分的具体结构;
定子绕组:应先计算和作图求得端部尺寸;
确定固定方式; 作出定子的分装草图。② 转子结构设计
转子铁心:如同步机确定磁极和磁轭的详细结构尺寸固紧方式;
如其它转子铁心,除具有轴向通风道时要确定相应的结构外,其它与定子铁心情况相似;
转轴: 设计转轴各档部分尺寸,加工精度,形位公差,表面光洁度;
核算转轴的机械强度。
转子铁心与转轴组合:套轴式、支架式。决定转子铁心和转国的径向尺寸的关系;
作出转子草图。③ 端盖结构和尺寸
主要根据通风系统、绕组对地绝缘距离轴承套结构及端盖的刚度与强度等方面的要求确定。④ 作出总装草图,同时布置风扇
校核各部件的相对位置,必要间隙是否适当,安装、外形尺寸是否符合要求;制造装配拆卸维修是否方便,进行必要的修改,逐步给出零件图,详细准确的总装配图,校核总装尺寸。
(二)直流电机的结构设计
直流电机与交流电机大体相似,只是电枢在转子上磁极在定子上,且有换向极。
第二篇:电机与绝缘讲稿
电 机 与 绝 缘
谢谢,同志们光临这次讨论,今天的主题是《电机与绝缘》,根据电机的种类,确定所用绝缘的品种和要求。目的是使我们能清楚地认识到,绝缘材料是如何为电机制造更好地服务。
电机是一种电能和机械能相互转换的旋转机械。已经成为人类创造动力的工具,是现代社会赖以生存的基本要素之一。绝缘结构是电机的心脏部分,而绝缘材料是构建电机心脏的关键组成。
随着科学技术的高速发展,电机的种类增多且更专业化;容量增大且更高效;体积缩小且更降耗,绿色制造且更环保„„
电机的分类按不同理念分类方式也不相同。今天按我们讨论的需要分类:发电机和电动机。重点讨论大型发电机及其所用的绝缘材料;特种电动机例如变频电机、机车牵引电机及其所用的绝缘材料。请各位关注的是:不同类型电机所用的绝缘材料的差异和原因所在,以便对今后的工作有所帮助。
电机绝缘系统设计的基本原则 :确保电机运行的可靠性和使用寿命(发电机不低于20年,一般多为30年,电动机为15年以上)。研究的重点是绝缘结构的最优化;绝缘材料的最优化;绝缘工艺的最优化。可靠的、先进的、经济的、环保的和可行的综合效果组合是最终目的。公司有必要将其产品按照以上重点要求分类总结,分发给技术和销售人员,认真学习、理解和体会,便于销售工作和解决实际问题。
绝缘系统设计必须考虑产品在运行中要受到电、热、机械、环境等作用因素的影响。通常,高压电机(额定电压在3kV以上)绝缘系统首先要考虑电压的作用;而低压电机绝缘系统首先要考虑热的作用。当然,在实际设计中所有因素都应予以考虑,过分强调某一因素而忽视其他因素就可能导致设计错误。电机在运行中发生故障的主要原因是绝缘破坏,占总故障率的80%以上,所以电机在运行过程中发生故障首先想到的是绝缘,绝缘工作者们应该充分理解。
一.高压电机的主要指标:
1.电机的容量——决定了电机重量和体积,可以估算出硅钢片和铜导线的数量。2.电机的电压等级——决定了电机对绝缘厚度的要求,代表着电机设计和制造的水平。
3.电机的电流密度——决定了电机的热场设计和冷却方式及绝缘结构的耐热等级。4.主绝缘的厚度——可以估算出绝缘材料的总用量和采用的绝缘工艺。
法国A-A公司多胶模压工艺单边绝缘厚度(mm)的经验计算公式:
di =0.20(1.05UN+2)适用于汽轮发电机。
di =0.17(1.05UN+2)适用于汽轮发电机。** UN 为额定电压
电机定子线圈的主绝缘厚度主要根据三个方面因素来考虑:
(1)瞬时击穿电压的储备系数,即瞬时击穿电压与额定电压(UN)之比一般应大于6~8倍。
(2)许用场强不应高于起始游离电压,电老化寿命评定的伏-秒特性曲线外推到预计运行年限的剩余场强不低于使用场强的两倍。
(3)定子线圈对地主绝缘的整体性要好,性能数据分散性小是提高许用场强,减薄绝缘厚度的前提。
近来世界上各大公司选用大型发电机定子线圈的许用工作场强为2.5MV∕m左右。
二.大型水轮发电机:
在三峡工程完成以后,中国的大规模水电建设拉开了序幕,溪洛渡、向家坝、乌东阁和白鹤滩电站将相继开工。水轮发电机从大型向超大型、巨型发展,单机容量从700MW向1000MW发展、电压等级从20KV向24KV以上发展,这对绝缘结构、绝缘工艺、绝缘材料及防晕技术、防护技术等都提出了新的要求。1.大型水轮发电机的特点:
(1)以水流为动力,转速慢,级数多,直径大,轴向长度短,有利于散热。
决定了水轮发电机的形状和线圈的形状,由于线圈端部弯角尺寸较小,适合于大批量生产的单根线棒VPI工艺。
(2)潮湿环境,端部易被油及粉尘污染。
需要特殊的端部处理技术,对端部防晕层和绝缘层进行有效防护。绝缘保护带和绝缘防护漆将被批量使用。(3)现场安装下线。
为了确保线圈现场安装下线时,不受意外损伤,线圈的整体防护是非常必要的。国外使用热收缩绝缘带保护端部,另外使用一种高强度无纺
布补强的高导热、半导体硅橡胶保护带,对线圈直线部分进行防护。.大型水轮发电机绝缘材料的用量:
以单机容量700MW、20KV的三峡机组为例。
(1)硅钢片漆:10.4吨(硅钢片用量:520吨)
(2)绝缘线圈:1080根
(3)主绝缘: 13吨
(4)防晕带: 0.5吨(5)固定材料:5吨 二.大型汽轮发电机:
随着锅炉和汽轮机技术从亚临界、超临界至超超临界的发展,汽轮发电机也从普通的300
MW、600MW向单机容量1000MW、1200MW、1500MW迈进,电压等级高达27KV以上。带动了一批新材料、新工艺和新结构的发展。1.大型汽轮发电机的特点:
(1)以热蒸汽—热能为动力,转速快,级数少(一般多为两级)。
(2)直径短,轴向长,温升高,散热效率低。(3)转速高,电磁力大,要求固定材料强度高,固定工艺复杂。
(4)电压等级高,对绝缘材料的介电性能有
特殊要求。
浸透性要求高(特指VPI工艺)。
2.大型汽轮发电机绝缘材料的用量:
以单机容量300MW、20KV的火电机组为例。
(1)硅钢片漆:2.4吨(硅钢片用量:120吨)
(2)绝缘线圈:108根
(3)主绝缘:1.62吨
(4)防晕带:0.05吨
(5)固定材料:2.14吨
以单机容量600MW、20KV的火电机组为例。
(1)硅钢片漆:3.6吨(硅钢片用量:180吨)
(2)绝缘线圈:84根
(3)主绝缘:2.268吨
(4)防晕带:0.168吨
(5)固定材料:2.966吨
以单机容量1000MW、27KV的火电机组为例。
(1)硅钢片漆:5吨(硅钢片用量:250吨)
(2)绝缘线圈:84根(3)主绝缘:3吨
(4)防晕带:0.3吨
(5)固定材料:3.5吨(5)绝缘厚度大幅度增加,对主绝缘材料的 ** 随着我国新能源战略规划的调整,未来十几年将大力发展核动力能源。大型核动力发电机的单机容量为1000MW、24~26KV电压等级。大型核动力发电机工作特点与大型汽轮发电机类似(转速略低),但从运行安全考虑,要求更高的可靠性。
三.大型风力发电机:
风力发电机以风能为动力,是新型清洁能源的代表之一。
1.大型风力发电机特点:
(1)变频特性
交—直—交变频特性,这是一般发电机没有的。谐波产生的突发电压对匝间绝缘有特殊要求。(2)内外叠加温度
内外叠加温度是指电机运行时产生的温度和周边环境的温度之和。大型风力发电机温升较高(因为工作电压较低)
而且散热方式单一(空冷),因此需要使用耐热绝缘材料(H级绝缘)。而散热良好时,可以使用F级绝缘。(3)环境影响因素
大型风力发电机的工作环境较差,炎热、潮湿、凝露、紫外光辐射、海上盐雾等。绝缘材料自身要具备一定能力,绝缘结构及绝缘工艺必须采取防护措施,才能保证运行可靠性和使用寿命。
2.大型风力发电机绝缘材料的用量:
以单机容量2.0MW双馈式风力发电机为例。
(1)绕包导线:4500~5000公斤
(2)主绝缘: 300公斤左右
(3)槽部绝缘:120公斤左右
(4)保护带:
5000米左右
四.变频电机:
通过调节频率来控制电机的转速是一种高效节能的方法。具有响应快,精度高的特点。
1.变频电机的工作原理:
转速 n=60f∕p 其中:n为每分钟转速;f为交流电的频率;p为磁极对数。
电压与频率之比为常数。U∕f=const 变频的同时也必须变压,这也就是变频器常被简称为VVVF(Variable Voltage Variable Frequency)的原因。
2.变频电机绝缘的特点:
电源谐波产生的突发电压,造成绝缘击穿。变频电机绝缘结构设计的重点是耐电压。3.变频电机的专用绝缘材料:
变频电机的匝间和主绝缘频频受到冲击电压作用,对变频电机的主绝缘和匝间绝缘必须加强,特别是电机定子的匝间绝缘。另外减少绕组的内部气隙,气隙会引发局部放电,严重影响电气性能和导热性,VPI工艺成为首选。绝缘材料的选择重点是绕组线和浸渍树脂。
变频电机需要使用耐电晕绝缘材料。“耐”与“防”的区别为:“耐”是从内到外(匝间绝缘为主导);“防”是从外到内(主绝缘为主导)。
目前被普遍认可的耐电晕绝缘材料包括:纳米改性的三层漆包导线;KaptonFCR聚酰亚胺薄膜烧结线;云母绕包导线等。
大型变频调速电动机绝缘材料的用量: 以变频调速电动机6KV、3500KW为例。(TBP3500-16/1000变频调速同步电动机)(1)绕组导线:2980公斤(2)少胶带:24~26公斤(3)VPI漆:200~220公斤(4)防晕带:7.6~8.0公斤(5)保护带:4950米(6)层压制品:692公斤
以变频调速电动机10.5KV、3500KW为例。(TBP3500-16/1000变频调速同步电动机)(1)绕组导线:3130公斤(2)少胶带:25~28公斤(3)VPI漆:200~220公斤(4)防晕带:6.4~6.8公斤(5)保护带:4900米(6)层压制品:637公斤
以YBP1120-6 2850/3150 6500KW笼型变频异步电动机为例。(1)绕组导线:1710公斤(2)少胶带:16~18公斤(3)VPI漆:80~100公斤(4)防晕带:——(5)保护带:3050米(6)层压制品:35~40公斤
五.机车牵引电机:
机车牵引电机是高速电气化铁路的关键设备。也代表着一个国家电机制造业的水平。
1.机车牵引电机的特点
(1)变频调速电机
(2)耐高温电机—由于体积和电压受限,使
电流密度增加,温升大幅度提高,发热严重
(3)多种机械振动和应力
2.机车牵引电机专用绝缘材料
(1)耐电压性能
(2)耐高温性能
(3)抗机械振动性能
六.一般情况的绝缘事故: 1.绝缘电阻降低
受潮使绝缘电阻降低,泄露电流增大,容易引发绝缘击穿。解决的方法是加热去潮后进行防潮处理。2.绝缘放电现象
产生的因素较复杂。例如局部放电、电晕放电、电弧放电、火花放电和沿面闪络等,对绝缘的破坏最为严重。
3.电机温升偏高 电机某部分的温度与其周围介质的温度之差,称为电机该部分的温升。温升是电机损耗和散热情况的量度,已成为评价电机性能的一个重要指标。绝缘材料的导热性、散热方式和绝缘处理工艺是影响电机温升的主要因素。采用VPI工艺可以使电机温升降低5~10℃,主要原因是减少气隙、提高导热。4.电机的槽口和鼻端击穿
电机的槽口和鼻端击穿是绝缘事故的多发区。电机的槽口是电场分布的突变区(导体与
绝缘、固体绝缘与空气绝缘的交汇处,使电场集中)及尖端易损区(如加工毛刺、锋利断面,振动磨损,使绝缘材料容易受到损伤)。鼻端绝缘搭接和曲面形状变化,引起电场分布变化。5.绝缘的机械损伤
电机定、转子绕组及其绝缘,在运行过程中,承受着电磁力、热应力和机械力的作用,会使绝缘产生摩擦及疲劳变形等,造成缺陷和老化,力学性能下降。优良的力学性能如抗弯、抗冲击和截面尺寸的热稳定性是电机安全运行的基本保障。电机定子事故的多发区是槽口和端部。电机转子绕组绝缘在运行中,长期承受着离心及剪切等机械力的作用。6.绝缘击穿
绝缘击穿是电机产品的最终破坏,是由多重因素造成的,主要因素是局部放电和机械破坏,结果是使电机完全丧失工作能力。七.国内电机绝缘的某些特定概念 1.可靠性和寿命
电机的可靠性是指一定时间内不失效的概率。电机绝缘寿命是指有效使用到绝缘老化的时间,不包括通过小修可以恢复使用的故障。
有的电机如鱼雷电机、火箭电机等要求可靠性接近100%,而寿命仅几分钟;而许多用于单机配套的电机,则寿命要求长,对可靠性要求却较低。
2.F级绝缘,B级考核
是指绝缘系统的降级使用。电机绕组各部位的温度并不相同,实际上是一个温度场,温升是指绕组的平均温度。温度场中的温差随电机结构、通风散热系统、绝缘系统的不同而改变。例如,防护式电机的最热点在铁心中间的槽部,屏蔽式电机的最热点在绕组端部。
为了保证电机的可靠性和寿命,在电机绝缘设计时还必须留有温升裕度。对一般系列化小型化电机留5~~10℃,对中大型电机裕度更大。现代电机绝缘设计的趋向是选用等级高于电机绝缘等级的绝缘系统,热点由绝缘裕度承担,电机设计时用足温升限值。例如B级电机采用F级绝缘系统,按B级考核,而且B级电机的铜耗按75℃计算(F级电机按115℃计算),电机的效率可以较高,因此提高了电机的综合技术经济指标。3.绝缘等级与耐温指数
电机绝缘等级与绝缘耐温指数之间有密切的关系,但是两者之间并非等同或恒定关系。电机设计人员可以根据电机的使用状况,往往选用高于或低于电机绝缘等级的绝缘结构。
电机绝缘结构的升级使用,缩小体积,增大功率,必然缩短电机的寿命,例如鱼雷、火箭电机。4.端部处理技术
电机端部与槽内直线部分的绝缘,所承受的电场分布、热场、受力状态、环境因素不同,因此 端部绝缘需要特殊的处理技术。
槽口需要绝缘加强,防晕从低阻转向高阻,使电场分布均匀,避免起晕放电。
端部绝缘无铁心支撑固定,需通过膨胀材料、绑扎材料进行固定,以免运行振动产生摩擦,损伤绝缘造成击穿。
在浸漆过程中,端部流失最为严重,造成绝缘发空现象。需要特殊保护工艺如旋转烘陪、热收缩保护带等。
电机端部绝缘易受到外部环境污染如潮湿、粉尘、油污等,另外在装配、拆卸时易受损伤,需要进行绕包及喷漆等防护处理。
5.防晕技术及防晕材料
在较高电场作用下,电位出现差异,绝缘层表面与空气间产生的放电现象为电晕放电,这种电腐蚀对绝缘层会造成严重的破坏作用。
防晕技术就是通过采用半导体材料制成的防晕材料使电场平滑过渡和均匀分布,减小或避免起晕现象。由于电机槽内、槽口、端部电场分布不同,防晕材料分为低阻、中阻和高阻材料。而且多胶模压工艺和少胶VPI工艺所用的防晕材料也不相同(半固化防晕带和全固化防晕带)。
**在产品说明书中,经常会出现国标及计量单位与欧美标准及计量单位的差异。
**在实际应用中,绝缘产品与设备有着较大的关联度。
本次讲座的目的是让各位了解: 1.电机基本原理与绝缘材料的关系。2.电机运行故障与绝缘材料的关系。
3.电机绝缘结构与绝缘材料、绝缘工艺的关系。4.不同类型电机绝缘材料的大约用量。
第三篇:电机设计论文
12电机设计论文_电动机论文
一、选题的依据及意义
现在社会中,电能是使用最广泛的一种能源,在电能的生产、输送和使用等方面,作为动力设备的电机是不可缺少的一部分。电机在国家经济建设,节约能源、环保和人民生中起着十分重要的作用。发电机主要用于移动电源、风力发电、小型发电设备中;电动机在生产和交通运输中得到广泛使用,电动机主要用于驱动水泵、风机、机床、压缩机、冶金、石化、纺织、食品、造纸、建筑、矿山等机械产品上。随着科学技术的不断创新和工农业的迅猛发展,电气化与自动化水平不断提高,国民经济各部门对异步电动机的需求量日益增加,对其性能,质量,技术经济指标也相应地提出了越来越高的要求。因此,对异步电动机品种,必须适时实地做出更新与发展,以适应各个新兴工业领域不同的特殊要求,特别是对需求量最大的中小型异步电动机,在保证其质量运行,寿命长和能满足使用要求的同时,进一步节约铜、铁等材料,提高效率和功率因数,以提高其经济技术指标与降低耗电量,是具有十分重要的意义。由于Y系列异步电动机具有体积小,重量轻,运行可靠,结构坚固耐用,外形美观等特点,具有较高的效率,有良好的节能效果,而且噪音低,寿命长,经久耐用。作为普遍用于拖动各种机械的动力设备,其用电量在总的电网的总的负荷中占有重要的一席。Y系列共有两个基本系列、十六个派生系列、九百多个规格,能满足国民经济各部门的不同需要。所以设计研究三相异步电动机意义重大。国内外研究现状及发展趋势(含文献综述)
1、现状
国外公司注重新产品开发,在电机的安全、噪声、电磁兼容等方面很重视。国外的先进水平主要体现在电机的可靠性高,寿命长,通用化程度高,电机效率不断提高,噪声低,重量轻,电机外形美观,绝缘等级采用F级和H级,而且也考虑电机制造成本的降低等国内虽有部分产品已达90年代初的国际水平,但相当部分的产品可靠性差,重量重,体积大和噪声大,综合水平只相当于80年代初期国际水平,其主要原因是制造工艺落后,关键材料的质量和品种不能满足要求,科研和设计工作没有跟上,科研投入少,新产品开发资金匮乏,企业技术创新能力较弱
2、电机行业发展趋势 1)企业在改造中求发展
企业要自己选准位置,立足生求,真抓实干,稳步发展。我国中小电机生产销售受各种因素的影响,变化幅度比较大,企业要看准改革市场,并重点地去占领他,发挥企业自身的优势,例如,目前的稀土永磁电机,大量用于风机、水泵、1 机床、压缩机、城市交通及工矿电动车辆等变频调速装置,预测会有较大的发展前途。2)发展派生、专用系列电机
我们要开拓多用途、多品种派生和符合国外先进标准的电机产品。随着社会的不断前进,科技水平的不断提高,电机行业的不断发展,市场需求会不断变化,电机产品的外延和内涵也不断拓展,电机产品配套面广,它广泛地应用于能源、交通、石油、化工、冶金、矿山、建筑等各个领域,并且电机的通用性逐步向专用性方面发展,打破了过去同一类电机同时用于不性质、不同场合的局面。电机产品正向着专业性、特殊性、个性化方面发展,这也是国外企业发展的最新观点与动向。3)电机要高效、节能
我国中小型电机作为各种机械设备的动力源,其耗电总量已占全国发电量的70%左右。因此,发展中国高效电机,推广节能产品,是响应国家节能政策、实现节能降耗的重要举措。
在产品开发中,以前的科学院所、企业在产品设计采用了许多办法,如采用降低起动力矩、电容补偿、阻尼槽方法来节约电能,但这些都是在频率不变的条件下来实现的。自从有了逆变器后,电源的变频变压变的更加容易,从而可以调节异步电机在最佳工作点上运行,保证出力不变的情况下,可用最大效率和功率因数代替额定效率和额定功率因数,减小了电机尺寸,减轻了电机重量,降低了成本,提高了企业经济效益和社会效益。
4)机电一体化、智能化 随着科学技术的发展,机电一体化技术得到长足发展,同时,各种高新技术也为电机产品注入了新的活力,制造工艺和管理信息化技术通过微电子、计算机、网络技术的应用,国家政策的鼓励、各企业对科技的重视,使新产品开发的周期逐渐缩短,机电一体化、智能化电机(如交流变频调速电机是一种无级调速传动系统)应运而生,调速制造、虚拟制造等先进制造技术推广应用。我国的电机的技术性能水平与发达国家的水平相当。
2、发展趋势
随着国家宏观经济的调整以及市场需求的推动,二十世纪中小型电机的品种将得到更大的发展,尤其是对于发展高效率电机、高品位的出口电机和机电一体化的交流变频电机将会给予特别的重视,而一些新颖的电机,如永磁电机、无刷直流电机、开关磁阻电机等,将进一步完善。同时,随着CAD技术、数控机床、专用加工设备、冷轧矽钢片、F级、H级绝缘材料等新技术、新材料的推广,电 2 机行业的生产方式也将出现新的重大的变化。电机的技术发展动向是向小型化、薄型化、轻量化、无刷化、智能化、静音化、高效化、节能化、环保化、可靠化、精密化、组合化,电机采用新型磁性、导电、绝缘材料。
二、本课题研究内容 本课题主要是研究设计Y802-4三相鼠笼式异步电动机---设计计算.首先根据给定的功率,功率因数,相数,频率及额定相电压确定异步发电机的主要规格。
本课题的主要计算过程如下: 1.额定数据及主要尺寸计算 2.磁路计算 3.参数计算 4.起动计算
根据Y802-4三相鼠笼式异步电动机各性能指标:效率?,功率因数cos?,TSTISTTmax 最大转矩倍数 TN,起动转矩倍数 TN,起动电流倍数 IN 计算出各个参数。
三、本课题研究方案
本课题的研究方案是根据设计任务书并结合所选机型的各参数指标进行复算,通过方案比较,确定电机电磁性能有关的尺寸和数据,选定材料,并核算其电磁性能。最终算计出符合国家有关标准和技术要求的电机参数; 利用计算机进行辅助设计,提高功率因数,提高效率,提高电动机的工作能,节省制造材料。
四、研究目标、主要特色及工作进度
1.研究目标:在原复算方案的基础上既节省材料,又提高性能;将不同方案进行比较,以求得最佳结果。
2、主要特色
进行发电机的电磁设计时,先釆用手算的方法,使各项性能指标都满足。后釆用计算机编程的方法进行计算,得出最优方案。
3、工作进度 3
六、参考文献 [1] 陈世坤 电机设计[M] 机械工业出版社 2000 [2] 李发海 电机学[M] 科学出版社 1995 [3] 三相异步电动机设计、原理与试验 沈阳机电学院 [3] 张跃峰 AUTOCAD2004 入门与提高 清华大学出版社 4 目 录 摘
要........................................................................................................................I ABSTRACT..................................................................................................................II 前
言..........................................................................................................................1 第1章 概
述................................................................................................................2 1.1我国电机制造工业发展近况与发展趋势..........................................................2 1.2 电机的分类..........................................................................................................2 1.3三相异步电动机的结构和用途..........................................................................3 1.3.1异步电动机结构............................................................................................3 1.3.2异步电动机用途............................................................................................4 1.4三相异步电动机的基本工作原理和运行特性..................................................5 1.4.1 基本工作原理...............................................................................................5 1.4.2三相异步电动机的工作特性........................................................................5 1.5 三相异步电动机的起动与调速..........................................................................6 1.5.1三相异步电动机的起动................................................................................6 1.5.2三相异步电动机的调速................................................................................7 1.6 感应电动机的主要性能指标和额定参数........................................................8 1.7电机节能..............................................................................................................8 第2章 三相鼠笼式异步电动机的设计方法............................................................10 2.1 电磁负荷的选择与匹配....................................................................................10 2.1.1电磁负荷对电机性能和经济性的影响......................................................10 2.1.2 电磁负荷的选择.........................................................................................10 2.1.3 电荷负荷的匹配.........................................................................................11 2.2 主要尺寸、气隙长度的选取及绕组型式的选择............................................11 2.2.1主要尺寸的选择..........................................................................................11 2.2.2 气隙长度的选取及确定.............................................................................12 2.2.3铁心尺寸......................................................................................................12 2.2.4定子绕组形式和节距的选择......................................................................13 2.3 笼型转子的尺寸设计........................................................................................14 2.3.1 转子槽数选择及定转子槽配合问题.........................................................14 12电机设计论文_电动机论文 2.3.2 转子槽形的选择和槽形尺寸的确定.........................................................15 第3章 三相鼠笼式电动机电磁设计与方案调整....................................................17 3.1鼠笼式电动机电磁方案的设计........................................................................17 3.2电机调整方案....................................................................................................37 3.3 方案结果分析....................................................................................................40 3.4 提高电机工作性能的一些措施........................................................................41 第4章 计算机辅助工具在电机设计的应用............................................................43 结束语..........................................................................................................................45 致 谢.........................................................................................错误!未定义书签。参考文献......................................................................................................................45 Y802-4 0.75 kW三相鼠笼式异步电动机设计 摘 要
本文介绍了Y系列三相鼠笼异步电动机的设计方法,文章首先从异步电机的基本理论及工作特性着手,简单介绍了异步电机的发展近况、基本特性、类型、结构、用途、技术指标、工作原理及运行特性等,为电机设计的做好必要的理论准备。电机设计是个复杂的过程,因此需要考虑的因素、确定的尺寸和数据很多。同时本文也详细阐述了三相鼠笼异步电动机的设计改进调整方案,以及计算机辅助工具的应用,这给电机设计和优化带来了新的契机。
关键词 :三相异步电动机;设计;电磁路参数;工作性能;优化方案 Y802-4 0.75KW Three-phase Squirrel-cage Induction Motor Design Abstract In this paper, Y series three-phase squirrel-cage induction motor design method, the article first of all, from the basic theory of induction motor characteristics and the work to proceed, briefly introduced the latest development of the induction motor, the basic characteristics, type, structure, purpose, technical indicators, the working principle and operation characteristics, designed for the motor to make the necessary preparations for the theory.Electrical design is a complex process and therefore need to take into consideration to determine a lot of size and data.At the same time, this article also detailed three-phase squirrel-cage induction motor to improve the design of adjustment programs, as well as the application of computer-aided tools, this motor design and optimization to bring a new opportunity.Keyword: Three-phase asynchronous motor;design;electromagnetic parameters;performance;optimization program 前 言
现在社会中,电能是使用最广泛的一种能源,在电能的生产、输送和使用等方面,作为动力设备的电机是不可缺少的一部分。中小型电机行业是机械工业的重要组成部分,在国民经济中起着举足轻重的作用。发电机主要用于移动电源、风力发电、小型发电设备中;三相异步电动机在生产和交通运输中得到广泛使用,例如,在工业方面,它被广泛用于拖动各种机床。水泵、压缩机、搅拌机、起重机械等。在农业方面,他被广泛用于拖动排灌机械、脱粒机及各种农产品的加工机械。在家用电器和医疗器械和国防设施中,异步电动机也应用十分广泛,作为拖动各种机械的动力设备。随着科学技术的不断创新和工农业的迅猛发展,电气化与自动化水平不断提高,国民经济各部门对异步三相异步电动机的需求量日益增加,对其性能,质量,技术经济指标也相应地提出了越来越高的要求。因此,对三相异步电动机性能提出了许多新的更新的要求,必须适时实地做出更新与发展,以适应各个新兴工业领域不同的特殊要求,特别是对需求量最大的中小型三相异步电动机,在保证其质量运行,寿命长和能满足使用要求的同时,进一步节约铜、铁等材料,提高效率和功率因数,以提高其经济技术指标与降低耗电。三相异步电动机已有近20年多年的研制开发、设计和生产史。尤其近些年来,随着研制开发技术的不断创新、迅速发展和完善,如集成化技术、智能化技术、网络化技术、虚拟技术等,设计出 ―更快、更精、更净‖的产品。第1章 概 述
1.1我国电机制造工业发展近况与发展趋势
电动机制造是我国机械工业中较大的行业之一,它既是关系到各行各业自动化的重要基础产品,又是与人类生活密切相关的面广量大、品种繁多的通用产品。电动机是把电能转变为机械能的主要执行部件,国内60%~70%的发电量被电机所消耗。因此,电机产品的品种、数量和质量各种性能水平的提高和发展,都会直接影响国民经济各部门成套设备的发展水平。
20世纪40年代以前,我国电机制造工业极端落后。50年代以仿制国外产品为主,60年代起走上自行设计的道路。在此之前只能生产一般中小型电机,而且批量小,品种单一。我国所生产的电动机大多是六十年代发展的产品, 部分是七、八十年代引进的国外移植产品,与国外同行业相比, 其技术水平、产品质量、结构工艺、制造能力、自动化程度等均偏低,仍有不小的差距。
解放五十多年来,国内的电机制造业通过广大工程技术人员的不懈努力,在非常落后的基础上逐步建立起较为完整的电机制造工业体系,无论是在发展品种、提高产品质量方面,还是在数量方面,都取得了世人瞩目的成绩,为工业的发展和人民生活水平的提高做出了巨大的贡献。我国已能独立自主地生产各种中小型电机,国内产品已经发展到100 多个系列,500多个品种,年生产能力达到5500万kW以上,基本上满足了社会各个方面对电机产品的需求。
随着电机理论的不断完善,高新技术的快速发展,可以预言:未来的电机产品将朝着高性能化、智能化、微型化和网络化的方向发展。1.2 电机的分类
电机是以磁场为媒介进行电能与机械能相互转换的电力机械。电机在国民经济各个领域得到广泛应用。需要的电机的种类各不相同,性能各异。电机的分类方法也用很多,故电机的种类也有很多。
1)按工作电源分类: 根据电动机工作电源的不同,可分为直流电动机和交流电动机。2)按结构及工作原理分类: 根据电动机按结构及工作原理的不同,可分为直流电动机,异步电动机和同步电动机。直流电动机按结构及工作原理可分为无刷直流电动机和有刷直流电动机。12电机设计论文_电动机论文
3)按转子的结构分类: 根据电动机按转子的结构不同,可分为笼型感应电动机和绕线转子感应电动机。
4)按用途分类: 可分为驱动用电动机和控制用电动机。
我国目前生产的三相异步电动机月100个系列额,500多个品种,500多个规格。按电机尺寸分成大、中、小型。
大型:中心高H > 0.63m,定子铁心外径Di > 1m,功率范围在400KW以上,电压为300 V和600 V。
中型:中心高H =(0.355——0.63)m,定子铁心外径Di =(0.5——1.0)m,功率范围在(45——1250)KW以上,电压为380 V和3000 V和6000 V。
小型:中心高H =(0.08——0.315)m,定子铁心外径Di =(0.12——0.5)m,功率范围在(0.55——132)KW以上,电压为380 V。Y(IP44)系列的中心高H =(0.08——0.28)m,定子铁心外径Di =(0.12——0.445)m,共11个机座,功率范围为(0.55——90)KW,电压380V。1.3三相异步电动机的结构和用途 1.3.1异步电动机结构
(1)固定部分有定子绕组、定子铁心、机壳、端盖、风罩。
定子绕组是电动机的电路部分,通入三相交流电产生旋转磁场的绕组。由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。定子铁心是电机磁路的一部分,并在其上放置定子绕组。通常是用轧成厚0.5或0.35毫米的硅钢片叠成的(如图1)。机壳是用来支撑定子铁心和电动机端盖。端盖是用来支撑电动机的转动部分(一般指转子)。风罩保护风叶同时又起到通风的风路作用。图1 定子铁心
(2)转动部分有转子铁心、转子鼠笼、转轴、起动开关、轴承、风叶。转子铁心是整个电动机磁路的一部分,一般使用硅钢片DR510-50,DR280-35。转子鼠笼起转子绕组的作用转子的导条均由鼠笼的端环所短路,形成一个多相的电路(如图2)。鼠笼的材料一般采用高纯铝L01~L05。转轴是作为支撑转子铁心和传递力矩最不可缺少的结构部分。轴承主要是连接转动部分与不动部分。风叶主要是冷却电动机。图2 鼠笼转子(3)其他部分有出线盒、铭牌、起动或工作电容器。(4)三相异步电动机的总结构图 图3 封闭式三相笼型异步电动机结构图
1—轴承;2—前端盖;3—转轴;4—接线盒;5—吊环;6—定子铁心; 7—转子;
8—定子绕组;9—机座;10—后端盖;11—风罩;12—风扇 1.3.2异步电动机用途
对于小型异步电动机来说,用途是十分广泛的,常作为各类机械中的主要动力元件。Y系列小型异步电动机根据需要,既可以用于正常的工作环境,又可在潮湿、多尘、湿热、多霉和日晒雨淋、严寒酷暑,冲击波动,有爆炸危险和腐蚀性环境中使用,既可恒速传动,又可变速传动。这类电机既可连续工作,有可断续工作。因此广泛用于各种机床,风机,水泵,压缩机和传输机,农业食品加工 等各类机械设备。
1.4三相异步电动机的基本工作原理和运行特性 1.4.1 基本工作原理
电动机的工作原理是建立在电磁感应定律、全 电流定律、电路定律和电磁力定律等基础上的。如 右图4是三相交流异步电动机转子转动的原理图(图中只示出两根导条),当磁极沿顺时针方向旋 转,磁极的磁力线切割转子导条,导条中就感应出 电动势。电动势的方向由右手定则来确定。因为运 动是相对的,假如磁极不动,转子导 条 沿逆时针
方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力F,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。异步电动机的工作原理用箭头式子可以简单的表示如下:
定子绕组通入三相交流电流?产生旋转磁场?切割转子绕组? 转子绕组产生感应电势?转子中产生感应电流?转子电流与磁场作用?产生电磁转矩?运行。
1.4.2三相异步电动机的工作特性
异步电动机的工作特性是指在额定电压及额定频率下,电动机的主要物理量转差率,转矩电流,效率,功率因数等随输出功率变化的关系曲线。1转差率特性 ○ 通常把同步转速n1和电动机转子转速n二者之差与同步转速n1的比值叫做转差率,用s表示。关于转差率的定义如下:当电机的定子绕组接电源时,站在
s?定子边看,如果气隙旋转磁通密度与转子的转向一致,则转差率s为:n1?n;n1 如果两者转向相反,则:s?n1?n。式中的n1、n都理解为转速的绝对值s是n1 一个没有单位的数,它的大小能反映电动机转子的转速。随着负载功率的增加,转子电流增大,故转差率随输出功率增大而增大。2转矩特性 ○
异步电动机的输出转矩:转速的变换范围很小,从空载到满载,转速略有下降,转矩曲线为一个上翘的曲线(近似直线)。3电流特性 ○
空载时电流很小,随着负载电流增大,电机的输入电流增大。4效率特性 ○
其中铜耗随着负载的变化而变化(与负载电流的平方正比);铁耗和机械损耗近似不变;效率曲线有最大值,可变损耗等于不变损耗时,电机达到最大效率。异步电动机额定效率载74-94%之间;最大效率发生在(0.7-1.0)倍额定效率处。5功率因数特性 ○
空载时,定子电流基本上用来产生主磁通,有功功率很小,功率因数也很低;随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升高;在额定功率附近,功率因数达到最大值。如果负载继续增大,则导致转子漏电抗增大(漏电抗与频率正比),从而引起功率因数下降。1.5 三相异步电动机的起动与调速 1.5.1三相异步电动机的起动(1)直接起动
直接起动是用闸刀开关或接触器把电机的定子绕组直接接到具有额定电压的电源上。是一种最简单而应用广泛的起动方法。1)优点:无需附加起动设备,操作方便;
2)缺点:起动电流大,起动转矩小,须足够大的电源; 3)适用条件:小容量电动机带轻载的情况起动。(2)降压起动
用降低电机端电压的方法限制制动起动电流,待电机转速接近正常转速后,再将端电压升高到额定电压。如果电源容量不够大,可采用降压起动。即起动时,降低加在电动机定子绕组电压,起动时电压小于额定电压,待电动机转速上升到一定数值后,再使电动机承受额定电压,可限制起动电流。1)Y-Δ降压起动 2)自耦变压器降压起动 3)电阻降压或电抗降压起动 4)延边三角形降压起动(3)软起动
软起动就是在电动机(鼠笼式)定子回路串入有限流作用的电力器件来实现电机的起动。通过这种方法降低起动电流。软起动是采用软件控制方式来平滑起动电动机,一方面在控制方式上以软件控制强电,另一方面在控制结果上将电动机的起动特性由―硬‖平滑变为―软‖。软起动过程中产生高次谐波,对周边环境要求比较高,同时起动设备投资非常大;但它起动时无冲击电流,可保持平滑起动,并且可根据负载情况实现自由无级的起动。软起动方式:○1 液阻式软起动 ○2 磁控式软起动 ○3 智能式软起动。
1.5.2三相异步电动机的调速
三相异步电动机转速公式为: n?60f1?1?s? p 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。异步电动机的调速主要有三种方法.1、变极调速 n1?60f1,异步电动机正常运行时,转子转速n略低于n1,所以,一旦p p改变,n1改变,n也随着改变。1)Y→YY 变极调速 属于恒转矩调速方式 2)Δ→YY变极调速 属于恒功率调速方式
2、变频调速 异步电动机的转速:n?60f1?1?s?。当转差率S变化不大时,n近似正p 比于频率f1,可见改变电源频率就可改变异步电动机的转速。常用的异步电动机变频调速控制方式通常有两种,即恒转矩变频调速和恒功率变频调速。
(1)恒转矩变频调速。电机变频调速前后额定电磁转矩相等,即恒转,T?TTeNTeN矩调速时,有。
(2)恒功率变频调速。电机变频调速前后它的电磁功率相等,即 ''。Pem?TTem?1?TTem?1 12电机设计论文_电动机论文
3、转子回路串电阻调速
转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。串电阻前后保持转子电流不变,则有: R2R2?R?,cos?2?cos?2N ?SNS 电磁转矩为: Tem?CM?mI2cos?2,保持不变,即属于恒转矩调速。1.6 感应电动机的主要性能指标和额定参数 感应电动机的主要性能指标、基准值和额定参数。1.7电机节能
电动机广泛应用于工业、商业、公用设施和家用电器等各个领域,作为风机、水泵、压缩机、机床等各种设备的动力。中小型三相异步电动机是电力机械的最主要的原动机。目前中国电动机消耗的电量约占全国用电量的60%,而中小型电动机占到全国电动机功率的75%,若把中小型电动机的效率平均提高一个百分点,一年可节电20多亿kWh。由此可见,电动机的节能潜力巨大,提高中小型电动机的能源效率是工业终端设备节能的一个重要方面。一般采取的节能措施如下:
1、选用节能电动机 Y系列三相异步电动机是全国统一设计的新系列小型鼠笼转子电动机。Y系列电动机效率较高,全系列加权平均效率为88.27%,比J02系列高0.41%,起动转矩比J02系列平均提高30%,因此有利于用户既满 足对起动转矩要求高而又
可选用容量较小的电动机。这有利于提高节电效果。
2、合理选择电动机容
一般电动机负载的系数在0.5-1范围内为高效区。电动机容量要根据生产机械需要的功率来决定。但实际中往往会出现―大马拉小车‖的现象,由于容量选择不合理,使电动机经常处于轻载状态,致使功率因数降低,增加线路损耗。所以要根据不同负载合理选择电动机。
3、异步电动机采取调速节电
目前,风机与泵类设备常用调节阀门或挡板开启度的方法来调节流量,电能浪费很大。而用电动机调速来调节流量,可使风机、泵长期在高效率状态运行,节电可达30%-60%a。表1列出异步电动机几种常用的调速方式及特点。在工农业生产中可根据电机、场地、调速要求等情况选择调速方案。对于不同的负载类型选用不同类型的电动机,可以获得良好的节电效果。
(1)可变转矩型异步电动机。其最大转矩和额定转矩都和转速成正比,故低速时最大转矩和额定转矩都只有高速时的一半(倍极比电动机),而额定功率只有高速额定功率的1/4。这类电动机适合泵、风机使用,因它的特性基本上与负载特性配合。接线方式是低速时为串联Y,高速时为并联Y。
(2)恒转矩型异步电动机。其最大转矩和额定转矩近似地保持不变,额定功率正比于转速。这类电动机适合传送带、压缩机和机床进给机构使用接线方式是:低速时为串联0,高速时为并联Y(3)恒功率型异步电动机。其最大转矩和额定转矩反比于转速。这类电动机适合于金属切削机床、卷扬机等。接线方式是:低速时为并联Y,高速时为串联△。
第2章 三相鼠笼式异步电动机的设计方法 2.1 电磁负荷的选择与匹配
2.1.1电磁负荷对电机性能和经济性的影响
/由于正常电机中系数?p、KNM、与Kdp实际上变化不大,因此在计算功率P/ 与转速n一定时,电机的主要尺寸决定于电磁负荷A、B?。电磁负荷越高,电机尺寸将越小,重量越轻,成本也越低。这就是在一般可能情况下,一般希望选取较高电磁负荷和B?的原因。但电磁负荷选取与众多因素有关,不但影响电机有效材料的耗用量,而且对电机参数、起动和运行性能、可靠性都有重要影响。(1)线负荷A较高,气隙磁密B?不变 1 电机体积和尺寸的减小,可节约钢铁材料 ○ 2 B?一定时,由于铁心重量减小,铁耗随之减小 ○ 3 绕组用铜量增加 ○ 增大了电枢单位表面上铜耗,绕组温升增高 ○ 5 影响电机参数和电机特性 ○(2)气隙磁密B?高,线负荷A不变 电机体积和尺寸的减小,可节约钢铁材料 ○ 2 电枢基本铁耗增大 ○ 气隙磁位降和磁路饱和程度增大 ○ 4 影响电机参数和电机特性 ○ 2.1.2 电磁负荷的选择
电磁负荷与预防护等级、冷却方式、转子结构、绝缘等级及电压有直接关系。决定电磁负荷时。对于小型电机而言,各种产品之间磁密的波动范围不大。只是对于断续运行电机或者最大转矩要求高、功率数允许略低的产品,磁密可以略高。但电密及热负荷AJ1波动较大。当磁密及J1选定后,根据电磁负荷的匹配关系,求取转子电密及调整定子齿部、轭部的磁密,电磁负荷选得高,就节省材料,但它受效率?,cos?及温升约束,不能选得过高。在推荐的范围内: A 随功率增加而增加,减少A可提高过载能力; ○ 2 B? 随极数增加面增加,降低B?可提高cos?; ○ J1 则随功率增加而减小,随散热能力提高而提高。同时绕线转子的J1要比○
笼型转子的J1选低5%——10%;断续运行的可比连续的选的高些。2.1.3 电荷负荷的匹配
电磁负荷的匹配直接影响电机的温升(定子绕阻温升),尽管随着电机类型不同,温度场分而亦不同,但仍有一个共同的规律。就散热而言,转子热量有很大一部分要先传给定子,再经机座或通风道,与定子热量汇集在一起传给周围介质。
对于Y系列电机而言,磁负荷亦应遵循类似的规则,转子部分损耗很小,转子部分磁密只要在推荐范围内选取,其损耗可忽略不计。电机总的铁耗可以以为仅由定子齿部铁耗及定子轭部铁耗两部分构成。当铁心尺寸确定后,铁耗随磁密的增加而增加。对于4极电机而言,齿、轭磁密相近时,由于轭部体积较大,其铁耗常常是齿部好几倍。所以设计人员常将轭部磁密选项得较低,齿部选得较高,这从计算结果看是合适的,但在散热途径中齿部的散热不如轭部;同时,齿部磁密偏高,这会使其脉振损耗显著增加,这些从计算结果很难察觉,但却往往导致温升增高,因此齿部磁密不宜偏高。
2.2 主要尺寸、气隙长度的选取及绕组型式的选择 2.2.1主要尺寸的选择
设计的主要任务是确定电动机的主要尺寸,选择定转子磁路结构,设计定转子冲片和选择绕组数据,然后利用有关公式对初始设计方案进行较核,调整电动机的某些设计参数,直至电动机的电磁设计方案符合技术经济指标求。
三相鼠笼异步电动机的主要尺寸包括定子内径Di1和电枢计算长度lef 6.11P'P' 决定电机主要尺寸的基本关系式:Dl?'.?CAABnnapKNmKdp1?2i1ef 其中感应电动机的计算功率P/为:P'?m1E1I1 由于感应电动机额定功率为:PN?m1UN?I1?cos? 比较上两式,则有P'?E1iPN UN??.cos? 在生产实际中,设计感应电机时往往只需参考已经制定的同类型、相近规格电机的尺寸。一般来说,三相异步电动机的设计可有如下两种情况:(1)直接利用某特定的定子冲片,以提高电动机定子冲片的通用性和缩短电动机的研制周期。在此情况下,由给定的定子冲片,即可知道定子冲片内径,再由电动机的功率和电机常数选取电枢计算长度。
(2)在给定电动机的性能指标,而无其他限制。此时根据预估的电磁负荷,有电动机的功率和转速可选定电动机的Di21Lef,然后凭经验选取一定的主要尺寸比Lef ?1,得出电机的主要尺寸。2.2.2 气隙长度的选取及确定
气隙?的数值基本上决定于定子内径、轴的直径和轴承间的转子长度。异步电动机的气隙长度是影响制造成本和性能的重要设计参数,它的取值范围很宽,选得小,可使励磁电流降低而提高功率因数,但槽漏抗也随之增加,使起动转矩、最大转矩降低。过小的气隙也容易招致定、转子相擦。但若选得大,则情况刚好相反。在异步电动机设计选取气隙时,需考虑多种影响。
从电抗去磁能力考虑,较小的?对提高抗去磁能力有利,但由于制造和装配工艺的限制,气隙不能取的太小。与材料有关,较小时,抗去磁能力相对较差?宜取小些。极数是选取? 值需考虑的重要因数。2.2.3铁心尺寸 铁心的尺寸指定子铁心外径、内径、转子铁心内径及铁心长。铁芯冲片一般由相互绝缘的0.5mm厚硅钢片冲成,冲片内圈有均匀分布的槽,用来嵌放定子绕线。当冷却方式、工作制不同时,可参考下列关系选取铁心尺寸。
自冷式(不带内、外风扇)电机,当上列其他特征与自扇冷(IC0104)产品的相同时,若维持相同的输出功率,应选比后者高2——3个功率等级的电机铁心尺寸。
断续运行(以S3、FC=40%工作制为代表)电机,当上列其他特征均与连续
12电机设计论文_电动机论文
运行的相同,并维持相同的功率时,可选取比连续的低约1个功率等级的铁心尺寸。若为工作制时,FC分别为15%、25%、60%,则应分别在40%的基础上乘以1.4、1.19及0.845,即为在同一铁心下分别对应的输出功率。若维持功率不变,可据此近似地推算出铁心尺寸。2.2.4定子绕组形式和节距的选择
绕组的形式,连同其结构参数对电机的所有电气性能均产生不同程度的影响。不同的形式的绕组按照各自的特性有不同的适用范围。
1、单层链式绕组
优点:○1 槽内无层间绝缘,槽利用率高,散热好; ○2 同一槽内的导线都属于同一相,在槽内不会发生相间击穿。3 线圈总数比双层少一半,嵌线比较方便,节约嵌线工时; ○ 缺点:○1 不易做成短距,磁势波形比双层绕组差; 2 电机导线较粗时,绕组嵌放和端部的整形比较困难; ○
图 5 24槽 节距1—6 单层链式
通过改善磁动势波形是使气隙磁动势分布接近正弦波,即其谐波含量减少了,由此带来的效果是附加损耗,电磁噪声减小了;T-S曲线与的形状也改善了,即减少了附加转矩,提高了起动过程的最小转矩;提高绕阻系数则意味着使Bg下降,cos? 及效率都得到提高,或者保持Bg不变,适当减少匝数,或者缩短 铁心,即收到节铜或硅钢片的效果。
2.3 笼型转子的尺寸设计 2.3.1 转子槽数选择及定转子槽配合问题 笼型转子感应电机在选取转子槽数时,必须与定子槽数有恰当的配合。如果配合不当,会使电机性能恶化。下面就槽配合对附加损耗、附加转矩、振动与噪声等的影响作扼要的介绍。(1)槽配合对附加损耗的影响 感应电机的附加损耗主要由气隙谐波磁通引起。这些谐波磁通在定转子铁心中产生高频损耗(表面损耗和齿部脉振损耗),在笼型转子中产生高频电流损耗。其中以定、转子齿谐波的作用最为显著。
当定、转子槽数相等时,定子齿谐波磁通不会在转子中产生高频电流损耗。当定、转子槽数很接近时,转子齿中由定子齿谐波磁通引起的脉振较小,脉振损耗也就较小。同理,定子齿中由转子齿谐波磁通引起的脉振损耗也较小。(2)槽配合对异步附加转矩的影响
异步附加转矩是某一极对数的定子谐波磁场与由它感应于转子中的电流所建立的同一极对数的谐波磁场相互作用而产生的。这两个磁场之间有直接的依赖关系。定子?次谐波磁势产生的异步附加转矩最大值与基波磁势产生的起动转矩之比: Tvmax Tst 1Xm?K2vKskv???。'?2vR2KK?21sk1? 2(3)槽配合对同步附加转矩的影响
如果定子某一个谐波磁场感应于转子中的电流所建立的某一谐波磁场的极对数,等于另一个定子谐波磁场的极对数,则在某一转速下,这两个极对数相等的定转子磁场可以在空间上同步旋转而相对静止,因此它们相互作用而产生一个象同步电机一样的转矩,称为同步附加转矩。同步附加转矩迭加在电动机的异步转矩上,使电机的转矩特性曲线发生畸变,影响电机的起动性能。其中,由定子齿谐波磁场和转子齿谐波磁场所构成的附加同步转矩最严重。(4)槽配合对振动和噪声的影响 当槽配合符合下列条件时,定、转子齿谐波磁场将引起电机振动和噪声: Z1?Z1?i ? ??i?1,2,3......? Z2=Z1?2p?i? 同样,定、转子相带谐波磁场与转子一阶齿谐波引起振动和噪声的条件为: Z1?2pm1k1? ??k1?0,i?1,2,3......? Z2=2pm1k1?i?(5)感应电机定、转子槽配合的选择
定、转子槽配合对感应电机附加损耗、附加转矩、振动和噪声等影响很大。通常在选择槽配合时主要考虑下列原则: 1)为了减小附加损耗,应采取少槽近槽配合
2)为了避免在起动过程中产生较强的异步附加转矩,应使
z2?1.25?z1?p?。3)为了避免在起动过程中,产生较强的同步附加转矩、振动和噪声,应避免采用下表1第4项所列的槽配合。表1 2.3.2 转子槽形的选择和槽形尺寸的确定
(1)转子槽形 感应电动机笼型转子槽型种类很多。如下图6 图 6 感应电动机笼型转子常用槽型
a)、b)平行齿 c)、d)平行槽e)凸形槽f)刀型槽 g)、h)闭口槽i)双笼转子槽j)梯形槽(2)转子槽形尺寸的确定
转子槽形尺寸对电动机的一系列性能参数如:起动电流、起动转矩、最大转矩、起动过程中的转矩(即T-s曲线的形状)、转差率、转子铜耗、功率因数、效率和温升等有相当打的影响。其中起动转矩、起动电流、最大转矩和转差率与转子槽型尺寸的关系最为密切。此外还要重点考虑起动性能的要求;估算转子导条电流;初步给定导条电流密度;计算导条截面积;由导条截面积、槽形以及转子齿、轭部磁密,确定转子槽具体尺寸,槽口部分主要由工艺确定。(3)端环的设计
转子端环的设计与转子槽的设计相类似,在保证是够起动转力的前提下应尽使端环原型小一点,以节约铝材料和提高电动机的品质因数。1)类似槽形尺寸确定
2)为利于散热,电流密度低于导条电密 图 7 端环设计尺寸图 第3章 三相鼠笼式电动机电磁设计与方案调整 本章详细阐述Y90S—4 0.75 kW异步电动机的设计,该电机为一般用途的鼠笼式全封闭自扇冷式三相异步电动机,定子绕组为铜线,绝缘等级为B级,其基本结构防护要求达到国家电工委员会外壳防护等级IP44的要求。满足国内标准,向某些国际表准及某些发达国家标准靠拢,贯彻―三化‖——标准化、系列化及通用化的要求。3.1鼠笼式电动机电磁方案的设计
一、额定数据及主要尺寸 1.输出功率P2 P2=0.75kW 2.外施相电压U1 U1=220V 3.功电流IKW I? P2?1030.75?103 KW m=1?U1 3?220=1.1363636A 4.效率?? ??=0.77 5.功率因数cos?? cos??=0.763 6.极数p p=4 7.定子槽数Q1 Q1=24 转子槽数Q2 Q2=22 8.定子每极槽数 QP1? Q1p=24 4=6 转子每极槽数 QQ222P2? p=4 =5.5 9.定、转子冲片尺寸见右图8,图9 单位(mm)图 8 定子冲片尺寸 P2=0.75 kW U1=220 V IKW=1.13636A ??=0.77 cos??=0.763 p=4 Q1=24 Q2=22 QP1=6 QP2=5.5 图 9 转子尺寸
12电机设计论文_电动机论文 10.极距?P ?P? ??Di1= ??75 p 4 =58.9049 11.定子齿距t1 t1??75 1? ??DiQ= =9.8175 1 24 12.转子齿距t2 t??D22? = ??74.5 Q2 22 =10.6385 13.节距y y=5 14.转子斜槽宽bSK bSK=9.8175 15.每槽导体数16.每相串联导体数 ZQ1?Z1Z?1? ?1 m=24?103
Z1 Z1=103 1?a1 3?1=824 式中:
a1=1 17.绕组线规(估算)式中: 导线并绕根数·截面积 N?? I?1 1?S1? N?? 1?S1(mm22)a 1??1 = 1.9342 1?6.19 =0.3125 定子电流初步估算值 I? IKW1.1363636 I/1?1 ???cos??=0.77?0.763=1.9342 定子电流密度?? 1 ??? 21查表得?1=6.19A/MM 18.槽满率(1)槽面积 2R?bS1??? ?R2 SS?2hS?h?2 =2?3.9?5.7??3.92?2 8.6?2??2 =70.2023mm2 18 ?P=58.9049 mm t1=9.8175mm t2=10.6385mm y=5 bSK=9.8175mm Z1=103 Z?1=824 a1=1 N??S? 11=0.3125 ?? 1=6.19 A/mm2 SS=70.2023mm2(2)槽绝缘占面积(3)槽有效面积(4)槽满率
绝缘厚度Ci 导体绝缘后外 槽契厚度h 19.铁心长l 铁心有效长 净铁心长lFe 铁心压装系数KFe 20.绕组系数(1)分布系数 式中: S? i?Ci???2hS??R??? =0.25(2*8.6+?*3.9)=7.5845 mm2 Se?SS?S =70.2023-7.5845=62.6178 mm2 SN1?Z1?d21*103*0.f? S=69 =0.7831 e 62.6178Ci=0.25 mm d=0.69 h=2 无径向通风道leff?l?2g =80+0.25*2 =80.5 无径向通风道lFe?KFe?l =0.95*80=76 KFe?0.95 Kdp1?Kd1?Kp1 =0.9659265*1=0.965926 sinq? ?30?1?sin??2?Kd1 ? ?2?=?2?q30 1?sin 2 2?sin2=0.965926 q1? Q124 mp= 3*4 ?2 1???p?Q=30 1 19 S2i=7.5845 mm Se=62.6178 mm2 Sf=0.7831 Ci=0.25mm d=0.69mm h=2mm leff=80.5mm lFe=76mm KFe?0.95 Kdp1=0.965926 Kd1=0.965926 q1=2 ??30(2)短距系数 Kp1?sin???90?? =1 式中: ?? y5 Q=?0.8333 p16 21.每相有效串联导体Z?1?Kdp1?Z?1?Kdp1 数 =824*0.965926 =796
二、磁路计算 22.每极磁通 ?? E1?108 2.22f?Z ?1?Kdp1 ?194.596*1082.22*50*796 =220261.7 式中: E?? 1???1??L??? U1 ??1?0.115475 ?*220=194.6 23.齿部截面积(1)定子 ST1?bT1?lFe?QP1 =4.7569*76*6 =2169.16(2)转子 ST2?bT2?lFe?QP2 =4.99495*76*5.5 =2068.89 24.轭部截面积(1)定子 S? C1?hC1?lFe =10.2667*76 =780.2667 mm2 式中:定子轭部磁路计? ?D1?Di11 算高度h? hC1 C1 2?hS?3 R 圆底槽 ? 120?752?13.5?1 3 *3.8 ?10.266720 Kp1?1 ??0.83333 Z?1?Kdp1=796 ?=220261.7 E1=194.6 V ST1=2169.16 ST2=2068.89 SC1=780.2667 h? C1? 10.2667 mm(2)转子
式中:转子轭部磁路计? SC2?hC2?lFe =11.75*76 Sc2=893 算高度h? C2平底槽
25.空气隙面积26.波幅系数
27.定子齿磁密28.转子齿磁密29.定子轭磁密30.转子轭磁密31.空气隙磁密=893 mm2 h? ?D2?Di2C2 2?h?2R3 dK2 74.5?26 ? 2 ?12.5 ?11.75mm Sg??p?leff =58.9049*80.5 =4747.84mm2 F最大? S?平均? =1.455 B? T1?FSS T1 ?1.455* 220261.7 2169.16 =14774.4 GS B? T2?FSS T2 ?1.455* 220261.7 2068.89 =15490.4 GS BC1?12??S C1 ? 12*220261.7780.2667 =14114.5 GS B1?C2?2?S C2 ? 1220261.72*893 =12332.7 GS B? g?FS S g 21 S?=4747.84 FS=1.455 BT1=14774.4 GS BT2=15490.4 GSBC1=14114.5 GS BC2=12332.7 GSBg=6758.6 GS ?1.455* 32.查附录Vl得 220261.7 =6758.6 GS 4741.8 atT1=17.8 atT2=26.7 atC1=13.2 atC2=7.22 33.齿部磁路计算长度 定子: 半开口平底槽 转子:平底槽 =9.2+ ? hT1?hS1?hS2 'hT1=10.4667mm 1 *3.8=10.4667 mm 3 'hT2=12 mm ? hT2?hR1?hR2=12 mm 34.轭部磁路计算长 定子: ? lC1?? ? ???D1?hC1?? 转子: 2p ??120?10.2667?? 8 ?43.0922mm ? ???Di2?hC2? lC2? 2p ??26?11.75?? 8 ?14.8244mmge?g?KC1?KC2 ? 'lC1=43.0922 mm 'lC2=14.8244 mm 35.有效气隙长度 式中: 定、转子卡氏系数KC1、KC2 半闭口槽和半开口槽 ge=0.33509 =0.25 * 1.05 * 1.3404 =0.33509 KC? t?4.4g?0.75bo?t4.4g?0.75bo?bo 2 KC=1.3404 即KC?KC1*KC2 式中: 齿距为 t KC1? ?4.4*0.25?0.75*2.5?9.8175 4.4*0.25?0.75*2.5?2.529.8175 KC1=1.2722 =1.2722 22 12电机设计论文_电动机论文 槽口宽bo K10.2667 C2? ?4.4*0.25?0.75*1? 10.2667 4.4*0.25?0.75*1?12 =1.0535 36.齿部所需安匝 定子: AT?at? T1T1?hT1 =17.8×1.04667=18.6307 mm2 转子: AT? T2?atT2?hT2 =26.7×1.2=32.04 mm2 37.轭部所需安匝 定子 ATC? C1?1?atC1?lC1 =0.353×13.2×4.30922 =20.0792 mm2 轭部磁路长度校正系C1=0.353 数C1 转子 AT?
第四篇:电机心得体会(模版)
实训总结---心得体会 在过去长达两周的实训中,我的感触比较大!在这两周的实训时间里,我明白了很多的东西,也学会了很多东西。现在回想起在实训期间,往事历历在目,有酸的,有甜的,有苦的,也有辣的,自己心中的滋味也只有自己清楚了,但不可否认的是这次实训在我人生当中的价值。实训的经历虽然不等同于真正的工作经历,但我认为两者还是比较接近的,在毕业临近之时进行这个实训,其作用主要也就是为我们学生出到社会工作打下基础吧,当然实训的还有很多其它的作用。
在实训当中有很多事情需要注意,这些事关系到整个实训的价值,如果不注重这些东西,在我想来整个实训也就没有了意义了。
一、明确实训目的
在实训之前,每个人就应该想想自己要在这次实训当中要学会什么,要得到什么,这样做的目的就是为了整个实训有存在的价值与意义,所以我认为要做到以下几点: 1.重视自己行为习惯,养成良好的工作习惯。在前文,我就说过实训的主要目的就是为了以后出到社会工打下基础。在实训当中的工作量相对工厂而言是很少的,如果在实训当中没法子按时完成规定的工作量,那么那个人就得注意一下自己的态度了。如果态度认真,我想每个人都可以按时完成工作的,且还有时间是多出来的。就我对这次实训来说这方面的情况的话,那我只能说情况很不好!虽然说在实训之前就已经安排好分组了的,都是以组为单位进行实训,可是现实情况与理想的相差很远。在实训过程中,有很多人的有不作为行为,他们总是等待同组的人做,而自个在玩手机或者在吹牛打屁。还有的就是因实训器材较少,同组的人有也可能分在不同的时间段,这就更是给了一些人不作为的理由,即使是临时组成的组也是会出现这样的情况,就是这样使我明白了即使只有我自己也得做,只有自己是最可靠的。2.提升自己能力
在实训之前,我真不知道我是否会维修个电动机,虽然我是学机电设备维修与管理的,可我对维修电动机一点的信心也没。现在的我也不知自己是否可以处理电动机的问题,但我也不会像没实训之前的那样对机电设备维修一点信心也没了。也许这没有什么,但我的心态已发生改变了,而我心态改变的实质是我动手能力的提升。从电动机、风幕机的拆与装到用UG画出它们的3D图来,这些都是通过自己动手动脑所得出来的,是自己这两周以来心血的结精,也是自己能力提升的见证。
二、实训任务
在实训过程中,我们得完成老师所安排的任务,在完成这些任务过程中,我们必须以积极的态度去完成。在完成这些任务过程中,我们可能会发现很多新的问题,而这有些问题有些我们是会的,有些可能我们不会。在面对这些我们不会问题时,我们也必须解决,而在解决这些问题过程中我们可以利用我们一切可用到的工具,同时也提升了我们的学习能力。
第五篇:洗衣机电机
通过改变交流电频率的方式实现交流电控制的技术就叫变频技术。
“变频”技术利用先进的变频技术,洗衣机可通过调节电压来调节电动机洗涤和脱水时的转速。变频洗衣机可以根据衣物的种类和质地来选择合适的洗涤水流、洗涤时间、脱水转速、脱水时间,比较节约能源。
变频洗衣机很少发生一般洗衣机的水流冲击现象,这就减少了衣物缠绕和磨损。人工智能模式控制,水多少,洗涤时间多长,都可通过变频技术调节,所以,在省水省电方面,变频洗衣机的效率是目前最高的。
此外,变频洗衣机还包括健康洗涤、静音等五个方面的优势
现在比较有名的洗衣机电机,有DD电机、BLDC电机,还有海尔与美国GE合作的S-D Plus、东芝的S-DD以及串激电机。
DD电机,即direct driver直接驱动马达,DD直驱主要改变就是从以往用皮带作为介质的运转方式,变成了电机直接驱动,有提升效能、降低振动、减小噪音的优点,去掉了皮带等部件,还能减小一定的空间,算是目前比较先进的连接模式。
BLDC电机,即Brushless Direct Current 无刷直流电机。无刷直流电机不需要机械电刷,使用霍尔IC控制,比有刷更加先进,但并非真正直流电机。依然使用皮带进行运转。目前使用BLDC电机的品牌比较多,松下、博世等几乎所有品牌都有用。
S-D Plus电机,同样是取消了机械电刷,降低电磁辐射,与BLDC区别并不大,是海尔和美国GE合作研发的电机,目前只有海尔再用。
S-DD电机,是DD电机的改良版,更加节能、震动更小,传说中的东芝滚筒王就是S-DD电机,但是定位较高端市场并不是适合所有家庭使用。
串激电机,普通非变频低端洗衣机,很多都是用串激电机,这种电机原理相对简单,面向低端市场,